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OPTIMIZATION IN PROBLEMS INVOLVING THE
P-LAPLACIAN

MONICA MARRAS

Abstract. We minimize the energy integral
R
Ω |∇u|p dx, where g is a bounded

positive function that varies in a class of rearrangements, p > 1, and u is a

solution of

−∆pu = g in Ω

u = 0 on ∂Ω .

Also we maximize the first eigenvalue λ = λg , where

−∆pu = λgup−1 in Ω .

For both problems, we prove existence, uniqueness, and representation of the

optimizers.

1. Introduction

Let Ω be a bounded smooth domain in RN , and let g0 be a measurable function
satisfying 0 < g0 ≤ H in Ω for a positive constant H. Define G as the family of
measurable functions which are rearrangements of g0. In Section 2 of this article,
we consider the problem

−∆pu = g in Ω,
u = 0 on ∂Ω,

(1.1)

where p > 1, g ∈ G. The operator ∆p : W 1,p
0 (Ω) → W−1,p′

(Ω), p′ = p/(p − 1),
stands for the usual p-Laplacian defined as

〈−∆pu, v〉 =
∫

Ω

|∇u|p−2∇u · ∇v dx.

It is well known that (1.1) has a unique solution u ∈ W 1,p
0 (Ω). Corresponding to

g, we consider the so called energy integral

I(g) =
∫

Ω

|∇u|pdx.

It is useful to investigate the maximum or the minimum of I(g) when g varies in G.
Actually, the maximum of I(g) has been discussed in the paper [7]. In the present
paper we investigate the minimum of I(g) for g ∈ G, proving results of existence
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and uniqueness of the minimizer ǧ. We also find a formula of representation for ǧ
in terms of the corresponding solution uǧ.

In Section 3, we consider the eigenvalue problem

−∆pu = λgup−1, u(x) > 0 in Ω,
u = 0 on ∂Ω,

(1.2)

where λ is the first eigenvalue. It is well known that problem (1.2) has a first
positive eigenvalue λ = λg and a corresponding positive eigenfunction u = ug.
It is interesting to investigate the maximum and the minimum of λg for g ∈ G.
Actually, the minimum of λg has been discussed in the paper [8]. In the present
paper we investigate the maximum of λg for g ∈ G, proving results of existence and
uniqueness. We also find a formula of representation for the maximizer ĝ in terms
of the corresponding eigenfunction uĝ. We emphasize that the methods developed
here are different from those used in the papers [7] and [8].

Since we use the notion of rearrangements, let us recall the definition. Denote
with |E| the Lebesgue measure of the (measurable) set E. Given a function g0(x)
defined in Ω and satisfying 0 < g0(x) ≤ H for a constant H. We say that g(x)
belongs to the class of rearrangements G = G(g0) if

|{g(x) ≥ β}| = |{g0(x) ≥ β}| ∀β ∈ (0,H).

Here we write {g(x) ≥ β} instead of {x ∈ Ω : g(x) ≥ β}. In what follows, we shall
use the following results

Lemma 1.1. Let g ∈ Lr(Ω), r > 1, and let u ∈ Ls(Ω), s = r/(r − 1). Suppose
that every level set of u has measure zero. Then there exists an increasing function
φ such that φ(u) is a rearrangement of g. Furthermore, there exists a decreasing
function ψ such that ψ(u) is a rearrangement of g.

Proof. The first assertion follows from [4, Lemma 2.9]. The second assertion follows
applying the first one to −u. �

Denote with G the closure of G with respect to the weak* topology in L∞(Ω).

Lemma 1.2. Let G be the set of rearrangements of a fixed function g0 ∈ Lr(Ω),
r > 1, and let u ∈ Ls(Ω), s = r/(r − 1). If there is an increasing function φ such
that φ(u) ∈ G then ∫

Ω

gu dx ≤
∫

Ω

φ(u)u dx ∀g ∈ G,

and the function φ(u) is the unique maximizer relative to G. Furthermore, if there
is a decreasing function ψ such that ψ(u) ∈ G then∫

Ω

gu dx ≥
∫

Ω

ψ(u)u dx ∀g ∈ G,

and the function ψ(u) is the unique minimizer relative to G.

Proof. The first assertion follows from [4, Lemma 2.4]. To prove the second asser-
tion we put φ(t) = ψ(−t). Since φ is increasing, applying the previous result we
have ∫

Ω

g (−u) dx ≤
∫

Ω

φ(−u) (−u) dx ∀g ∈ G,
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and φ(−u) = ψ(u) is the unique function satisfying the inequality. Equivalently,
we have ∫

Ω

gu dx ≥
∫

Ω

ψ(u)u dx ∀g ∈ G.

The proof is complete. �

2. Energy integral

Let Ω ⊂ RN be a bounded smooth domain and let p > 1, H > 0 be two real
numbers. Let G be the family of all rearrangements of a given function g0 with
0 < g0(x) ≤ H. It is convenient to introduce G, the closure of G with respect to the
weak* topology in L∞(Ω). By [3] or [4], we know that G is weakly compact and
convex. Moreover, each g ∈ G satisfies 0 < g(x) ≤ H a.e. in Ω.

For g ∈ G, we consider problem (1.1). It is a classical result that such a problem
has a unique positive solution u ∈W 1,p

0 (Ω) which satisfies

sup
v∈W 1,p

0 (Ω)

∫
Ω

(pgv − |∇v|p)dx =
∫

Ω

(pgu− |∇u|p)dx = (p− 1)
∫

Ω

|∇u|pdx. (2.1)

It is also known that the functional
∫
Ω
(pgv−|∇v|p)dx has a unique maximizer u in

W 1,p
0 (Ω), and this maximizer is a solution to problem (1.1). By regularity results

(see for example [17]), the solution u belongs to W 2,1(Ω), and equation (1.1) holds
a.e. in Ω.

Lemma 2.1. For g ∈ G, let I(g) =
∫
Ω
|∇u|pdx, where u is the solution to (1.1).

(a) The functional g 7→ I(g) is continuous with respect to the weak* topology
in L∞(Ω).

(b) The functional g 7→ I(g) is strictly convex in G.
(c) The functional g 7→ I(g) is Gâteaux differentiable with derivative p

p−1ug.

Proof. Part (a). Let gn ⇀ g, and let ug, ugn
be the corresponding solutions to (1.1)

with g, gn respectively. Using (2.1) we have

(p− 1)I(g) +
∫

Ω

p(gn − g)ug dx =
∫

Ω

(pgnug − |∇ug|p) dx ≤ (p− 1)I(gn)

=
∫

Ω

(pgugn − |∇ugn |p) dx+
∫

Ω

p(gn − g)ugndx

≤ (p− 1)I(g) +
∫

Ω

p(gn − g)ugn
dx.

(2.2)
By assumption, we have

lim
n→∞

∫
Ω

(gn − g)ug dx = 0. (2.3)

Let us prove that

lim
n→∞

∫
Ω

(gn − g)ugn
dx = 0. (2.4)

Using (1.1) with g = gn, Poincaré Theorem and Hölder inequality we have∫
Ω

|∇ugn |pdx =
∫

Ω

gn ugndx ≤ H

∫
Ω

ugndx ≤ C
(∫

Ω

|∇ugn |pdx
)1/p

|Ω|(p−1)/p.

(2.5)
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By (2.5) we infer that the norm ‖∇ugn
‖Lp(Ω) is bounded by a constant independent

of n. Therefore, a sub-sequence of ugn
(denoted again ugn

) converges weakly in
W 1,p(Ω) and strongly in Lp(Ω) to some function z ∈W 1,p

0 (Ω). Since∫
Ω

(gn − g) ugndx =
∫

Ω

(gn − g)z dx+
∫

Ω

(gn − g)(ugn − z)dx,

and since ∣∣∣ ∫
Ω

(gn − g)(ugn
− z)dx

∣∣∣ ≤ 2H‖ugn
− z‖L1(Ω),

Equality (2.4) follows. By (2.2), (2.3) and (2.4) we infer

lim
n→∞

I(gn) = I(g). (2.6)

This yields the weak* continuity. We claim that the function z is actually the
solution of (1.1) corresponding to our function g. Indeed, from

(p− 1)I(gn) =
∫

Ω

(pgnugn
− |∇ugn

|p) dx,

lim
n→∞

∫
Ω

gnugn dx =
∫

Ω

gz dx,

and the classical result

lim inf
n→∞

∫
Ω

|∇ugn
|p dx ≥

∫
Ω

|∇z|p dx,

using (2.6) and (2.1) we get

(p− 1)I(g) ≤
∫

Ω

(pgz − |∇z|p) dx ≤ (p− 1)I(g).

By the uniqueness of the maximizer of
∫
Ω
(pgv− |∇v|p) dx we must have z = ug, as

claimed.
Proof of (b). Let f, g ∈ G, let 0 < t < 1 and let v ∈W 1,p

0 (Ω). We have∫
Ω

(
p(tf + (1− t)g)v − |∇v|p

)
dx

= t

∫
Ω

(pfv − |∇v|p) dx+ (1− t)
∫

Ω

(pgv − |∇v|p) dx.

By taking the superior of both sides relative to v ∈W 1,p
0 (Ω), we get

I(tf + (1− t)g)) ≤ tI(f) + (1− t)I(g),

that is, the convexity. Now, suppose equality holds in the above inequality for some
t ∈ (0, 1). Then, if ut is the solution corresponding to tf + (1− t)g we have

t

∫
Ω

(
pfut − |∇ut|p

)
dx+ (1− t)

∫
Ω

(
pgut − |∇ut|p

)
dx

= t

∫
Ω

(pfuf − |∇uf |p) dx+ (1− t)
∫

Ω

(pgug − |∇ug|p) dx.

It follows that ∫
Ω

(
pfut − |∇ut|p

)
dx =

∫
Ω

(
pfuf − |∇uf |p

)
dx∫

Ω

(
pgut − |∇ut|p

)
dx =

∫
Ω

(
pgug − |∇ug|p

)
dx.
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By the uniqueness of the maximizer, we must have ut = uf = ug. Moreover, since

−∆puf = f, a.e. in Ω,
−∆pug = g, a.e. in Ω,

if uf = ug, we must have f(x) = g(x) a.e. in Ω, and the strict convexity is proved.
Proof of (c). Let tn > 0 be a sequence such that tn → 0 as n→∞. Let f, g ∈ R,

and let gn = g + tn(f − g). Then, by (2.2) we find

I(g) + tn

∫
Ω

(f − g)
p

p− 1
ug dx ≤ I

(
g + tn(f − g)

)
≤ I(g) + tn

∫
Ω

(f − g)
p

p− 1
ugn

dx,

and ∫
Ω

(f − g)
p

p− 1
ug dx ≤

I(g + tn(f − g))− I(g)
tn

≤
∫

Ω

(f − g)
p

p− 1
ugn dx.

As already observed, the sequence ugn
converges to ug in the norm of Lp(Ω). There-

fore,

lim
n→∞

∫
Ω

(f − g)ugn dx =
∫

Ω

(f − g)ug dx.

Hence, since the sequence tn is arbitrary, we have

lim
t→0

I(g + t(f − g))− I(g)
t

=
∫

Ω

(f − g)
p

p− 1
ug dx.

It follows that I(g) is Gâteaux differentiable with derivative p
p−1ug. The proof is

complete. �

Theorem 2.2. Let 0 < g0(x) ≤ H, and let G be the class of all rearrangements of
g0. There exists a unique ǧ ∈ G such that

I(ǧ) = inf
g∈G

I(g).

Furthermore, we have ǧ = ψ(uǧ) for some decreasing function ψ.

Proof. By the compactness of G and the weak continuity of I(g) (proved in Lemma
2.1), we know that a minimizer ǧ exists in G. Since by Lemma 2.1, I(g) is strictly
convex, the minimizer ǧ is unique. We have to show that ǧ ∈ G.

With 0 < t < 1 and g ∈ G, let gt = ǧ + t(g − ǧ). Since I(g) is Gâteaux
differentiable at ǧ, we have

I(gt) = I(ǧ) + t

∫
Ω

(g − ǧ)
p

p− 1
uǧ dx+ o(t).

Since I(gt) ≥ I(ǧ), we find

I(ǧ) ≤ I(ǧ) + t

∫
Ω

(g − ǧ)
p

p− 1
uǧ dx+ o(t).

It follows that

0 ≤
∫

Ω

(g − ǧ)
p

p− 1
uǧ dx+

o(t)
t
.

As t→ 0 we find that
0 ≤

∫
Ω

(g − ǧ)uǧ dx,
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and ∫
Ω

guǧ dx ≥
∫

Ω

ǧuǧ dx, ∀g ∈ G. (2.7)

The function u = uǧ satisfies the equation −∆pu = ǧ > 0 a.e. in Ω, therefore uǧ

cannot have flat zones in Ω (see [12, Lemma 7.7]). By Lemma 1.1 and Lemma 1.2
we can find a decreasing function ψ such that ψ(uǧ) is a rearrangement of g0 and∫

Ω

guǧ dx ≥
∫

Ω

ψ(uǧ)uǧ dx, ∀g ∈ G.

Comparing the latter inequality with inequality (2.7) and using Lemma 1.2 again,
we must have ǧ = ψ(uǧ) ∈ G. The proof is complete. �

We remark that Theorem 2.2 gives some information on the shape of the min-
imizer ǧ. Indeed, since the associate solution uǧ is positive in Ω, vanishes on the
boundary ∂Ω, and ǧ = ψ(uǧ) with ψ decreasing, ǧ has to be large where uǧ is small,
that is close to ∂Ω.

3. Principal eigenvalue

We use the same assumptions and notation as in the previous section. For g ∈ G,
we consider problem (1.2). It is known that such a problem has a principal posi-
tive eigenvalue λg to which corresponds a unique (up to a normalization) positive
eigenfunction ug [1]. We have [14]

1
λg

= sup
v∈W 1,p

0 (Ω)

∫
Ω
pgvp dx∫

Ω
|∇v|p dx

. (3.1)

Following Auchmuty [2], we can prove that

p2

4
1
λ2

g

= sup
v∈W 1,p

0 (Ω)

[∫
Ω

pg|v|p dx−
(∫

Ω

|∇v|pdx
)2]

=
∫

Ω

pg|u|p dx−
(∫

Ω

|∇u|pdx
)2

.

(3.2)
Since we know that the principal eigenfunction is positive, we can take v > 0 in
(3.2). Therefore, for v > 0, define

A(v) =
∫

Ω

pgvp dx−
(∫

Ω

|∇v|pdx
)2

.

With t > 0, we have

A(tv) = tp
∫

Ω

pgvp dx− t2p
(∫

Ω

|∇v|pdx
)2

.

It is easy to see that, for v fixed, A(tv) ≤ A(t0v) with

tp0 =

∫
Ω
pgvp dx

2
(∫

Ω
|∇v|p dx

)2 (3.3)

Therefore,

A(tv) ≤ p2

4

( ∫
Ω
pgvp dx∫

Ω
|∇v|p dx

)2

.

It follows that

sup
v∈W 1,p

0 (Ω)

A(v) =
p2

4
sup

v∈W 1,p
0 (Ω)

( ∫
Ω
pgvp dx∫

Ω
|∇v|p dx

)2

.
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Equation (3.2) follows from the latter equation and (3.1).
Note that if v is a maximizer in (3.1) then also νv with ν 6= 0 is a maximizer.

A maximizer u in (3.1) is also a maximizer in (3.2) when u is normalized so that
t0 = 1 in (3.3), that is ∫

Ω

pgup dx = 2
(∫

Ω

|∇u|p dx
)2

. (3.4)

Therefore, the (positive) maximizer u = ug in (3.2) satisfies (3.4) and is unique.

Lemma 3.1. For g ∈ G, let J(g) = p2

4
1

λ2
g
, where λg is the principal eigenvalue of

problem (1.2).
(a) The functional g 7→ J(g) is continuous with respect to the weak* topology

in L∞(Ω).
(b) The functional g 7→ J(g) is strictly convex in G.
(c) The functional g 7→ J(g) is Gâteaux differentiable with derivative pup

g.

Proof. Parts (a) and (b) of this lemma are essentially proved in [8]; however we
give here a slightly different proof.

Proof of (a). Let gn ⇀ g, and let ug, ugn
be the corresponding maximizers of

(3.2) (eigenfunctions) with g, gn respectively. Using (3.2) we have

J(g) +
∫

Ω

p(gn − g)up
g dx =

∫
Ω

pgnu
p
g dx−

(∫
Ω

|∇ug|p
)2

dx ≤ J(gn)

=
∫

Ω

pgup
gn
dx−

(
|∇ugn

|p
)2

dx+
∫

Ω

p(gn − g)up
gn
dx

≤ J(g) +
∫

Ω

p(gn − g)up
gn
dx.

(3.5)
By assumption, we have

lim
n→∞

∫
Ω

(gn − g)up
g dx = 0. (3.6)

Let us prove that

lim
n→∞

∫
Ω

(gn − g)up
gn
dx = 0. (3.7)

Using (3.4) with g = gn and Poincaré Theorem we have

2
(∫

Ω

|∇ugn
|p dx

)2

=
∫

Ω

pgn u
p
gn
dx ≤ pH

∫
Ω

up
gn
dx ≤ C

∫
Ω

|∇ugn
|pdx. (3.8)

By (3.8) we infer that the norm ‖∇ugn‖Lp(Ω) is bounded by a constant independent
of n. Therefore, a sub-sequence of ugn

(denoted again ugn
) converges weakly in

W 1,p(Ω) and strongly in Lp(Ω) to some function z ∈W 1,p
0 (Ω). Since∫

Ω

(gn − g) up
gn
dx =

∫
Ω

(gn − g) zp dx+
∫

Ω

(gn − g)(up
gn
− zp)dx,

and since∣∣∣ ∫
Ω

(gn − g)(up
gn
− zp)dx

∣∣∣ ≤ 2HCp

∫
Ω

|ugn
− z|(ugn

+ z)p−1dx

≤ 2HCp‖ugn
− z‖Lp(Ω)

(∫
Ω

(ugn
+ z)p dx

)(p−1)/p

,
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Equality (3.7) follows. By (3.5), (3.6) and (3.7) we infer

lim
n→∞

J(gn) = J(g). (3.9)

This yields the weak* continuity. We claim that the function z is actually the
eigenfunction corresponding to g. Indeed, from

J(gn) =
∫

Ω

pgnu
p
gn
dx−

(∫
Ω

|∇ugn
|pdx)

)2

,

lim
n→∞

∫
Ω

gnu
p
gn
dx =

∫
Ω

gzp dx,

lim inf
n→∞

∫
Ω

|∇ugn
|p dx ≥

∫
Ω

|∇z|p dx,

using (3.9) and (3.2), we obtain

J(g) ≤
∫

Ω

pgzpdx−
(∫

Ω

|∇z|pdx
)2

≤ J(g).

By the uniqueness of the maximizer of
∫
Ω
pgvpdx −

(∫
Ω
|∇v|pdx

)2

we must have
z = ug, as claimed.

Proof of (b). Let f, g ∈ G, let 0 < t < 1 and let v ∈W 1,p
0 (Ω). We have∫

Ω

p(tf + (1− t)g)vp dx−
(∫

Ω

|∇v|pdx
)2

= t

∫
Ω

pfvp dx−
(∫

Ω

|∇v|pdx
)2

+ (1− t)
∫

Ω

pgvp dx−
(∫

Ω

|∇v|pdx
)2

.

By taking the superior of both sides relative to v ∈W 1,p
0 (Ω), we get

J(tf + (1− t)g)) ≤ tJ(f) + (1− t)J(g),

that is, the convexity. To prove strict convexity, suppose equality holds in the
above inequality for some t ∈ (0, 1). Then, if ut is the eigenfunction corresponding
to tf + (1− t)g we have

t
[∫

Ω

pfup
t dx−

(∫
Ω

|∇ut|pdx
)2]

+ (1− t)
[∫

Ω

pgup
t dx−

(∫
Ω

|∇ut|pdx
)2]

= t
[∫

Ω

pfup
fdx−

(∫
Ω

|∇uf |pdx
)2]

+ (1− t)
[∫

Ω

pgup
gdx−

(∫
Ω

|∇ug|pdx
)2]

.

It follows that∫
Ω

pfup
t dx−

(∫
Ω

|∇ut|pdx
)2

=
∫

Ω

pfup
fdx−

(∫
Ω

|∇uf |pdx
)2

,∫
Ω

pfup
t dx−

(∫
Ω

|∇ut|pdx
)2

=
∫

Ω

pgup
gdx−

(∫
Ω

|∇ug|pdx
)2

.

By the uniqueness of the maximizer, we must have ut = uf = ug and λf = λg.
Moreover, since

−∆puf = λffu
p−1
f , a.e. inΩ,

−∆pug = λggu
p−1
g , a.e. inΩ,

if uf = ug and λf = λg, we must have f(x) = g(x) a.e. in Ω, and the strict
convexity is proved.
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Proof of (c). Let tn > 0 be a sequence such that tn → 0 as n→∞. Let f, g ∈ R,
and let gn = g + tn(f − g). Then, by (3.5) we find

J(g) + tn

∫
Ω

(f − g)pup
g dx ≤ J

(
g + tn(f − g)

)
≤ J(g) + tn

∫
Ω

(f − g)pup
gn
dx,∫

Ω

(f − g)pup
g dx ≤

J(g + tn(f − g))− J(g)
tn

≤
∫

Ω

(f − g)pup
gn
dx.

As already observed, the sequence ugn
converges to ug in the norm of Lp(Ω). There-

fore,

lim
n→∞

∫
Ω

(f − g)up
gn
dx =

∫
Ω

(f − g)up
g dx.

Hence, since the sequence tn is arbitrary, we have

lim
t→0

J(g + t(f − g))− J(g)
t

=
∫

Ω

(f − g)pup
g dx.

It follows that J(g) is Gâteaux differentiable with derivative pup
g. The proof is

complete. �

Theorem 3.2. Let 0 < g0(x) ≤ H, and let G be the class of all rearrangements of
g0. There exists a unique ĝ ∈ G such that

J(ĝ) = inf
g∈G

J(g).

Furthermore, ĝ = ψ(uĝ) for some decreasing function ψ.

Proof. By the compactness of G and the weak continuity of J(g) (proved in Lemma
3.1), we know that a minimizer ĝ exists in G. Since by Lemma 3.1 J(g) is strictly
convex, the minimizer ĝ is unique. We have to show that ĝ ∈ G.

With 0 < t < 1 and g ∈ G, let gt = ĝ + t(g − ĝ). Since J(g) is Gâteaux
differentiable at ĝ, we have

J(gt) = J(ĝ) + t

∫
Ω

(g − ĝ)pup
ĝdx+ o(t).

Since J(gt) ≥ J(ĝ), we find

J(ĝ) ≤ J(ĝ) + t

∫
Ω

(g − ĝ)puĝ dx+ o(t).

It follows that

0 ≤
∫

Ω

(g − ĝ)puĝ dx+
o(t)
t
.

As t→ 0 we find
0 ≤

∫
Ω

(g − ĝ)uĝ dx,

and ∫
Ω

gup
ĝ dx ≥

∫
Ω

ĝup
ĝ dx, ∀g ∈ G. (3.10)

The function u = uĝ satisfies the equation −∆pu = λĝ ĝu
p−1
ĝ > 0 a.e. in Ω;

therefore, up
ĝ cannot have flat zones in Ω. By Lemmas 1.1 and 1.2 we can find a

decreasing function ψ such that ψ(up
ĝ) is a rearrangement of g0 and∫

Ω

gup
ĝ dx ≥

∫
Ω

ψ(uĝ)uĝ dx, ∀g ∈ G.
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Comparing the latter inequality with inequality (3.10) and using Lemma 1.2 again,
we must have ĝ = ψ(up

ĝ) ∈ G, and the statement of the theorem follows. �

Remarks. Since J(g) = p2

4
1

λ2
g
, the minimization of J(g) corresponds to the

maximization of λg. Theorem 3.2 gives some information on the shape of the
maximizer of λg, ĝ. Indeed, since the associate eigenfunction uĝ is positive in Ω,
vanishes on the boundary ∂Ω, and ĝ = ψ(up

ǧ) with ψ decreasing, ĝ has to be large
where uĝ is small, that is close to ∂Ω.

We underline that the maximization and the minimization of λg for g ∈ G in
case of p = 2 are discussed in [9]. However, the (interesting) method developed in
[9] for the investigation of the maximum of λg seems to not work in the nonlinear
case p 6= 2. Related problems are discussed in [6, 10, 11, 13, 15, 16].
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