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EIGENCURVES FOR A STEKLOV PROBLEM

AOMAR ANANE, OMAR CHAKRONE,
BELHADJ KARIM, ABDELLAH ZEROUALI

ABSTRACT. In this article, we study the existence of the eigencurves for a
Steklov problem and we obtain their variational formulation. Also we prove
the simplicity and the isolation results of each point of the principal eigen-
curve. Also we obtain the continuity and the differentiability of the principal
eigencurve.

1. INTRODUCTION

Consider the two parameter Steklov eigenvalue problem
Apu =0 in§,

ou (1.1)

VulP~2==
Vel Oov
where ) is a bounded domain in RY (N > 2) with a Lipschitz continuous boundary,
m € L>°(0N) is a weight function which may change sign, A, 4, p be real numbers
with 1 < p < oo. The weak solutions of ([L.1)) are defined by

/ \Vu|p*2Vquodx:)\/ m(x)|u|p’2ugad0+,u/ |ulP~?ugp do, (1.2)
Q a0 o0

= Am(x)|uP"?u + plulP">u  on O

for ¢ € WHP(Q), where do is the N —1 dimensional Hausdorff measure. Let us note
that all solutions of problem are of class C'1(92) since they are p-harmonic.

Problem has been studied by several authors in the case p = 0 and p = 2;
we cite in particular the works [4] [7] ©]. For the nonlinear case, the authors in [3]
and [II] studied the case when p = 0 and m € L7(0€). A problem in which the
eigencurve appears in the boundary condition has been considered recently in [6].
Assuming m € L*°(09) the authors show that for each A € R, there is an increasing
sequence of eigenvalues for the nonlinear boundary-value problem

Apu = [uP~2u  in Q,

(1.3)
|Vu|p72@ = Am(z)|ulP"?u + pluP~2u  on 9Q

ov
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also they show that the first eigenvalue is simple and isolated. Furthermore they
obtain some results about their variation, density, and continuous dependence on
the parameter .

We set

pH1(A) = inf{})/Q |Vul? dx — %/BQ m(x)|ulP do : u € WHP(Q),

1
7/ |u|pal<7:1}7
P Jan

We understand by the principal eigencurve of the Steklov problem , the graph
of the map 1 : A — p1(A) from R to R.

Our purpose of this paper is to study , as in [6], the existence of the eigencurves
of the Steklov problem and we obtain their variational formulation by using
Ljusternik-Schnirelmann theory ([10]). Also we prove the simplicity and isolation
results of each point of the principal eigencurve uq () by applying Picone’s Identity
[M]. Finally, we obtain the continuity and the differentiability of this principal
eigencurve.

The plan of this paper is the following. In Section 2, we use a variational method
to prove the existence of a sequence of eigencurves for the problem . In Section
3, we establish the simplicity and the isolation results of each point of the princi-
pal eigencurve. Finally, in Section 4, we establish the continuity of the eigenpair
(1 (A),u(N)) in X and the differentiability of the principal eigencurve.

(1.4)

2. EXISTENCE OF EIGENCURVES

To prove the existence of a sequence of eigencurves of (|1.1)), we will use a varia-
tional approach and consider the energy functional on W1P(Q) as

1 A
By (1) = f/ Yl de — 7/ m(@)|ul? do,
pJa D Joa
Set
1
S :={uecWr(Q); 7/ |u|? do = 1}.
D Jaq
It is clear that for any A € R, The solutions of (1.1)) are the critical points of ®y
restricted to S. For any k € N*| let
Ty ={K C S: K symmetric, compact and v(K) = k},

where v(K) = k is the genus of K i.e., the smallest integer k such that there is an
odd continuous map from K to R*\{0}. Next we define

pr(A) = Klglﬁk glea%@)\(u) (2.1)

1/p
lul| := (/Q|Vu|pd:z:+/ﬂ|u|pdx)

is the WHP(Q)-norm.
The following theorem is the main result of this section.

and

Theorem 2.1. For each A € R, pi(N) given by (2.1)) is a nondecreasing sequence
of positive eigenvalues of the problem (1.1). Moreover pui(\) — 400 as k — +o0.
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We will use Ljusternick-Schnirelmann theory on Cl-manifolds. It is clear that
for any A € R, the functional @, is even and bounded from below on S. Indeed, let
u € S, then

Dxr(u) = —[Alllmlloc,00 > —oo, (2.2)
where || - ||oc,00 denotes the L>°(9€)-norm. Letting

1
Alu) = —5/ mlu? do,  B(u) ;zf/ luf? do.
P Joa P Jon

By employing the Sobolev trace embedding W1 (Q2) — LP(992), we deduce that A,
B are weakly continuous and A’, B’ are compact, where A’ and B’ are respectively
the derivative of A and B.

We are now ready to prove the Palais-Smale condition.

Lemma 2.2. The functional ® satisfies the Palais-Smale condition on S; i.e., for
each sequence (un)n C S, if Px(uy,) is bounded and

(®)) (un) — cnB'(un) — 0, (2.3)

with ¢, = %. Then, (un)n has a convergent subsequence in WP (Q).

Let define the property (S;). We shall deal with operators F' acting from
WLP(Q) to (WLP(Q))'. F satisfies the condition (S,), if for any sequence v,
weakly convergent to v in W(Q), and limsup,,_, o (F(vn), v, —v) < 0 it follows
that v, — v strongly in WP(Q), where (W1P(Q))’ is the dual of WP(Q) with
respect to the pairing (.,.).

Proof of Lemma[2.2 Let us first show that the sequence u,, is bounded in W1 ().
Assume by contradiction that, for a subsequence of (uy)n, ||un| — 400 and let
Un = Up/||un||, for a subsequence, v, — v weakly in W1P(Q) and strongly in
LP(€2) and strongly in LP(9€2). Since @y (uy,) is bounded, then [, [Vuy,|P dz remains
bounded, one has [, [V, [P dz — 0. Thus v is a nonzero constant, indeed; the weak
convergence of v,, imply that

/|W\de+/ |v|pdz§1iminf</ |an|pdx+/ |vn|de).
Q Q n—too A\ Jo Q

Thus [, [Vv|P dz = 0, hence v is a constant. Moreover v,, — v strongly in W' (£2),
thus v is a nonzero constant. But B(u,) = 1 and so, dividing by ||u,||” and passing
to the limit, one obtains [, [v[? do = 0. This is a contradiction (since v is a nonzero
constant). Thus u, is bounded in W?(£2). For a subsequence of (up)n, U, — u
weakly in W'P(Q) and strongly in LP(92). On the other hand, by (2.3), (®)’ (us)
being a convergent sequence strongly to some f € (W1P(Q))". By calculation, we
have

().t =) = (@) (), (=)~ (A (), (=) / P ) o
where F is an operator defined from W?(Q) to (WHP(Q)
(F'(u),v) :/ |Vu|p_2VuVde+/ |u\p_2uvdx.
Q Q

Using the compactness of A’, we get

lim sup(F(uy,), un —u) > 0.

n—-+4oo
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Since the operator F satisfies the condition (Sy), u, — u strongly in W1P(Q).
This achieves the proof of lemma. ([

Proof of Theorem[2.1 This theorem is proved by applying a general result from
infinite dimensional Ljusternik-Schnirelmann theory. We need only to prove that
for any A € R, ug()\) — +oo as k — +o0o. The proof adopts the scheme in [6].
Let (en,€})n,; be a biorthogonal system such that e,, € Whp(Q), e e (WHr(Q)),
the (en)n are dense in W'P(Q); and the (e}); are total in (W"P(Q))". Set for any
ke N*

1
Fi—q = span(eki1, €k+2, Cht3s - ).

Observe that for any K € T'y, KNFi-, # 0 (by [10 (g) of Proposition 2.3]). Now,
we claim that

tp:= inf sup ®y(u) — +oo, ask — +oo.
KeTk gnrl |

Indeed, to obtain the contradiction, assume for k large enough that there is uy €
Fi- | with %IBQ |ug|P do =1 such that

te < @x(ug) < M,

for some M > 0 independent of k. Therefore,

1 A
f/ |Vuk|pdx77/ m(z)|ug|? do < M.
b Ja P Joo

Hence

/ |Vug|P de < pM + X||m||ss,00 < oo. (2.4)
Q

To prove that (uy ) is bounded in W1P(Q), we follow the same method in the proof
of Lemma Thus for a subsequence of (ug)x if necessary, we can suppose that
(ug) converges weakly in WP(Q) and strongly in LP(99). By our choice of Fi- |,
we have up — 0 weakly in WP(Q). Because (e}, ex) = 0, for all k& > n. This
contradicts the fact that % Joq lux|P do =1, for all k and the the claim is proved.
Finally, since ux(\) > tx we conclude that ug(\) — +o0, as k — +oo and the
proof is complete. (I

3. QUALITATIVE PROPERTIES OF THE PRINCIPAL EIGENCURVE

Now we consider qualitative properties of the principal eigencurve . Several
authors studied the simplicity result in Dirichlet p-Laplacian case by using C¢-
regularity and L°°-estimation of the first eigenfunction, we cite in particular the
works [1, [2] and [§].

Let us note that all solutions of problem are of class C1%(Q) since they are
p-harmonic. Moreover, following the procedure outlined in [12] one may show that
all solutions of problem belongs to L ().

Theorem 3.1. For any A € R, the eigenvalue p11(\) defined by (L.4) is simple and

the eigenfunctions associated to p1 () are either positive or negative in ).

The next lemma follows from Picone’s identity.
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Lemma 3.2. Let u and v be two nonnegative eigenfunction associated to some
etgenvalues p and fi, respectively. Then

0<(pu— [L)/ uP do (3.1)
oQ
and equality holds if and only if v is multiple of u.

Proof. We first show that the trace of v satisfies v > 0 on 9. Let ¢ > 0. By the
maximum principle of Vazquez (see [13]) v > 0 in @ so that ;%= — 1o in LP()
as € — 0. On the other hand V(;;) — 0 a.e. as e — 0. Taking ¢ = W as

testing function in equation (1.2]) satisfied by v, we have

_ Vol = At (VP do
=1 [ o= [ Gme ()

v+ €)P
so that TP TP
U e (€ \p vl [V 11Q
IV(HE)I (U+E) wrr s € ().

By the dominated convergence theorem, we have that ;- — 1l in WirP(Q). By

continuity of the trace mapping, we have that *— — 1lsq in L'(09) as € — 0 and
it follows that v > 0 on 9€2. Now let € > 0. By Picone’s identity, we have

0§/|Vu|”da:—/ |VolP~2VoV( ) dx
Q Q

o

(v+e)pt
v

= )\m—i—,uupdo—/ Am + i) (—— )P uP do

| G [ om i)

and equality holds if and only if v is multiple of u. Going to the limit ¢ — 0 and
using the fact that v > 0 on 02, we get the desired inequality. O

Proof of Theorem[3.1. By Theorem it is clear that u1(\) is an eigenvalue of
the problem for any A € R. Let u be an eigenfunction associated to p;(\) so
that |u| is a minimiser for and is thus an eigenfunction associated to p1(A). It
follows from the maximum principle of Vazquez that |u| > 0 in Q and we conclude
that u has constant sign.

Taking p = g = p1(A) in , we see that any eigenfunction v associated of
11 (A) must be a multiple of u, so that () is simple. O

To prove the isolation of p1()), we need the following two lemmas.

Lemma 3.3. Let (k,q) € N* x N and let A € R. If up(A) = pp1(A) = -+ =
Hrtq(N), then v(K) > g+ 1 where

K :={u € S;u is an eigenfunction associated to ux(X\)}.

The above lemma is proved by applying a general result from infinite dimensional
Ljusternik-Schnirelmann theory.

Lemma 3.4. For each A € R, u1(N) is the only positive eigenvalue associated with
A, having an eigenfunction that does not change sign on the boundary OS2.

Proof. For the proof, we use the Lemmal[3.2] Taking p = u1(A) in (3.1)), we see that
no eigenvalue i > p1(A) can be associated to a positive eigenfunction. Thus p;(A)
is the only positive eigenvalue associated to an eigenfunction of definite sign. [

Theorem 3.5. For each A € R, u1(X) is isolated.
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Proof. Tt suffices to prove that ug(A) is indeed the second positive eigenvalue of
the problem (1.1)), i.e. p1(A) < p2(A) for all A € R and if p1(N) < p < pa(N),
then p is not an eigenvalue of problem . By Theorem v(K71) = 1 where
K, := {u € S;u is an eigenfunction associated to u1(\)}. Thus, by Lemma
u1(A) < p2(A). By contradiction, we suppose that p is an eigenvalue of problem
(L.I). Let u be an eigenfunction associated to p. Since p # p1(XA), we deduce by
Lemma [3.4] that u* = max(u,0) # 0 and v~ = min(u,0) # 0. It follows from
that

/ \Vu+|pdac—)\/ m(m)\uﬂpdaz,u/ lu™|P do,
Q o0

o0

/ |Vu_|pdx—)\/ m(ac)|u_|pda:,u/ |u~|P do
Q ro) o9

Assume that v is normalized in such a way that

1 1
7/ |u+|pdo:f/ |lu=|Pdo = 1.
D Joaq P Joa

The set Ko = {au™ + Bu~;a, 8 € R such that |a|P 4+ |3P =1} is in I's. Thus

1 A
A) < max f/ V(aut + Bu~ pdx—f/ m(z)|aut + Bu”|P do
paN s | ms (O] [Veut +pun)Pde = m(@aut + g do)

:N.

This is a contradiction. The proof of the isolation of 1 (\) is complete. O

4. CONTINUITY AND DIFFERENTIABILITY IN A

In this section, we extend the results of continuity and differentiability for the
first eigencurve of the Dirichlet p-Laplacian shown by Binding and Huang in [5].

Let A € R and (u1(A),u(A)) be the corresponding eigenpair. Henceforth we
normalize the eigenfunction u(A) to uw(A\) € S with u(A) > 0. In the following
theorem, we consider continuity of the eigenpair in A and differentiability of the
principal eigencurve pq(A) in .

Theorem 4.1. For any bounded domain 2, the function A — p1(\) is differentiable
on R and the function A — u(\) is continuous from R to W1P(Q). More precisely
1
1) = — 1 / m(@)(w(o))P do, VAo € R. (4.1)
P Joo
Proof. By (1.4), it is easy to see that A\ — puj(\) is a concave function in R.
Continuity of A\ — pu1(A) follows from the concavity. To prove continuity of A —
u(A), we proceed as follows. Let A C R be bounded. For A € A, since

H1(A) = 1/ |Vu(N) P de — é/ m(z)|u(X)|P do < constant,
pJa P Joq
we have that [, |[Vu())|P dz remains bounded. To prove that u()\) is bounded

in W1P(Q), we follow the same method in the proof of Lemma Thus, for a
subsequence, u()\) — ug weakly in W1?(Q) and strongly in LP(2) and strongly in
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LP(0R2) as A — \g € A. Passing to the limit in the following equality

/Q [Vu(N)|P2Vu(\) Ve de

= m(z)|u(\)|P~2up do + w(N)|P2u(\)p do,
)\/asz (@)u()] I ¥ /aQ| 2 Med
we have

/ |Vug|P~2Vug Ve d
@ (4.3)

:)\0/ m(x)|uo|p*2u0goda+,u1()\0)/ |uo|p*2u0god0,
o0 o0

On the other hand up #Z 0 (since ug € S). Thus ug is an eigenfunction associated
to p1(Ag). By simplicity of p1(Ao), we have ug = u(Xg). Taking ¢ = ug in (4.3),
we obtain

/ |[Vuo|P do = — / x)|uo|P do + 11 (o). (4.4)
For ¢ = u(\) in ., we get
1 A
= / Vu)P do = 2 / m(@) VP do + (V). (4.5)
pJa P Joa
Letting A — A in (4.5), we have

1 A 1
Jim 7/ IVu(\)? do = i/ m(x)\uo\pda—s—ul(/\o):f/ Vol da.
—Ao P Jaa P Ja

Since u(A\) — wug strongly in LP(Q), |Ju(N)|| — |luoll as A — A¢. Finally by the
uniform convexity of W1P(Q), we conclude that u(\) — ug = u()\o) strongly in
WLP(Q) as A — Ao.

For the differentiability of A — p31()), it suffices to use the variational charac-
terization of uq (M) and of uq(Ag), so that

Ao — A Ao — A
: m(@) (u(N)P do < pr(A) — pa(ho) < = / m(z)(u(Ao))? do,
p a0 p a0
for all A, \p € R. Dividing by A — A¢ and letting A — X\, we obtain (4.1)). [l
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