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EXISTENCE OF SOLUTIONS FOR SECOND-ORDER
NONLINEAR IMPULSIVE BOUNDARY-VALUE PROBLEMS

BASHIR AHMAD

Abstract. We prove the existence of solutions for a second-order nonlinear

impulsive boundary-value problem by applying Schaefer’s fixed point theorem.

Results for periodic and anti-periodic impulsive boundary-value problems can
be obtained as special cases of the results in this article.

1. Introduction

Impulsive boundary-value problems have been extensively studied in recent years.
The study of impulsive differential equations provide a natural description of ob-
served evolution processes of several real world problems in biology, physics, engi-
neering, etc. For the general theory of impulsive differential equations, we refer the
reader to [6, 11, 12, 16]. Some recent results for periodic and anti-periodic nonlinear
impulsive boundary-value problems can be found in [1, 2, 3, 4, 5, 8, 9, 10, 13, 14, 15].
Bai and Yang [2] applied Schaefer’s fixed point theorem to establish the existence of
solutions for second-order nonlinear impulsive differential equations with periodic
boundary conditions. Motivated by the studies in [2], we study the existence of
solutions for the impulsive nonlinear boundary-value problem

u′′(t) = f(t, u(t), u′(t)), t ∈ [0, T ], t 6= t1,

u(t+1 )− u(t−1 ) = I(u(t1)), u′(t+1 )− u′(t−1 ) = J(u(t1)),

u(0) = µu(T ), u′(0) = µu′(T ),

(1.1)

where f : [0, T ]\{t1} × Rn × Rn → Rn is continuous, I, J : Rn → Rn are con-
tinuous functions defining the impulse at t1 ∈ (0, T ) and µ is a fixed real number
with |µ| ≥ 1. We assume that f(t+1 , x, y) = limt→t+1

f(t, x, y) and f(t−1 , x, y) =
limt→t−1

f(t, x, y) both exist with f(t−1 , x, y) = f(t1, x, y). For the sake of simplicity
(as in [4]), we consider only one impulse at t = t1 ∈ (0, T ). An arbitrary finite
number of impulses can be addressed similarly.

We remark that the impulsive boundary-value problem (1.1) reduces to a periodic
boundary-value problem [2] for µ = 1 and anti-periodic boundary-value problem
for µ = −1. Thus, problem (1.1) can be regarded as a generalization of periodic
and anti-periodic boundary-value problems.
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Let us define the Banach spaces

PC([0, T ], Rn) =
{
u ∈ C([0, T ]\{t1} × Rn), u is left continuous at t = t1,

and the right hand limit u(t+1 ) exists
}
,

PC1([0, T ], Rn) =
{
u ∈ PC([0, T ], Rn), u′ is left continuous at t = t1,

and the right hand limit u′(t+1 ) exists
}
,

with the norms ‖u‖PC = supt∈[0,T ] |u(t)|, and ‖u‖PC1 = max{‖u‖PC , ‖u′‖PC},
respectively.

A function u ∈ PC1([0, T ], Rn) ∩ C2([0, T ]\{t1} × Rn) is a solution to (1.1) if it
satisfies (1.1) for all t ∈ [0, T ].
For σ ∈ PC([0, T ], Rn), p ≥ 0, q > 0, consider the linear impulsive problem

u′′(t)− pu′(t)− qu(t) + σ(t) = 0, t ∈ [0, t], t 6= t1,

u(t+1 )− u(t−1 ) = I(u(t1)), u′(t+1 )− u′(t−1 ) = J(u(t1)),

u(0) = µu(T ), u′(0) = µu′(T ), µ ∈ R (µ 6= 0),

(1.2)

whose associated auxiliary equation has the roots

r1 =
p +

√
p2 + 4q

2
, r2 =

p−
√

p2 + 4q

2
.

In view of p ≥ 0, q > 0, it is clear that r1 and r2 are respectively positive and
negative real numbers. We need the following lemma for the sequel. The proof of
this lemma is omitted as it can be obtained by direct computations.

Lemma 1.1. u ∈ PC1([0, T ], Rn) ∩ C2([0, T ]\{t1} × Rn) is a solution of (1.2) if
and only if it satisfies the following impulsive integral equation

u(t) =
∫ T

0

G(t, s)σ(s)ds−G(t, t1)J(u(t1)) + W (t, t1)I(u(t1)), (1.3)

where

G(t, s) =
1

r1 − r2


er1(t−s)

µer1T−1
+ er2(t−s)

1−µer2T , 0 ≤ s < t ≤ T,

µer1(T+t−s)

µer1T−1
+ µer2(T+t−s)

1−µer2T , 0 ≤ t ≤ s ≤ T,

W (t, s) =
1

r1 − r2


r2er1(t−s)

µer1T−1
+ r1er2(t−s)

1−µer2T , 0 ≤ s < t ≤ T,

µr2er1(T+t−s)

µer1T−1
+ µr1er2(T+t−s)

1−µer2T , 0 ≤ t ≤ s ≤ T,

with (µer1T − 1) 6= 0 and (1− µer2T ) 6= 0.

As r1 ≥ −r2 > 0 (p ≥ 0, q > 0), we find that

|G(t, s)| ≤ |G1|, |W (t, s)| ≤ r1|G1|, |Gt(t, s)| ≤ r1|G1|, |Wt(t, s)| ≤ r2
1|G1|,

(1.4)
where

G1 =
µ(er1T − er2T )

(r1 − r2)(µer1T − 1)(1− µer2T )
.

Let
H = max{|G1|, r1|G1|, r2

1|G1|}. (1.5)
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Define an operator Λ : PC1([0, T ], Rn) → PC([0, T ], Rn) by

Λu(t) =
∫ T

0

G(t, s)[−f(s, u(s), u′(s)) + pu′(s) + qu(s)]ds

−G(t, t1)J(u(t1)) + W (t, t1)I(u(t1)), t ∈ [0, T ].
(1.6)

It follows by Lemma 1.1 that u is a fixed point of the operator Λ if and only if u is
a solution of (1.1).

In view of the continuity of f, I, J , the operators Λ1,Λ2 defined by

Λ1u(t) =
∫ T

0

G(t, s)
[
− f(s, u(s), u′(s)) + pu′(s) + qu(s)

]
ds, t ∈ [0, T ],

Λ2u(t) = −G(t, t1)J(u(t1)) + W (t, t1)I(u(t1)), t ∈ [0, T ],

are compact. Thus, Λ = Λ1 + Λ2 is a compact operator.

2. Existence of solutions

Theorem 2.1. Let f : [0, T ]\{t1} × Rn × Rn → Rn and I, J : Rn → Rn be
continuous functions. If there exist nonnegative constants α, β1, β2, γ1, γ2,M such
that

(A1) For all (t, x, y) ∈ ([0, T ]\{t1})× Rn × Rn,

‖f(t, x, y)− py − qx‖ ≤ 2α[〈x + y, f(t, x, y)〉+ ‖y‖2] + M,

(A2) ‖I(x)‖ ≤ β1‖x‖ + γ1, ‖J(x)‖ ≤ β2‖x‖ + γ2 with r1β1 + β2 < 1/H, for all
x ∈ Rn.

Then problem (1.1) has at least one solution.

Proof. From the preceding section, we know that u is a fixed point of the operator
Λ if and only if u is a solution of (1.1). Thus we need to show that the operator
Λ (indeed compact) has at least one fixed point. For that, we apply Schaefer’s
theorem to show that all the solutions to the following equation are bounded a
priori with the bound independent of λ,

u = Λλu, λ ∈ (0, 1). (2.1)

Letting u to be a solution of (2.1), we have

u′′(t)− pu′(t)− qu(t) = λ[f(t, u(t), u′(t))− pu′(t)− qu(t)], t ∈ [0, T ], t 6= t1,

u(t+1 )− u(t−1 ) = λI(u(t1)), u′(t+1 )− u′(t−1 ) = λJ(u(t1)),

u(0) = µu(T ), u′(0) = µu′(T ), µ ∈ R (|µ| ≥ 1).
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Using (A1)-(A2) and (1.4)-(1.5), we have

‖u(t)‖
= λ‖Λu(t)‖

= ‖
∫ T

0

λG(t, s)
[
f(s, u(s), u′(s))− pu′(s)− qu(s)

]
ds

− λG(t, t1)J(u(t1)) + λW (t, t1)I(u(t1))‖

≤ |G1|
[ ∫ T

0

λ‖f(s, u(s), u′(s))− pu′(s)− qu(s)‖ds

+ λ(‖J(u(t1))‖+ r1‖I(u(t1))‖)
]

≤ |G1|
[ ∫ T

0

(2α(〈u(s) + u′(s), λf(s, u(s), u′(s))〉+ ‖u′‖2) + M)ds

+ (r1β1 + β2)‖u(t1)‖+ r1γ1 + γ2

]
= |G1|

[ ∫ T

0

(2α(〈u(s) + u′(s), λf(s, u(s), u′(s)) + (1− λ)pu′(s)

+ (1− λ)qu(s)〉+ ‖u′‖2) + M)ds−
∫ T

0

2α〈u(s) + u′(s), (1− λ)pu′(s)

+ (1− λ)qu(s)〉ds + (r1β1 + β2)‖u(t1)‖+ r1γ1 + γ2

]
.

(2.2)

In view of the fact that |µ| ≥ 1, we have

− 2α

∫ T

0

〈u(s) + u′(s), (1− λ)pu′(s) + (1− λ)qu(s)〉ds

= −2α(1− λ)q
∫ T

0

‖u(s)‖2ds− 2α(1− λ)p
∫ T

0

‖u′(s)‖2ds

+ 2α(1− λ)(p + q)
∫ T

0

〈u(s), u′(s)〉ds

≤ 2α(1− λ)(p + q)
∫ T

0

〈u(s), u′(s)〉ds

= α(1− λ)(p + q)
∫ T

0

d

ds
(‖u(s)‖2)ds

= α(1− λ)(p + q)(‖u(T )‖2 − ‖u(0)‖2)

≤ α(1− λ)(p + q)(1− µ2)‖u(T )‖2 ≤ 0.

(2.3)

Using (2.3) in (2.2), we obtain

‖u(t)‖
= λ‖Λu(t)‖

≤ |G1|
[ ∫ T

0

(2α(〈u(s) + u′(s), λf(s, u(s), u′(s)) + (1− λ)pu′(s)

+ (1− λ)qu(s)〉+ ‖u′(s)‖2) + M)ds + (r1β1 + β2)‖u(t1)‖+ r1γ1 + γ2

]
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= |G1|
[ ∫ T

0

(2α(〈u(s) + u′(s), u′′(s)〉+ 〈u(s) + u′(s), u′(s)〉

− 〈u(s), u′(s)〉) + M)ds + (r1β1 + β2)‖u(t1)‖+ r1γ1 + γ2

]
≤ |G1|

[ ∫ T

0

(2α(〈u(s) + u′(s), u′′(s) + u′(s)〉+ M)ds

+ (r1β1 + β2)‖u(t1)‖+ r1γ1 + γ2

]
= |G1|

[ ∫ T

0

(α
d

ds
(‖u(s) + u′(s)‖2) + M)ds + (r1β1 + β2)‖u(t1)‖+ r1γ1 + γ2

]
= |G1|

[
α(‖u(T ) + u′(T )‖2 − ‖u(0) + u′(0)‖2) + MT

+ (r1β1 + β2)‖u(t1)‖+ r1γ1 + γ2

]
= |G1|[α(1− µ2)‖u(T ) + u′(T )‖2 + MT + (r1β1 + β2)‖u(t1)‖+ γ1 + γ2

]
≤ |G1|

[
MT + (r1β1 + β2)‖u(t1)‖+ r1γ1 + γ2

]
,

where we have used the fact that α(1−µ2)‖u(T )+u′(T )‖2 ≤ 0 (by the assumption
|µ| ≥ 1). Taking supremum on [0, T ], we obtain

sup
t∈[0,T ]

‖u(t)‖ ≤ |G1|[MT + r1γ1 + γ2]
1− |G1|(r1β1 + β2)

.

Similarly, it can be shown that

sup
t∈[0,T ]

‖u′(t)‖ ≤ H[MT + r1γ1 + γ2]
1−H(r1β1 + β2)

.

Thus, we have

‖u‖PC1 = max{ |G1|[MT + r1γ1 + γ2]
1− |G1|(r1β1 + β2)

,
H[MT + r1γ1 + γ2]
1−H(r1β1 + β2)

}

=
H[MT + r1γ1 + γ2]
1−H(r1β1 + β2)

,

which is the desired bound independent of λ. Hence, by Schaefer’s fixed point
theorem [7], the operator Λ has at least one fixed point which implies that the
problem (1.1) has at least one solution. This completes the proof. �

Example. Consider the scalar nonlinear impulsive problem

u′′(t) = (u(t) + u′(t))3 + u′(t) + 2u(t) + 2t, t ∈ [0, 1], t 6= t1,

u(t+1 )− u(t−1 ) =
1
6
u(t1), u′(t+1 )− u′(t−1 ) =

1
8
u(t1),

u(0) = µu(T ), u′(0) = µu′(T ), µ ∈ R (|µ| ≥ 1).

(2.4)

Here, T = 1, f(t, x, y) = (x + y)3 + y + 2x + 2t, p = 1, q = 2, r1 = 2, r2 = −1,
β1 = 1/6, β2 = 1/8, γ1 = γ2 = 0, 1/H = 0.3. Moreover, for α = 2/3, M = 8/3, we
find that

2α[(x + y)f(t, x, y) + y2] + M

=
4
3
[(x + y)4 + (x + y)2 + x(x + y) + 2t(x + y) + y2] +

8
3
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=
4
3
[(x + y)4 + (x + y)2] +

4
3
(x +

1
2
y)2 +

8
3
t(x + y) + y2 +

8
3

≥ 4
3
[(x + y)4 + (x + y)2] +

4
3
(x +

1
2
y)2 − 8

3
|x + y|+ y2 +

8
3

=
4
3
[(x + y)4 + (|x + y| − 1)2 + (x +

1
2
y)2] + y2 +

4
3

≥ |x + y|3 + y2 + 1, ∀(t, x, y) ∈ ([0, 1]\{t1})× R× R.

Thus, for all (t, x, y) ∈ ([0, 1]\{t1})× R× R,

|f(t, x, y)− 2x− y| ≤ 2α[(x + y)f(t, x, y) + y2] + M.

Hence, the assumptions (A1)-(A2) are satisfied. Therefore, by Theorem 2.1, prob-
lem (2.4) has at least one solution.

Remarks. (1) If the function f does not depend on u′(t), then the assumption
(A1) takes the form

‖f(t, x)− qx‖ ≤ 2α〈x, f(t, x)〉+ M, (t, x) ∈ ([0, T ]\{t1})× Rn.

For example, consider a scalar function

f(t, x) = x5 + x + 2t, (t, x) ∈ ([0, 1]\{t1})× R.

For α = 1/2, M = 2, we obtain

2α〈x, f(t, x)〉+ M = x6 + x2 + 2tx + 2

≥ x6 + x2 − 2|x|+ 2

= x6 + (|x| − 1)2 + 1

≥ |x|5 + 1, ∀(t, x) ∈ ([0, 1]\{t1})× R.

Thus, |f(t, x)− x| ≤ 2αxf(t, x) + M , for all (t, x) ∈ [0, 1]× R.
(2) A similar proof follows for a modified form of Theorem 2.1 obtained by

replacing the assumption (A1) by the condition

‖f(t, x, y)− py − qx‖ ≤ 2α〈y, f(t, x, y)〉+ M, (t, x, y) ∈ ([0, T ]\{t1})× Rn × Rn.

(3) The results presented in this paper are new and a variety of special cases can
be recorded by fixing the value of µ. For instance, if we take µ = 1 in the problem
(1.1), the results for impulsive periodic boundary-value problems [2] appear as a
special case while µ = −1 in (1.1) yields the existence results for anti-periodic
second order boundary-value problems.
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