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EIGENCURVES FOR A STEKLOV PROBLEM

AOMAR ANANE, OMAR CHAKRONE,

BELHADJ KARIM, ABDELLAH ZEROUALI

Abstract. In this article, we study the existence of the eigencurves for a

Steklov problem and we obtain their variational formulation. Also we prove
the simplicity and the isolation results of each point of the principal eigen-

curve. Also we obtain the continuity and the differentiability of the principal

eigencurve.

1. Introduction

Consider the two parameter Steklov eigenvalue problem

4pu = 0 in Ω,

|∇u|p−2 ∂u

∂ν
= λm(x)|u|p−2u + µ|u|p−2u on ∂Ω

(1.1)

where Ω is a bounded domain in RN (N ≥ 2) with a Lipschitz continuous boundary,
m ∈ L∞(∂Ω) is a weight function which may change sign, λ, µ, p be real numbers
with 1 < p < ∞. The weak solutions of (1.1) are defined by∫

Ω

|∇u|p−2∇u∇ϕ dx = λ

∫
∂Ω

m(x)|u|p−2uϕ dσ + µ

∫
∂Ω

|u|p−2uϕ dσ, (1.2)

for ϕ ∈ W 1,p(Ω), where dσ is the N−1 dimensional Hausdorff measure. Let us note
that all solutions of problem (1.1) are of class C1,α(Ω) since they are p-harmonic.

Problem (1.1) has been studied by several authors in the case µ = 0 and p = 2;
we cite in particular the works [4, 7, 9]. For the nonlinear case, the authors in [3]
and [11] studied the case when µ = 0 and m ∈ Lq(∂Ω). A problem in which the
eigencurve appears in the boundary condition has been considered recently in [6].
Assuming m ∈ L∞(∂Ω) the authors show that for each λ ∈ R, there is an increasing
sequence of eigenvalues for the nonlinear boundary-value problem

4pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λm(x)|u|p−2u + µ|u|p−2u on ∂Ω

(1.3)
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also they show that the first eigenvalue is simple and isolated. Furthermore they
obtain some results about their variation, density, and continuous dependence on
the parameter λ.

We set

µ1(λ) = inf
{1

p

∫
Ω

|∇u|p dx− λ

p

∫
∂Ω

m(x)|u|p dσ : u ∈ W 1,p(Ω),

1
p

∫
∂Ω

|u|p dσ = 1
}

,

(1.4)

We understand by the principal eigencurve of the Steklov problem (1.1), the graph
of the map µ1 : λ → µ1(λ) from R to R.

Our purpose of this paper is to study , as in [6], the existence of the eigencurves
of the Steklov problem (1.1) and we obtain their variational formulation by using
Ljusternik-Schnirelmann theory ([10]). Also we prove the simplicity and isolation
results of each point of the principal eigencurve µ1(λ) by applying Picone’s Identity
[1]. Finally, we obtain the continuity and the differentiability of this principal
eigencurve.

The plan of this paper is the following. In Section 2, we use a variational method
to prove the existence of a sequence of eigencurves for the problem (1.1). In Section
3, we establish the simplicity and the isolation results of each point of the princi-
pal eigencurve. Finally, in Section 4, we establish the continuity of the eigenpair
(µ1(λ), u(λ)) in λ and the differentiability of the principal eigencurve.

2. Existence of eigencurves

To prove the existence of a sequence of eigencurves of (1.1), we will use a varia-
tional approach and consider the energy functional on W 1,p(Ω) as

Φλ(u) =
1
p

∫
Ω

|∇u|p dx− λ

p

∫
∂Ω

m(x)|u|p dσ,

Set

S := {u ∈ W 1,p(Ω);
1
p

∫
∂Ω

|u|p dσ = 1}.

It is clear that for any λ ∈ R, The solutions of (1.1) are the critical points of Φλ

restricted to S. For any k ∈ N∗, let

Γk = {K ⊂ S : K symmetric, compact and γ(K) = k},

where γ(K) = k is the genus of K; i.e., the smallest integer k such that there is an
odd continuous map from K to Rk\{0}. Next we define

µk(λ) := inf
K∈Γk

max
u∈K

Φλ(u) (2.1)

and

‖u‖ :=
( ∫

Ω

|∇u|p dx +
∫

Ω

|u|p dx
)1/p

is the W 1,p(Ω)-norm.
The following theorem is the main result of this section.

Theorem 2.1. For each λ ∈ R, µk(λ) given by (2.1) is a nondecreasing sequence
of positive eigenvalues of the problem (1.1). Moreover µk(λ) → +∞ as k → +∞.
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We will use Ljusternick-Schnirelmann theory on C1-manifolds. It is clear that
for any λ ∈ R, the functional Φλ is even and bounded from below on S. Indeed, let
u ∈ S, then

Φλ(u) ≥ −|λ|‖m‖∞,∂Ω > −∞, (2.2)
where ‖ · ‖∞,∂Ω denotes the L∞(∂Ω)-norm. Letting

A(u) := −λ

p

∫
∂Ω

m|u|p dσ, B(u) :=
1
p

∫
∂Ω

|u|p dσ.

By employing the Sobolev trace embedding W 1,p(Ω) ↪→ Lp(∂Ω), we deduce that A,
B are weakly continuous and A′, B′ are compact, where A′ and B′ are respectively
the derivative of A and B.

We are now ready to prove the Palais-Smale condition.

Lemma 2.2. The functional Φλ satisfies the Palais-Smale condition on S; i.e., for
each sequence (un)n ⊂ S, if Φλ(un) is bounded and

(Φλ)′(un)− cnB′(un) → 0, (2.3)

with cn = 〈(Φλ)′(un),un〉
〈B′(un),un〉 . Then, (un)n has a convergent subsequence in W 1,p(Ω).

Let define the property (S+). We shall deal with operators F acting from
W 1,p(Ω) to (W 1,p(Ω))′. F satisfies the condition (S+), if for any sequence vn

weakly convergent to v in W 1,p(Ω), and lim supn→+∞〈F (vn), vn − v〉 ≤ 0 it follows
that vn → v strongly in W 1,p(Ω), where (W 1,p(Ω))′ is the dual of W 1,p(Ω) with
respect to the pairing 〈., .〉.

Proof of Lemma 2.2. Let us first show that the sequence un is bounded in W 1,p(Ω).
Assume by contradiction that, for a subsequence of (un)n, ‖un‖ → +∞ and let
vn := un/‖un‖, for a subsequence, vn → v weakly in W 1,p(Ω) and strongly in
Lp(Ω) and strongly in Lp(∂Ω). Since Φλ(un) is bounded, then

∫
Ω
|∇un|p dx remains

bounded, one has
∫
Ω
|∇vn|p dx → 0. Thus v is a nonzero constant, indeed; the weak

convergence of vn imply that∫
Ω

|∇v|p dx +
∫

Ω

|v|p dx ≤ lim inf
n→+∞

( ∫
Ω

|∇vn|p dx +
∫

Ω

|vn|p dx
)
.

Thus
∫
Ω
|∇v|p dx = 0, hence v is a constant. Moreover vn → v strongly in W 1,p(Ω),

thus v is a nonzero constant. But B(un) = 1 and so, dividing by ‖un‖p and passing
to the limit, one obtains

∫
∂Ω
|v|p dσ = 0. This is a contradiction (since v is a nonzero

constant). Thus un is bounded in W 1,p(Ω). For a subsequence of (un)n, un → u
weakly in W 1,p(Ω) and strongly in Lp(∂Ω). On the other hand, by (2.3), (Φλ)′(un)
being a convergent sequence strongly to some f ∈ (W 1,p(Ω))′. By calculation, we
have

〈F (un), un−u〉 = 〈(Φλ)′(un), (un−u)〉−〈A′(un), (un−u)〉+
∫

Ω

|un|p−2un(un−u) dx,

where F is an operator defined from W 1,p(Ω) to (W 1,p(Ω))′ by

〈F (u), v〉 =
∫

Ω

|∇u|p−2∇u∇v dx +
∫

Ω

|u|p−2uv dx.

Using the compactness of A′, we get

lim sup
n→+∞

〈F (un), un − u〉 ≥ 0.
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Since the operator F satisfies the condition (S+), un → u strongly in W 1,p(Ω).
This achieves the proof of lemma. �

Proof of Theorem 2.1. This theorem is proved by applying a general result from
infinite dimensional Ljusternik-Schnirelmann theory. We need only to prove that
for any λ ∈ R, µk(λ) → +∞ as k → +∞. The proof adopts the scheme in [6].
Let (en, e∗j )n,j be a biorthogonal system such that en ∈ W 1,p(Ω), e∗j ∈ (W 1,p(Ω))′,
the (en)n are dense in W 1,p(Ω); and the (e∗j )j are total in (W 1,p(Ω))′. Set for any
k ∈ N∗

F⊥
k−1 = span(ek+1, ek+2, ek+3, . . . ).

Observe that for any K ∈ Γk, K ∩F⊥
k−1 6= ∅ (by [10, (g) of Proposition 2.3]). Now,

we claim that

tk := inf
K∈Γk

sup
K∩F⊥k−1

Φλ(u) → +∞, as k → +∞.

Indeed, to obtain the contradiction, assume for k large enough that there is uk ∈
F⊥

k−1 with 1
p

∫
∂Ω
|uk|p dσ = 1 such that

tk ≤ Φλ(uk) ≤ M,

for some M > 0 independent of k. Therefore,

1
p

∫
Ω

|∇uk|p dx− λ

p

∫
∂Ω

m(x)|uk|p dσ ≤ M.

Hence ∫
Ω

|∇uk|p dx ≤ pM + λ‖m‖∞,∂Ω < ∞. (2.4)

To prove that (uk)k is bounded in W 1,p(Ω), we follow the same method in the proof
of Lemma 2.2. Thus for a subsequence of (uk)k if necessary, we can suppose that
(uk) converges weakly in W 1,p(Ω) and strongly in Lp(∂Ω). By our choice of F⊥

k−1,
we have uk → 0 weakly in W 1,p(Ω). Because 〈e∗n, ek〉 = 0, for all k ≥ n. This
contradicts the fact that 1

p

∫
∂Ω
|uk|p dσ = 1, for all k and the the claim is proved.

Finally, since µk(λ) ≥ tk we conclude that µk(λ) → +∞, as k → +∞ and the
proof is complete. �

3. Qualitative properties of the principal eigencurve

Now we consider qualitative properties of the principal eigencurve . Several
authors studied the simplicity result in Dirichlet p-Laplacian case by using C1,α-
regularity and L∞-estimation of the first eigenfunction, we cite in particular the
works [1], [2] and [8].

Let us note that all solutions of problem (1.1) are of class C1,α(Ω) since they are
p-harmonic. Moreover, following the procedure outlined in [12] one may show that
all solutions of problem (1.1) belongs to L∞(Ω).

Theorem 3.1. For any λ ∈ R, the eigenvalue µ1(λ) defined by (1.4) is simple and
the eigenfunctions associated to µ1(λ) are either positive or negative in Ω.

The next lemma follows from Picone’s identity.



EJDE-2009/75 EIGENCURVES FOR A STEKLOV PROBLEM 5

Lemma 3.2. Let u and v be two nonnegative eigenfunction associated to some
eigenvalues µ and µ̃, respectively. Then

0 ≤ (µ− µ̃)
∫

∂Ω

up dσ (3.1)

and equality holds if and only if v is multiple of u.

Proof. We first show that the trace of v satisfies v > 0 on ∂Ω. Let ε > 0. By the
maximum principle of Vazquez (see [13]) v > 0 in Ω so that v

v+ε → 1Ω in Lp(Ω)
as ε → 0. On the other hand ∇( v

v+ε ) → 0 a.e. as ε → 0. Taking ϕ = 1
(v+ε)p−1 as

testing function in equation (1.2) satisfied by v, we have

(p− 1)
∫

Ω

|∇v|p

(v + ε)p
dx =

∫
∂Ω

(λm + µ)(
v

v + ε
)p dσ

so that

|∇(
v

v + ε
)|p = (

ε

v + ε
)p |∇v|p

(v + ε)p
≤ |∇v|p

vp
∈ L1(Ω).

By the dominated convergence theorem, we have that v
v+ε → 1Ω in W 1,p(Ω). By

continuity of the trace mapping, we have that v
v+ε → 1∂Ω in L1(∂Ω) as ε → 0 and

it follows that v > 0 on ∂Ω. Now let ε > 0. By Picone’s identity, we have

0 ≤
∫

Ω

|∇u|p dx−
∫

Ω

|∇v|p−2∇v∇(
up

(v + ε)p−1
) dx

=
∫

∂Ω

(λm + µ)up dσ −
∫

∂Ω

(λm + µ̃)(
v

v + ε
)p−1up dσ

and equality holds if and only if v is multiple of u. Going to the limit ε → 0 and
using the fact that v > 0 on ∂Ω, we get the desired inequality. �

Proof of Theorem 3.1. By Theorem 2.1, it is clear that µ1(λ) is an eigenvalue of
the problem (1.1) for any λ ∈ R. Let u be an eigenfunction associated to µ1(λ) so
that |u| is a minimiser for (1.4) and is thus an eigenfunction associated to µ1(λ). It
follows from the maximum principle of Vazquez that |u| > 0 in Ω and we conclude
that u has constant sign.

Taking µ = µ̃ = µ1(λ) in (3.1), we see that any eigenfunction v associated of
µ1(λ) must be a multiple of u, so that µ1(λ) is simple. �

To prove the isolation of µ1(λ), we need the following two lemmas.

Lemma 3.3. Let (k, q) ∈ N∗ × N and let λ ∈ R. If µk(λ) = µk+1(λ) = · · · =
µk+q(λ), then γ(K) ≥ q + 1 where

K := {u ∈ S;u is an eigenfunction associated to µk(λ)}.

The above lemma is proved by applying a general result from infinite dimensional
Ljusternik-Schnirelmann theory.

Lemma 3.4. For each λ ∈ R, µ1(λ) is the only positive eigenvalue associated with
λ, having an eigenfunction that does not change sign on the boundary ∂Ω.

Proof. For the proof, we use the Lemma 3.2. Taking µ = µ1(λ) in (3.1), we see that
no eigenvalue µ̃ > µ1(λ) can be associated to a positive eigenfunction. Thus µ1(λ)
is the only positive eigenvalue associated to an eigenfunction of definite sign. �

Theorem 3.5. For each λ ∈ R, µ1(λ) is isolated.
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Proof. It suffices to prove that µ2(λ) is indeed the second positive eigenvalue of
the problem (1.1), i.e. µ1(λ) < µ2(λ) for all λ ∈ R and if µ1(λ) < µ < µ2(λ),
then µ is not an eigenvalue of problem (1.1). By Theorem 3.1, γ(K1) = 1 where
K1 := {u ∈ S;u is an eigenfunction associated to µ1(λ)}. Thus, by Lemma 3.3,
µ1(λ) < µ2(λ). By contradiction, we suppose that µ is an eigenvalue of problem
(1.1). Let u be an eigenfunction associated to µ. Since µ 6= µ1(λ), we deduce by
Lemma 3.4 that u+ = max(u, 0) 6= 0 and u− = min(u, 0) 6= 0. It follows from (1.2)
that ∫

Ω

|∇u+|p dx− λ

∫
∂Ω

m(x)|u+|p dσ = µ

∫
∂Ω

|u+|p dσ,∫
Ω

|∇u−|p dx− λ

∫
∂Ω

m(x)|u−|p dσ = µ

∫
∂Ω

|u−|p dσ

Assume that u is normalized in such a way that

1
p

∫
∂Ω

|u+|p dσ =
1
p

∫
∂Ω

|u−|p dσ = 1.

The set K2 = {αu+ + βu−;α, β ∈ R such that |α|p + |β|p = 1} is in Γ2. Thus

µ2(λ) ≤ max
|α|p+|β|p=1

(1
p

∫
Ω

|∇(αu+ + βu−)|p dx− λ

p

∫
∂Ω

m(x)|αu+ + βu−|p dσ
)

= µ.

This is a contradiction. The proof of the isolation of µ1(λ) is complete. �

4. Continuity and differentiability in λ

In this section, we extend the results of continuity and differentiability for the
first eigencurve of the Dirichlet p-Laplacian shown by Binding and Huang in [5].

Let λ ∈ R and (µ1(λ), u(λ)) be the corresponding eigenpair. Henceforth we
normalize the eigenfunction u(λ) to u(λ) ∈ S with u(λ) > 0. In the following
theorem, we consider continuity of the eigenpair in λ and differentiability of the
principal eigencurve µ1(λ) in λ.

Theorem 4.1. For any bounded domain Ω, the function λ → µ1(λ) is differentiable
on R and the function λ → u(λ) is continuous from R to W 1,p(Ω). More precisely

µ′1(λ0) = −1
p

∫
∂Ω

m(x)(u(λ0))p dσ, ∀λ0 ∈ R. (4.1)

Proof. By (1.4), it is easy to see that λ → µ1(λ) is a concave function in R.
Continuity of λ → µ1(λ) follows from the concavity. To prove continuity of λ →
u(λ), we proceed as follows. Let Λ ⊂ R be bounded. For λ ∈ Λ, since

µ1(λ) =
1
p

∫
Ω

|∇u(λ)|p dx− λ

p

∫
∂Ω

m(x)|u(λ)|p dσ ≤ constant,

we have that
∫
Ω
|∇u(λ)|p dx remains bounded. To prove that u(λ) is bounded

in W 1,p(Ω), we follow the same method in the proof of Lemma 2.2. Thus, for a
subsequence, u(λ) → u0 weakly in W 1,p(Ω) and strongly in Lp(Ω) and strongly in
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Lp(∂Ω) as λ → λ0 ∈ Λ. Passing to the limit in the following equality∫
Ω

|∇u(λ)|p−2∇u(λ)∇ϕ dx

= λ

∫
∂Ω

m(x)|u(λ)|p−2uϕ dσ + µ1(λ)
∫

∂Ω

|u(λ)|p−2u(λ)ϕ dσ,

(4.2)

we have ∫
Ω

|∇u0|p−2∇u0∇ϕ dx

= λ0

∫
∂Ω

m(x)|u0|p−2u0ϕ dσ + µ1(λ0)
∫

∂Ω

|u0|p−2u0ϕ dσ,

(4.3)

On the other hand u0 6≡ 0 (since u0 ∈ S). Thus u0 is an eigenfunction associated
to µ1(λ0). By simplicity of µ1(λ0), we have u0 = u(λ0). Taking ϕ = u0 in (4.3),
we obtain

1
p

∫
Ω

|∇u0|p dx =
λ0

p

∫
∂Ω

m(x)|u0|p dσ + µ1(λ0). (4.4)

For ϕ = u(λ) in (4.2), we get
1
p

∫
Ω

|∇u(λ)|p dx =
λ

p

∫
∂Ω

m(x)|u(λ)|p dσ + µ1(λ). (4.5)

Letting λ → λ0 in (4.5), we have

lim
λ→λ0

1
p

∫
Ω

|∇u(λ)|p dx =
λ0

p

∫
∂Ω

m(x)|u0|p dσ + µ1(λ0) =
1
p

∫
Ω

|∇u0|p dx.

Since u(λ) → u0 strongly in Lp(Ω), ‖u(λ)‖ → ‖u0‖ as λ → λ0. Finally by the
uniform convexity of W 1,p(Ω), we conclude that u(λ) → u0 = u(λ0) strongly in
W 1,p(Ω) as λ → λ0.

For the differentiability of λ → µ1(λ), it suffices to use the variational charac-
terization of µ1(λ) and of µ1(λ0), so that

λ0 − λ

p

∫
∂Ω

m(x)(u(λ))p dσ ≤ µ1(λ)− µ1(λ0) ≤
λ0 − λ

p

∫
∂Ω

m(x)(u(λ0))p dσ,

for all λ, λ0 ∈ R. Dividing by λ− λ0 and letting λ → λ0, we obtain (4.1). �
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[2] A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien, C. R. Acad.

Sci. Paris, 305 (1987), 725–728.
[3] A. Anane, O. Chakrone, B. Karim, A. Zerouali, Eigenvalues for the Steklov Problem, Proceed-

ings of Seminario Internacional Sobre Matematica Aplicada y Repercusion en las Sociedad

Actual, Universidad Rey Juan Carlos, ISBN 978-84-691-7936-9, Deposito Legal: M-56988-
2008, pp. 99–104.

[4] C. Bandle, Isoperimetric Inequalities and Applications, Pitman Publishing, 1980.

[5] P. A. Binding and Y. X. Huang The principal eigencurve for p-Laplacian, Diff. Int. Equations,
8, n. 2 (1995), 405–415.

[6] A. El khalil, M. Ouanan, Boundary eigencurve problems involving the p-Laplacian operator,

Electronic Journal of Differential Equations, Vol. 2008(2008), No. 78, pp. 1–13.
[7] J. F. Escobar, A comparison theorem for the first non-zero Steklov eigenvalue, J. Funct.

Anal., 178(1):143–155, 2000.
[8] P. Lindqvist, On the equation div(|∇u|p−2∇u)+λ|u|p−2u = 0, Proc. Amer. Math. Soc., 109

(1990), 157–164.



8 A. ANANE, O. CHAKRONE, B. KARIM, A. ZEROUALI EJDE-2009/75

[9] M. W. Steklov, Sur les problmes fondamentaux de la physique mathmatique, Ann. Sci. Ecole

Normale Sup., 19:455–490, 1902.

[10] A. Szulkin, Ljusternik-Schnirelmann theory on C1-manifolds, Ann. Inst. Henri Poincaré,
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