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OPTIMIZATION IN PROBLEMS INVOLVING THE
P-LAPLACIAN

MONICA MARRAS

ABSTRACT. We minimize the energy integral fQ |Vu|P dz, where g is a bounded
positive function that varies in a class of rearrangements, p > 1, and u is a
solution of

—Apu=g inQ
u=0 onoN.
Also we maximize the first eigenvalue A = Ay, where
—Apu = AguP™! in Q.

For both problems, we prove existence, uniqueness, and representation of the
optimizers.

1. INTRODUCTION

Let Q be a bounded smooth domain in RY, and let gy be a measurable function
satisfying 0 < go < H in Q for a positive constant H. Define G as the family of
measurable functions which are rearrangements of gg. In Section 2 of this article,
we consider the problem

—Apu=g in{Q,
u=0 on 01,

where p > 1, g € G. The operator A, : Wol’p(Q) — W_Lp/(Q), p =p/p-1),
stands for the usual p-Laplacian defined as

(1.1)

(—Apu,v) = / |Vu|P~2Vu - Vo da.
Q

It is well known that (1.1)) has a unique solution u € VVO1 P(Q). Corresponding to
g, we consider the so called energy integral

I(g) = /Q VulPdz.

It is useful to investigate the maximum or the minimum of /(g) when g varies in G.
Actually, the maximum of I(g) has been discussed in the paper [7]. In the present
paper we investigate the minimum of I(g) for g € G, proving results of existence
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and uniqueness of the minimizer §. We also find a formula of representation for g
in terms of the corresponding solution ug.
In Section 3, we consider the eigenvalue problem

—Apu=AguP™, u(z) >0 inQ,

1.2
u=0 on 01, (1.2)

where \ is the first eigenvalue. It is well known that problem has a first
positive eigenvalue A = A, and a corresponding positive eigenfunction u = u,.
It is interesting to investigate the maximum and the minimum of A\, for g € G.
Actually, the minimum of A, has been discussed in the paper [8]. In the present
paper we investigate the maximum of A, for g € G, proving results of existence and
uniqueness. We also find a formula of representation for the maximizer ¢ in terms
of the corresponding eigenfunction us. We emphasize that the methods developed
here are different from those used in the papers [7] and [§].

Since we use the notion of rearrangements, let us recall the definition. Denote
with |E| the Lebesgue measure of the (measurable) set E. Given a function gg(x)
defined in © and satisfying 0 < go(z) < H for a constant H. We say that g(x)
belongs to the class of rearrangements G = G(go) if

{g(z) = B} = {go(x) = B} VB € (0,H).

Here we write {g(x) > 8} instead of {z € Q: g(x) > $}. In what follows, we shall
use the following results

Lemma 1.1. Let g € L™(Q), r > 1, and let w € L*(Q), s = r/(r — 1). Suppose
that every level set of u has measure zero. Then there exists an increasing function
¢ such that ¢(u) is a rearrangement of g. Furthermore, there exists a decreasing
function ¢ such that ¥(u) is a rearrangement of g.

Proof. The first assertion follows from [4, Lemma 2.9]. The second assertion follows
applying the first one to —u. [

Denote with G the closure of G with respect to the weak* topology in L°°(£2).

Lemma 1.2. Let G be the set of rearrangements of a fized function go € L"(£2),
r>1, and let u € L*(), s = r/(r — 1). If there is an increasing function ¢ such
that ¢(u) € G then

/gudx§/¢(u)udx Vg € G,
Q Q

and the function ¢(u) is the unique mazimizer relative to G. Furthermore, if there
is a decreasing function ¢ such that ¢(u) € G then

/gudajZ/d)(u)ud:ﬂ Vg eg,
Q Q

and the function (u) is the unique minimizer relative to G.

Proof. The first assertion follows from [4, Lemma 2.4]. To prove the second asser-
tion we put ¢(t) = ¥(—t). Since ¢ is increasing, applying the previous result we
have

[ audn < [ oo (-ude voeg,
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and ¢(—u) = ¥(u) is the unique function satisfying the inequality. Equivalently,
we have

/ gudxr > / Y(u)udr Vg €G.
Q Q
The proof is complete. O

2. ENERGY INTEGRAL

Let Q ¢ RY be a bounded smooth domain and let p > 1, H > 0 be two real
numbers. Let G be the family of all rearrangements of a given function gy with
0 < go(x) < H. Tt is convenient to introduce G, the closure of G with respect to the
weak* topology in L>(Q). By [3] or [], we know that G is weakly compact and
convex. Moreover, each g € G satisfies 0 < g(x) < H ae. in Q.

For g € G, we consider problem . It is a classical result that such a problem
has a unique positive solution u € W,"?(Q) which satisfies

sup /(pgv — |VolP)dx = /(pgu — |VulP)dz = (p — 1)/ |Vul|Pde.  (2.1)
vEW,P(Q) /Q Q Q
It is also known that the functional [,(pgv —|Vv[?)dz has a unique maximizer v in

VVO1 P(Q), and this maximizer is a solution to problem (1.1]). By regularity results

(see for example [17]), the solution u belongs to W21(Q), and equation (1.1 holds
a.e. in Q.

Lemma 2.1. For g € G, let I(g) = [, |[Vu|Pdz, where u is the solution to (L.

(a) The functional g — 1(g) is continuous with respect to the weak™ topology
in L>(Q). B
(b) The functional g — I(g) is strictly convez in G.

(¢) The functional g — I(g) is Gateaur differentiable with derivative p’%lug.

Proof. Part (a). Let g, — g, and let ugy, ug, be the corresponding solutions to (1.1
with g, g, respectively. Using (2.1)) we have

(r—1)I(g) + /Qp(gn — g)ugdr = /Q(pgnug — |Vug|P)dz < (p —1)1(gn)

:/(pgugn - |vugn‘p) d$+/p(gn_g)ug7zdx
Q Q

<(p—1I(g)+ /Qp(gn — g)ug, dz.

(2.2)
By assumption, we have
lim [ (gn —g)ugdz =0. (2.3)
n—oo [9)
Let us prove that
lim [ (g, — g)ug, dxz =0. (2.4)
n—oo Q

Using (1.1) with g = g,,, Poincaré Theorem and Hélder inequality we have

1/
/|Vugn|pdx:/gn ugndxgH/ugndng(/ |Vugn|pdac) p|Q|(”_1)/p.
Q Q Q Q
(2.5)
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By (2.5) we infer that the norm ||Vug, || 1r (o) is bounded by a constant independent
of n. Therefore, a sub-sequence of u,, (denoted again wu,,) converges weakly in
WP(Q) and strongly in LP(£2) to some function z € W, *(£2). Since

[0 =9) wgdo = [ (an=9)2do+ [ (60— g)(uy,
Q Q Q
and since
| [ (00 = ), = 2)da] < 2R, — s,
Equality (2.4) follows. By (2.2), (2.3) and (2.4) we infer
T 1(9,) = I(g). (2.6)

This yields the weak™ continuity. We claim that the function z is actually the
solution of (|1.1]) corresponding to our function g. Indeed, from

(p—1DI(gn) = /Q(pgnugn — [Vug, |P) dz,

n—oo

lim [ gnug, dz = / gzdz,
Q Q
and the classical result

liminf/ |Vug, |P dz > / V2P de,
using (2.6) and ([2.1) we get
(r=11(0) < | (o= = V2P do < (p = D1 (0).

By the uniqueness of the maximizer of [,(pgv — |Vv|?) dz we must have z = ug, as
claimed. B
Proof of (b). Let f,g € G, let 0 <t < 1 and let v € Wy (Q). We have

/Q(p(ff + (1= t)gv — [Volf) da

—t [ (o= VoP)dz+ 0=1) [ (gv— V0P da.
Q Q
By taking the superior of both sides relative to v € W, (), we get
I(tf + (1 —1)g)) < tI(f) + (1 —1)I(9g),

that is, the convexity. Now, suppose equality holds in the above inequality for some
t € (0,1). Then, if u; is the solution corresponding to ¢f + (1 — t)g we have

¢ /Q (pfur — |Vudl?) da + (1 — 1) /S (pgue — Ve ?) da

zt/Q(pfuf _ |VUf|p)dx—|—(1—t)/Q(pgug [V, |?) da.
It follows that
/ (pfut - |Vut|p) dx = / (pfuf - |Vuf\p) dx
Q Q

/Q(pgut — |Vut|p) dr = /Q(pgug - |Vug|p) dx.
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By the uniqueness of the maximizer, we must have u; = uy = uy. Moreover, since
—Apuyr = f, ae. inQ,
—Apug =g, ae. inQ,

if uy = ugy, we must have f(z) = g(z) a.e. in Q, and the strict convexity is proved.
Proof of (¢). Let ¢, > 0 be a sequence such that ¢,, — 0 asn — oo. Let f,g € R,
and let g, = g+ t,(f — g). Then, by (2.2)) we find

1(g) +tn /Q (f = 9) Ly dw < T(g + talf ~ g)

p
p

<I) 4t [ (£ 005"y, da,
Q p—=

and
p g+ tn(f —9)) — 1(9) p
f—g ug d < <[ (f-yg Uy, dz.
[ =02 - (=025,
As already observed, the sequence ug, converges to u, in the norm of LP(2). There-
fore,

lim [ (f —g)ug, de = /(f — g)ug dx.
Q Q

n—o0

Hence, since the sequence t,, is arbitrary, we have

I t(f — -1
iy LY+ —9)) = I(g) _ /(ffg) ug dz.
t—0 t (9] p— 1
It follows that I(g) is Gateaux differentiable with derivative -£5uy. The proof is
complete. (I

Theorem 2.2. Let 0 < go(z) < H, and let G be the class of all rearrangements of
go. There exists a unique § € G such that
I(g) = inf I(g).
(9) = Inf I(g)

Furthermore, we have § = 1 (ug) for some decreasing function .

Proof. By the compactness of G and the weak continuity of I(g) (proved in Lemma
2.1)), we know that a minimizer § exists in G. Since by Lemma [2.1} I(g) is strictly
convex, the minimizer g is unique. We have to show that g € G.

With 0 < ¢t < 1and g € G, let g¢¢ = g+ t(g — g). Since I(g) is Gateaux
differentiable at g, we have

) = 1)+t [ (9= 9)=Lugdo + oft).

Since I(g:) > I(g), we find

1) < 10)+¢ [ (9= 9) -2 uyds + oft),

It follows that

P o(t)
< —§)——u, =
O_/Q(g g)p_lugdm—i— "

As t — 0 we find that
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and
/ gug dx > / gugdx, Vg€Q. (2.7)
Q Q

The function u = uy satisfies the equation —Apu = § > 0 a.e. in Q, therefore ug4
cannot have flat zones in 2 (see [12, Lemma 7.7]). By Lemma[l.I] and Lemma
we can find a decreasing function v such that ¢ (uy) is a rearrangement of gy and

/gUgdzZ/zb(uQ)u@dx, Vg €G.
Q Q

Comparing the latter inequality with inequality (2.7]) and using Lemma again,
we must have § = ¢¥)(uz) € G. The proof is complete. O

We remark that Theorem gives some information on the shape of the min-
imizer §. Indeed, since the associate solution wug is positive in €2, vanishes on the
boundary 012, and § = 1 (ug) with ¢ decreasing, § has to be large where ug is small,
that is close to 0.

3. PRINCIPAL EIGENVALUE

We use the same assumptions and notation as in the previous section. For g € G,
we consider problem . It is known that such a problem has a principal posi-
tive eigenvalue A, to which corresponds a unique (up to a normalization) positive
eigenfunction u, [1]. We have [I4]

1 P d
— ap Japodn (31)

Ay veEW P (Q) Jo [VolPdz”

Following Auchmuty [2], we can prove that

%% = sup {/ng|v|p dx — (/Q |Vv|pdx)2} = /ng\u|p dr — (/Q |Vu|pd:17>2.
9

vEWSP(Q)
(3.2)

Since we know that the principal eigenfunction is positive, we can take v > 0 in
(3.2). Therefore, for v > 0, define

2
A(v) = / pgv? dx — (/ |Vv\pdx) .
Q Q
With ¢ > 0, we have

2
Atv) = tp/ pgv? dx — t?P (/ |Vv|pda:) .
Q Q

It is easy to see that, for v fixed, A(tv) < A(tov) with

P d
i dapgrtde 53
2(fq, IVv|P da)
Therefore,
2 D 9
p? [ Jopgv? dx
Aty) < (222" )
(to) < 4 <fQ |Vv|1’dx>
It follows that
2 » )
D Jo pgv® da
sup A(v) == sup JorIdv o
VEWLP(Q) 4 erolrl”(g)(fﬂ |Vl dm)
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Equation (3.2) follows from the latter equation and (3.1)).
Note that if v is a maximizer in (3.1)) then also vv with v # 0 is a maximizer.
A maximizer u in (3.1) is also a maximizer in (3.2) when wu is normalized so that

to =1 in (3.3)), that is
2
/ pguP dx = 2(/ |Vul|P d:c) . (3.4)
Q Q
Therefore, the (positive) maximizer u = u, in (3.2) satisfies (3.4) and is unique.

Lemma 3.1. For g € G, let J(g) = %%, where Ay is the principal eigenvalue of

2
problem . ’
(a) The functional g — J(g) is continuous with respect to the weak™ topology
in L>°(Q).
(b) The functional g — J(g) is strictly convez in G.
(c) The functional g — J(g) is Gateauz differentiable with derivative pul.

Proof. Parts (a) and (b) of this lemma are essentially proved in [8]; however we
give here a slightly different proof.

Proof of (a). Let g, — g, and let ug, ug, be the corresponding maximizers of
(3.2) (eigenfunctions) with g, g, respectively. Using we have

2
J(9) +/p(gn —g)updz = / pgnuly dr — (/ IVuglp) dz < J(gn)
Q Q Q
2
= /nguzﬁn dr — (IVugn\”) dzx + /Qp(gn - g)uy, dx

<J(g) + /Q p(gn — g)ul dx.

(3.5)
By assumption, we have
lim [ (gn — g)ul dz =0. (3.6)
n—oo Q
Let us prove that
lim [ (g, —g)ul dz =0. (3.7)
n—oo Q

Using (3.4) with ¢ = g,, and Poincaré Theorem we have

/|Vug \pdm :/pgn ub depH/ugn dng/ |Vug, |Pdz.  (3.8)

By (3.8) we infer that the norm ||Vug, || 1r () is bounded by a constant independent
of n. Therefore a sub-sequence of u,, (denoted again ug, ) converges weakly in

WP(Q) and strongly in LP(£2) to some function z € W, *(£2). Since

[on=gyut,do= [ u—9) 2o+ [ (n o), — )iz,
Q Q Q
and since

‘/(gn - g)(uzn - Zp)dx‘ S QHCP/ |ugn - Z‘(ugn + Z)p_ldaj
Q Q

(p—1)/p
< 2HCyluy, — 2oy (| (1, + 27 o)
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Equality (3.7) follows. By (3.5), (3.6) and (3.7) we infer
nh_{go J(gn) = J(9)- (3.9)

This yields the weak® continuity. We claim that the function z is actually the
eigenfunction corresponding to g. Indeed, from

2
J(gn) =/ngnu’g’ndw— (/Q\Vugnlpdw)) :

lim gnup dr = / gzP dzx,

n—oo

Q Q
lim inf/ |Vug, |P do > / |Vz|P dz,
Q Q

n— o0

using (3.9) and (3.2)), we obtain
2
19 < [ pgrde = ([ |Vapar) < sto)
Q Q

2
By the uniqueness of the maximizer of [, pgv?dx — ( Jo |Vv|pd33) we must have

Z = ug, as claimed.

Proof of (b). Let f,g € G, let 0 <t < 1 and let v € W, (Q). We have

/Qp(tf + (1 —t)g)vP dx — (/Q |Vv\pdx)2

:t/prvpdx— (/Q|Vv|pdx)2—|—(l—t)/ﬂpgvpdx— (/Q|Vv\pdx)2.

By taking the superior of both sides relative to v € Wol’p(Q), we get
J(tf + (1 =1t)g)) <tJ(f) + (1 —1)JI(g),

that is, the convexity. To prove strict convexity, suppose equality holds in the
above inequality for some ¢ € (0,1). Then, if u; is the eigenfunction corresponding
totf + (1 —t)g we have

t[/ﬁpfufdzf (/Q|Vut|pdx)2} +(1-1) [/ngufda:f (/Qwutv’dz)z}
:t{/gpfu’;dxf (/Q|vuf|de)2} +(17t)[/ngu§dxf (/Q|vug|de)2}.

It follows that

p AL p Py’

/prutdfcf (/Q|Vut| d:c) :/prufdxf (/Q|Vuf| dx) ,

2 2

/pfufdx— (/ |Vut|pdx) :/pgugdx— (/ |Vug|pdx> .
Q Q Q Q

By the uniqueness of the maximizer, we must have u; = uy = ugy and Ay = Ag.
Moreover, since

—Apuy = )\ffuffl, a.e. in(),
—Apug = Aggug_l, a.e. inf,

if up = uy and Ay = Ay, we must have f(z) = g(z) ae. in Q, and the strict
convexity is proved.
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Proof of (c). Let t, > 0 be a sequence such that t, — 0 as n — oco. Let f,g € R,
and let g, = g + t,(f — g). Then, by (3.5 we find

J(g) +tn /Q(f —g)pub dz < J(g+ta(f —9)) < J(9) +tn /Q(f —g)pub dx,

5= < LA ZDNZIO o [ (g a
Q n Q

As already observed, the sequence ug, converges to u, in the norm of L?(§2). There-
fore,

lim (f - g)ugn dx = /(f - g)ug dx.
Q Q

n—oo

Hence, since the sequence t,, is arbitrary, we have
J t(f—g9)—J
i Y+~ 9)) = T(9) :/(f—g)pugdx.
Q

t—0 t
It follows that J(g) is Gateaux differentiable with derivative pul. The proof is
complete. 0

Theorem 3.2. Let 0 < go(z) < H, and let G be the class of all rearrangements of
go- There exists a unique § € G such that

J(g) = inf J(g).
(9) = inf J(g)
Furthermore, § = ¥(ug) for some decreasing function .

Proof. By the compactness of G and the weak continuity of J(g) (proved in Lemma
3.1), we know that a minimizer § exists in G. Since by Lemma J(g) is strictly
convex, the minimizer § is unique. We have to show that § € G.

With 0 < t < 1land g € G, let gt = G+ t(g — §). Since J(g) is Gateaux
differentiable at g, we have

J(g) = J(G) +1 / (g — §)puld + oft)

Since J(g:) > J(g), we find

@) < T(@) +t / (9 — §)pug dz + o(t).

It follows that
t
0< /(g—ﬁ)puzzdf“r o).

0 t

Ast — 0 we find
0< [ (9= g)uzds.
Q
and
/qulg7 dx > /qug dx, Vgeg. (3.10)

The function v = wuy satisfies the equation —A,u = )\ggu§71 > 0 ae. in

therefore, ug cannot have flat zones in ). By Lemmas and we can find a
decreasing function v such that ¢(U§) is a rearrangement of gy and

/qugdacZ/Qi/)(ug)qux, Vg eg.
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Comparing the latter inequality with inequality and using Lemma [1.2] again,
we must have § = 1/)(ug) € G, and the statement of the theorem follows. O

Remarks. Since J(g) = %%7 the minimization of J(g) corresponds to the
maximization of A\;. Theorem gives some information on the shape of the
maximizer of Ay, §. Indeed, since the associate eigenfunction ug is positive in €2,
vanishes on the boundary 992, and § = @/J(ug) with 1) decreasing, ¢ has to be large
where uy is small, that is close to 9€2.

We underline that the maximization and the minimization of A\, for g € G in
case of p = 2 are discussed in [9]. However, the (interesting) method developed in
[9] for the investigation of the maximum of A\, seems to not work in the nonlinear
case p # 2. Related problems are discussed in [6], 10, 1T}, 13} 15, [16].
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