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A PARABOLIC-HYPERBOLIC SYSTEM MODELLING A
MOVING CELL

FABIANA CARDETTI, YUNG-SZE CHOI

Abstract. In this article, we study the existence and uniqueness of local

solutions for a moving boundary problem governed by a coupled parabolic-
hyperbolic system. The results can be applied to cell movement, extending a

result obtained by Choi, Groulx, and Lui in 2005.

1. Introduction

In this article, we consider the system of n hyperbolic equations coupled with a
single parabolic equation

wt = −σxwx − F(w, σ),

σt = g(w, σ)σxx − σ2
x + h(w, σ) ,

(1.1)

where F, g, and h are given C1 functions in their respective variables and x ∈
[r(t), f(t)]. The boundary conditions are

w = wf (t), σ = 0, at x = f(t),

σ = 0, at x = r(t)
(1.2)

with wf being a given C1 function. Motion of the boundaries are defined by

df

dt
= V |f(t)−r(t) + σx|x=f(t) ,

dr

dt
= 1 + σx|x=r(t) .

(1.3)

Here V : (0,∞) → (0,∞) is a given C1 function with V (`) > 0 when ` > 0. We
observe that `(t) = f(t)−r(t) represents the instantaneous domain size. The moving
boundary problem consists of equations (1.1), (1.2), (1.3), and initial conditions

r(0) = 0, f(0) = `0 > 0, w(x, 0) = w0(x), σ(x, 0) = ψ(x) (1.4)

with w0 ∈ C1[0, `0] and ψ ∈ C2+β [0, `0] for some 0 < β < 1 . In order for (1.1)b)
to be parabolic, we impose

g(w0, ψ) > 0 for all x ∈ [0, `0] . (1.5)
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We also require the initial conditions be compatible with the boundary conditions
and the moving conditions to first order (see p.319, [4] for the parabolic case).

The zeroth order compatibility is equivalent to

ψ(0) = ψ(`0) = 0 , w0(`0) = wf (0) . (1.6)

For the first order compatibility one differentiates σ(f(t), t) = 0 which yields σx
df
dt +

σt = 0. Therefore, at (x, t) = (`0, 0), we have

ψx(V + ψx) + g(w0, ψ)ψxx − ψ2
x + h(w0, ψ) = 0 (1.7)

with ψ, ψx, ψxx, w0 and V all evaluated at `0. Similarly the first order compatibility
for σ at (x, t) = (0, 0) leads to

ψx(1 + ψx) + g(w0, ψ)ψxx − ψ2
x + h(w0, ψ) = 0 (1.8)

with all the terms evaluated at x = 0.
One needs only the first order compatibility for w0 at (x, t) = (`0, 0). From

w(f(t), t) = wf (t), we obtain

w0,x(V + ψx)− ψxw0,x − F(w0, ψ) =
dwf

dt
(0) (1.9)

with ψ, ψx, w0, w0,x and V all evaluated at `0.
Under such conditions we will prove the following theorem by mapping the chang-

ing domain Qε ≡ {(x, t) : 0 < t < ε, r(t) < x < f(t)} to a rectangle with a unit
length.

Theorem 1.1. Consider the moving boundary problem (1.1), (1.2) and (1.3) with
initial conditions (1.4) with w0 ∈ C1[0, `0] and ψ ∈ C2+β [0, `0] for some 0 < β < 1.
Furthermore assume (1.5) holds and the boundary and the initial conditions are
compatible to first order; i.e., (1.6) to (1.9) hold. Then there exists an ε > 0
such that the moving boundary problem has unique solutions w ∈ C1,1 and σ ∈
C2+β,(2+β)/2 in the domain Qε.

We now explain the number of boundary conditions needed for w. Let the char-
acteristics associated with hyperbolic equations (1.1)a) through a point (x0, t0) be
denoted by x = x̃(x0, t0, t). Then ∂x̃/∂t = σx(x̃, t). From the moving conditions
(1.3), the front end is moving at a positive speed V (`(t)) faster than the character-
istic. In other words the characteristics from the front x = f(t) are going into the
domain [r(t), f(t)]. Hence a boundary condition is needed for w at the front. On
the other hand the characteristic at x = r(t) is going outside the domain [r(t), f(t)].
No boundary condition can be imposed at the rear end.

2. motivation

The study of the system (1.1) is motivated by the one-dimensional model for the
movement of a nematode sperm cell proposed by Mogilner and Verzi [5]. Based on
the principles of mechanics, they proposed

∂b

∂t
= − ∂

∂x
(bv)− γbb ,

∂p

∂t
= − ∂

∂x
(pv) + γbb− γpp ,

∂c

∂t
= − ∂

∂x
(cv) ,

(2.1)
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where b, p denote the length densities of the bundled filaments and free filaments,
respectively, c is the density of the cytoskeletal nodes (responsible for cell adhesion),
v is the cytoskeletal velocity, γb is the rate of unbundling of the bundled filaments,
and γp is the rate of disassembly of the free filaments. System (2.1) is derived from
mass balance and is assumed to hold for x ∈ [r(t), f(t)], which denotes the spatial
interval defined by the rear and front ends of the cell at time t.

A balance between frictional and elastic filament forces leads Mogilner and Verzi
to assume

v(x, t) =
1
ξ

∂σ

∂x
, (2.2)

where ξ is the effective drag coefficient between the cell and the substratum, and
σ is the total filament stress with a constitutive law defined by

σ = Kb(
1
c
− ρ) + κ

p

c
, (2.3)

where K and κ are the effective spring constants for the bundled and free filaments,
respectively, and ρ is the rest length of the bundled filament while the free filament
is assumed to have natural length 0. This formula for stress is based on Hooke’s
law with the average distance between two cytoskeletal nodes being 1/c.

Motion of the boundaries are defined by
df

dt
= Vp|f(t)−r(t) + v|f(t) ,

dr

dt
= Vd + v|r(t)

(2.4)

with initial conditions f(0) = `0 and r(0) = 0, respectively. Here Vd is a given
positive constant representing the rate of disassembly at the rear, and Vp is a given
function, depending on the instantaneous cell length, which represents the rate of
filament polymerization at the front.

In [1], Choi, Groulx, and Lui proved the local existence of solutions assuming
that γp = 0 and K = κ so that (b+ p)/c is a conserved quantity as time evolves.

It can be shown that system (1.1) is a generalization of (2.1). In fact, let w = b
c .

Using (2.1)a) and (2.1)c), we then obtain the following equation for w:

wt =
btc− bct

c2

=
(−bxv − bvx − γbb)c− b(−cxv − cvx)

c2

= −v[bxc− bcx
c2

]− γb
b

c
= −vwx − γbw .

Let u = p
b . Using (2.1)b) and (2.1)c), we arrive at

ut = −vux − (γp − γb)u+ γb .

With K = 1 and ρ = 1, (2.3) can be recast in terms of w and u as

σ = w(1 + κu)− b . (2.5)

On taking the time derivative and substituting wt and ut from the above calcula-
tions,

σt = bvx − vσx − γbw − κγpuw + κwγb + γbb .
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Replacing v by σx

ξ and rearranging and using (2.5), system (2.1) is equivalent to

wt = −
(σx

ξ

)
wx − γbw,

ut = −
(σx

ξ

)
ux − (γp − γb)u+ γb,

σt = b
(σx

ξ

)
x
− σ2

x

ξ
− γbσ + κγbw(1 + u)− κγpuw .

(2.6)

With b = w(1 + κu)− σ, (2.6) can be cast totally in term of w, u and σ.
It is now clear that the system consists of a second-order equation and a pair of

first-order hyperbolic equations that can be rewritten as system (1.1).

3. Preliminary lemma

Throughout this article, we will use u ∈ C1,0 to denote u and ux are continuous
functions in a (x, t) domain, while u ∈ C1,1 means u, ux and ut are continuous.
The following lemma will be needed in Section 5 to prove the main theorem.

Lemma 3.1. Let Rδ = {(x, t) : 0 < x < 1, 0 < t < δ}. Let a ∈ C1,0(Rδ),
f : Rn ×Rδ be a continuous function of (u, x, t) with fu and fx being continuous,
g ∈ C1[0, δ], and u0 ∈ C1[0, 1]. Consider the system

ut + a(x, t)ux = f(u, x, t) ,

u(1, t) = g(t) for 0 ≤ t ≤ δ,

u(x, 0) = u0(x) for 0 ≤ x ≤ 1.
(3.1)

Suppose a(0, t) < 0 and a(1, t) < 0 for 0 ≤ t ≤ δ, and the compatibility conditions
g(0) = u0(1) and gt(0) + a(1, 0)u′0(1) = f(u0(1), 1, 0) holds. Then there exists
a unique solution u ∈ C1,1(Rδ1) for some positive δ1 ≤ δ to the above system.
Furthermore,

(a) there exists a constant M1 > 0, depending on the L∞-norm of a,g,u0 and
f in the compact set [−‖u0‖∞ − ‖g‖∞ − 1, ‖u0‖∞ + ‖g‖∞ + 1] × Rδ, such that
‖u‖∞ ≤M1,

(b) there exists a constant M2 > 0, depending on the C1 norm of g and u0,
the C1,0-norm of coefficient a, and the L∞-norm of f , fu, fx in the compact set
[−‖u0‖∞−‖g‖∞− 1, ‖u0‖∞+ ‖g‖∞+ 1]×Rδ, such that ‖u‖C1,1 ≤M2. The time
interval of existence [0, δ1] also depends on the same norms.

Proof. Let x = x̃(t, τ) be the characteristic curve coming out from x = 1 at time τ
into the domain Rδ. In other words, x̃ satisfies

∂x̃

∂t
= a(x̃(t, τ), t),

x̃(τ, τ) = 1.
(3.2)

Now define v(t, τ) = u(x̃(t, τ), t). Then using (3.2)a) and the governing equation
on u, we obtain

∂v
∂t

= f(v, x̃(t, τ), t),

v(τ, τ) = g(τ).
(3.3)

By ODE theory there exists a unique solution v for a small time interval [τ, τ + δ1]
with δ1 being uniform with respect to initial conditions g(τ) for all τ ∈ [0, δ]. One
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can perform similar calculations for characteristics starting from initial point (x, 0)
for x ∈ [0, 1] by shrinking the time interval of existence [0, δ1] if necessary. These
lead to a L∞-norm bound on v, which leads to statement (a) in the theorem.
Continuity of solutions across the characteristic Γ0 coming out from (x, t) = (1, 0)
is an easy consequence of the above analysis and the compatibility condition g(0) =
u0(1).

Now differentiating the initial condition (3.2)b) with respect to τ yields x̃t(τ, τ)+
x̃τ (τ, τ) = 0, which simplifies to x̃τ (τ, τ) = −a(1, τ) > 0. Hence from (3.2),

∂

∂t

(∂x̃
∂τ

)
= ax(x̃(t, τ), t)

∂x̃

∂τ
,

∂x̃

∂τ
(τ, τ) = −a(1, τ).

Therefore, if ‖ax‖∞ ≤M , then

|a(1, τ)|e−M(t−τ) ≤ ∂x̃

∂τ
≤ |a(1, τ)|eM(t−τ) . (3.4)

Similarly we differentiate the initial condition (3.3)b) obtaining vt(τ, τ)+vτ (τ, τ) =
gt(τ), which simplifies to vτ (τ, τ) = gt(τ)− f(g(τ), 1, τ). Therefore (3.3) yields the
following governing equation for ∂v

∂τ ,

∂

∂t

(∂v
∂τ

)
= fu(v, x̃(t, τ), t)

∂v
∂τ

+ fx(v, x̃(t, τ), t)
∂x̃

∂τ
,

∂v
∂τ

(τ, τ) = gt(τ)− f(g(τ), 1, τ) .
(3.5)

Thus we get the linear system ∂
∂t

(
∂v
∂τ

)
= A(t)∂v

∂τ +b(t) with matrix A, vector b and
initial condition all with L∞-norm bounds. Using < ·, · > to denote scalar product
in Rn, which is related to `2 norm. Then there exist positive constants c1 and c2
such that

∂

∂t

(
‖∂v
∂τ
‖2`2

)
= 2

〈∂v
∂τ
,
∂

∂t

(∂v
∂τ

)〉
= 2

〈∂v
∂τ
,A(t)

∂v
∂τ

+ b(t)
〉

≤ c1‖
∂v
∂τ
‖2`2 + c2 ,

which leads to boundedness of ‖∂v
∂τ ‖∞.

From the definition of v we have that ∂v
∂τ = ∂u

∂x
∂x̃
∂τ . With ∂x̃/∂τ in (3.4) having

a positive lower bound, it is immediate that there exists a positive constant m such
that ‖∂u

∂x‖∞ ≤ m. Next with ∂v
∂t = a∂u

∂x + ∂u
∂t , we can also bound ∂u

∂t . Therefore,
there exists a positive constant M2 such that ‖u‖C1,1 ≤ M2 for those solutions
whose characteristics originate from x = 1.

A similar analysis can be performed with solutions whose characteristics originate
from t = 0. To complete the proof of statement (b), we need ut and ux to be
continuous across Γ0.

Assuming the solution is smooth in these two regions for the time being, we have

(ux)t + a(ux)x + axux = fuux + fx .
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Let [·] to denote the jump across Γ0. Due to continuity of u across Γ0, on subtraction
of the above equations in the two regions we obtain

([ux])t + a([ux])x + (ax − fu)[ux] = 0,

[ux](0, 0) = 0,
(3.6)

where the zero initial condition is a consequence of the second compatibility condi-
tion. Hence [ux] = 0 at all subsequent time by integrating along the characteristic
Γ0.

Since the coefficients a and ax− fu in (3.6) do not depend on higher smoothness
of solution u, one can obtain (3.6) by using approximations of a and f by smoother
functions and take the limit. The proof of the Lemma is now complete. �

4. Fixing the domain

To facilitate our discussion, we let Qε = {(x, t) | r(t) < x < f(t), 0 < t <
ε}. It is convenient to work on a fixed domain so we first straighten out the
moving boundaries. Let `(t) = f(t) − r(t) and x = r(t) + x̄`(t). The region
Qε is mapped onto the region Rε = {(x̄, t) | 0 < x̄ < 1, 0 < t < ε}. Define
w̃(x̄, t) = w(r(t) + x̄`(t), t) and σ̃(x̄, t) = σ(r(t) + x̄`(t), t). Then w̃x̄ = wx` and

w̃t = (r′ + x̄`′)wx + wt

=
(r′ + x̄`′)

`
w̃x̄ −

σx

`
w̃x̄ − F(w̃)

= −
( σ̃x̄

`2
− (r′ + x̄`′)

`

)
w̃x̄ − F(w̃)

with boundary condition w̃(1, t) = wf (t). Similarly we can obtain the governing
equation for σ̃. System (1.1) is then transformed into the system

w̃t = −
( σ̃x̄

`2
− (r′ + x̄`′)

`

)
w̃x̄ − F(w̃) ,

σ̃t =
g(w̃, σ̃)
`2

σ̃x̄x̄ −
( σ̃x̄

`2
− (r′ + x̄`′)

`

)
σ̃x̄ + h(w̃, σ̃),

(4.1)

which holds in Rε. The boundary conditions (1.2) become

σ̃(0, t) = 0,

σ̃(1, t) = 0, w̃(1, t) = wf (t),
(4.2)

and the equations for the moving boundaries (1.3) become

df

dt
= V (`(t)) +

σ̃x̄(1, t)
`

, f(0) = `0,

dr

dt
= 1 +

σ̃x̄(0, t)
`

, r(0) = 0.
(4.3)

We observe that the first order compatibility conditions (1.6) to (1.9) between the
initial and the boundary conditions in the domain Qε give rise to the corresponding
compatibility conditions of σ̃ at (x̄, t) = (0, 0), (1, 0) and w̃ at (x̄, t) = (1, 0) in the
domain Rε. Hence one can establish Theorem 1.1 by considering (4.1)-(4.3) with
corresponding initial conditions which are compatible to the boundary conditions
to first order.

The idea of our existence proof is to make a guess for σ̃. Next using such a guess
and (4.3) we find the moving boundaries f , r and ` = f − r. Via Lemma 3.1, we
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have enough a priori bounds for the solution w̃ of the hyperbolic equations (4.1)a).
The final step is to solve (4.1)b) for a new σ̃. If we can find a fixed point of such
an iterative procedure, this will be a solution we are looking for.

5. Proof of Theorem 1.1

Define g0 = g(w̃, σ̃)|t=0 and h0 = h(w̃, σ̃)|t=0. Let z be the solution of the
following initial-boundary value problem

zt =
g0(x̄l0)
`20

zx̄x̄ −
(
ψ′(x̄`0)−

[r′(0) + x̄`′(0)]
`0

)
ψ′(x̄`0) + h0(x̄l0),

z(0, t) = z(1, t) = 0,

z(x̄, 0) = ψ(x̄l0) ,

(5.1)

which is a linear second order parabolic equation. It is derived from (4.1)b) with all
the terms, except for the ones involving the time derivative and the second spatial
derivative, evaluated using the initial conditions. By hypothesis the coefficients
and the non-homogeneous terms in the above equation are time-independent and in
C1([0, 1]). Since the initial conditions satisfy the first order compatibility conditions
at (0, 0) and (1, 0), respectively, a unique solution z exists and is in C2+β,(2+β)/2(Rε)
for some 0 < β < 1 as defined in the hypothesis. It is also clear that if solution σ̃
to (4.1)b) exists, then σ̃(x̄, 0) = z(x̄, 0) and σ̃t(x̄, 0) = zt(x̄, 0). Let 0 < ε ≤ 1 and
let

Sε =
{
σ ∈ C2,1(Rε) : ‖σ − z‖C2,1(Rε)

≤ 1, σ(x̄, 0) = z(x̄, 0),

σt(x̄, 0) = zt(x̄, 0), σ(0, ·) = σ(1, ·) = 0
}
.

The goal is to define, for sufficiently small ε, a compact continuous map T : Sε → Sε

and then apply the Schauder fixed-point Theorem.
Recall [0, δ1] is the interval of existence in Lemma 3.1. Let σ ∈ Sε1 where ε1 ≤ δ1

will be determined later and let ` be the solution to the equation `′ = L(`, t) with
initial condition `(0) = `0, where

L(`, t) = V (`)− 1 +
σx̄(1, t)− σx̄(0, t)

`
.

Since L is C1 in `, C1/2 in t, there exists an ε1 > 0, uniform with respect to σ ∈ S1,
such that the solution ` exists, belongs to C1+1/2([0, ε1]) and satisfies 2`0 ≥ ` ≥
`0/2. Now solve (4.3) separately for f and r. It is clear that f, r ∈ C1+1/2[0, ε1]
and f − r = `.

Using f, r, and σ, the next step is to solve the hyperbolic equations (4.1)a) for
w̃. By Lemma 3.1, the solution w exists and has uniform C1,1 bound which is
independent of the choice of σ ∈ Sε1 .

Now let σ̂ be the solution to the linear initial-boundary value problem

σ̂t =
g(w(x̄, t), σ(x̄, t))

`2(t)
σ̂x̄x̄ +G(x̄, t),

σ̂(0, t) = σ̂(1, t) = 0,

σ̂(x̄, 0) = ψ(x̄l0)

(5.2)

in Rε1 , where

G(x̄, t) = −
(σx̄

`2
− (r′ + x̄`′)

`

)
σx̄ + h(w, σ) . (5.3)
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Having uniform time derivative bounds on w and σ, they stay close to w0 and ψ
by reducing ε1 if necessary. Hence we have the parabolicity g(w, σ) > 0 because of
(1.5).

With σ ∈ Sε1 and our established estimates on h and `, we have ‖G‖C1,1/2(Rε1 )

being uniformly bounded independently of the choice of σ ∈ Sε1 . Define the oper-
ator T : Sε1 → Sε1 by Tσ = σ̂.

To show that σ̂ ∈ Sε1 , let g̃(x̄, t) = g(w(x̄, t), σ(x̄, t)) and u = σ̂ − z. Observe
that (5.1) is the same as

zt =
g̃(x̄, 0)
`20

zx̄x̄ +G(x̄, 0) .

Then it can readily be checked that u satisfies the equation

ut =
g̃(x̄, t)
`2

ux̄x̄ +H(x̄, t), (5.4)

where

H(x̄, t) =
( g̃(x̄, t)

`2
− g̃(x̄, 0)

`20

)
zx̄x̄ +G(x̄, t)−G(x̄, 0) . (5.5)

The established estimates allow us to conclude that there is a uniform bound on
‖H‖Cβ,β/2(Rε1 ), which is independent of the choice of σ ∈ Sε1 . Observe that u has
zero initial and boundary conditions and H(·, 0) = 0. Hence by [4, ch.4, Thm. 5.4],

‖u‖C2+β,(2+β)/2(Rε1 ) ≤M1‖H‖Cβ,β/2(Rε1 ) , (5.6)

where M1 is independent of the choice of σ ∈ Sε1 and remains bounded as ε ↓ 0.
Since u(·, 0) = ut(·, 0) = 0, by choosing ε1 smaller if necessary, (5.6) allows us
to conclude ‖u‖C2,1(Rε1 ) ≤ 1 so that σ̂ ∈ Sε1 . Inequality (5.6) also implies that
‖σ̂‖C2+β,(2+β)/2(Rε1 ) is bounded independently of the choice of σ in Sε1 . Thus T is
a compact operator.

As σ ∈ Sε1 varies continuously in C2,1(Rε1) norm, it is readily checked that r, f, `
varies continuously in C1+1/2[0, ε1] norm, which leads to a corresponding variation
of w(x̄, t) in C1,1(Rε1) norm. Standard parabolic estimate then requires σ̂ to vary
continuously in C2,1(Rε1) norm. Hence T is continuous on Sε1 . Schauder fixed
point Theorem implies that T has a fixed point and the proof of the existence of
solution is complete.

Proof of uniqueness. Now we turn our attention to the uniqueness of smooth
solutions. Let (σ̃i, w̃i, fi, ri), i = 1, 2, be two solutions of the moving boundary
problem with the same initial conditions. Let gi = g(w̃i, σ̃i) and hi = h(w̃i, σ̃i) for
i = 1, 2. Define σ̂ = σ̃1 − σ̃2, ĝ = g1 − g2, ĥ = h1 − h2, ŵ = w̃1 − w̃2, ˆ̀= `1 − `2,
and r̂ = r1 − r2. Then from (4.1)b), σ̂ satisfies

σ̂t =
g1
`21
σ̂x̄x̄ +

(r′1 − x̄`′1)
`1

σ̂x̄ −
(σ̃1x̄ + σ̃2x̄)

`21
σ̂x̄ +Gσ(x̄, t) (5.7)

where the nonhomogeneous term is

Gσ =
(g1
`21
− g2
`22

)
σ̃2x̄x̄ +

( (r′1 − x̄`′1)
`1

− (r′2 − x̄`′2)
`2

)
σ̃2x̄ −

( 1
`21
− 1
`22

)
σ̃2

2x̄ + (h1− h2) .
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Since Gσ(x̄, 0) = 0 and σ̂ has zero boundary and initial conditions in Rτ , by [4,
ch.4, Thm. 9.2], for any q > 1, there exists a constant Kq,τ > 0, which remains
bounded as τ → 0, such that

‖σ̂‖W 2,1
q (Rτ ) ≤ Kq,τ

(
‖ĝ‖C(Rτ ) + ‖r̂‖C1([0,τ ]) + ‖ˆ̀‖C1([0,τ ]) + ‖ĥ‖C(Rτ )

)
,

where the right hand side is obtained by estimating L∞-norm of Gσ.
By increasing the constant Kq,τ if necessary, we can recast the above estimate

as

‖σ̂‖W 2,1
q (Rτ ) ≤ Kq,τ

(
‖σ̂‖C(Rτ ) + ‖r̂‖C1([0,τ ]) + ‖ˆ̀‖C1([0,τ ]) + ‖ŵ‖C(Rτ )

)
. (5.8)

A similar calculation for ŵ using (4.1)a) yields

ŵt +
[ σ̃1x̄

`21
− (r′1 − x̄`′1)

`1

]
ŵx̄ = Gw(x̄, t) ,

where

Gw(x̄, t) = −
[ σ̃1x̄

`21
− σ̃2x̄

`22
− (r′1 − x̄`′1)

`1
+

(r′2 − x̄`′2)
`2

]
w̃2x̄ − (F(w̃1)− F(w̃2)) .

With Gw(x̄, 0) = 0 and ŵ vanishing at t = 0 and on the right boundary of Rτ , the
compatibility conditions at (x, t) = (1, 0) are satisfied. By integrating along the
characteristics, there exists a constant K1 > 0 such that

‖ŵ‖C(Rτ ) ≤ K1‖Gw‖C(Rτ ) ≤ K1(‖σ̂‖C1,0(Rτ ) + ‖r̂‖C1([0,τ ]) + ‖ˆ̀‖C1([0,τ ])) . (5.9)

Next we estimate ˆ̀ and r̂. By subtracting (4.3)b) from (4.3)a), we obtain a gov-
erning equation for `. Thus ˆ̀ satisfies an equation of the form

ˆ̀′ = m(t)ˆ̀+ n(t) (5.10)

for some functions m and n with initial condition ˆ̀(0) = 0. We note that ‖m‖C([0,τ ])

is bounded and ‖n‖C([0,τ ]) ≤ K3‖σ̂‖C1,0(Rτ ) for some constantK3 > 0. From (5.10),

‖ˆ̀‖C1([0,τ ]) ≤ K4‖n‖C(0,τ ]) ≤ K5‖σ̂‖C1,0(Rτ ) (5.11)

for some constant K5 > 0. A similar calculation gives

‖r̂‖C1([0,τ ]) ≤ K6(‖σ̂‖C1,0(Rτ ) + ‖ˆ̀‖C([0,τ ])) ≤ K7‖σ̂‖C1,0(Rτ ) (5.12)

for some positive constants K6, K7.
Substituting (5.9), (5.11), (5.12) in (5.8), we have ‖σ̂‖W 2,1

q (Rτ ) ≤ K8‖σ̂‖C1,0(Rτ )

for some K8 > 0. Note that the constants K1 to K8 remain bounded as τ ↓
0. Lemma 3.3 in [4, ch.4], with ` = 1, r = 0, s = 1, and q = 6 implies that
‖σ̂‖

C1+λ, 1+λ
2 (Rτ )

≤ K9‖σ̂‖W 2,1
6 (Rτ ) where λ = 1

2 and K9 is independent of τ . This

means that σ̂x̄ is Hölder continuous in t with exponent 1/4. Since σ̂(·, 0) = 0,
combining the above inequalities, we have

‖σ̂‖
C1+ 1

2 , 3
4 (Rτ )

≤ K10τ
1/4‖σ̂‖

C1+ 1
2 , 3

4 (Rτ )
(5.13)

for some constant K10 > 0. By choosing τ small enough that K10τ
1/4 < 1, we have

σ̂ = 0; i.e., σ̃1 = σ̃2. That w̃1 = w̃2, ˜̀
1 = ˜̀

2, and r̃1 = r̃2 follow immediately from
(5.9), (5.11), (5.12). The uniqueness part of the proof is complete.
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6. Conclusion and open questions

In [1], the existence and uniqueness of local solutions to a moving boundary
problem (2.1) modelling cell motility is established when γp = 0 and K = κ in
(2.3). Such assumptions are discarded in this paper so that some conservation
relation becomes unavailable.

If one puts (2.2) and (2.3) into (2.1), at first glance the governing equations
look like a strongly coupled parabolic system. It is, however, a system of first order
hyperbolic equations coupled with a parabolic equation and requires a careful refor-
mulation to make such an issue clear. Through a clever choice of new independent
variables in section 2, the transformed equations (2.6) are weakly coupled, allow-
ing a simpler analysis to establish a priori bounds. The corresponding generalized
problem presented in section 1 is then transformed into the problem (4.1)-(4.3) with
a fixed domain. A fixed point iterative scheme leads to the existence of solutions
to this moving boundary problem. Uniqueness then follows by applying a priori
estimates on the difference of two solutions. We now cite some open problems
associated with this model:

(a) Having proved the local existence and uniqueness of the solution, a natural
step is the study of global existence of solutions. Besides γp = 0 and K = κ,
some special initial conditions are needed in [1] to prove the global existence of
solution. Such simplifications allow the reduction of the model to a scalar parabolic
equation with some non-local moving boundary conditions. This reduction allows
certain techniques which are not possible for a system of equations. There is some
progress in the global existence for a single simple hyperbolic equation coupled with
a parabolic equation (Choi and Miller, in preparation). For the system (1.1) with
appropriate restrictions on F, it will be interesting to see if a modification of such
ideas will work or some totally different tricks are necessary in the study of its
global existence of solution.

(b) The constitutive law (2.3) proposed by Mogilner and Verzi in [5] is based
on the assumption that the stress can be modelled as the sum of two linear spring
forces. The actual stress-strain relationship inside a cell may be more complicated.
For example one may just require that stress increases with extension beyond its
natural length. Under such more general conditions, the local and global existence
of solutions can be studied.

(c) A two-dimensional model has been proposed by Choi and Lui in [3]. The
model was shown to admit a travelling domain solution, in the sense that both
the shape of the domain and the steady travelling speed are parts of the solution.
Both the local and the global existence of solution to such a 2D model has not been
established.

References

[1] Y. S. Choi, P. Groulx, and R. Lui; Moving boundary problem for a one-dimensional crawling
nematode sperm cell model. Nonlinear Anal.Real World Appl. 6 (2005), no. 5, 874–898.

[2] Y. S. Choi, J. Lee, and R. Lui; Traveling wave solutions for a one-dimensional crawling
nematode sperm cel model. J. Math. Biol. 49 (2004), no. 3, 310–328.

[3] Y. S. Choi and R. Lui; Existence of traveling domain solutions for a two-dimensional moving
boundary problem. Transactions of AMS, to appear.
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