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MULTIPLE NONNEGATIVE SOLUTIONS FOR SECOND-ORDER
BOUNDARY-VALUE PROBLEMS WITH SIGN-CHANGING
NONLINEARITIES

SHOULIANG XI, MEI JIA, HUIPENG JI

ABSTRACT. In this paper, we study the existence of multiple nonnegative solu-
tions for second-order boundary-value problems of differential equations with
sign-changing nonlinearities. Our main tools are the fixed-point theorem in
double cones and the Leggett-Williams fixed point theorem. We present also
the integral kernel associated with the boundary-value problem.

1. INTRODUCTION

Boundary-value problems with nonnegative solutions describe many phenomena
in the applied science, and they are widely used in fields, such as chemistry, bi-
ological, etc.; see for example [2, 4 [5l [6] [7, [§]. Problems with integral boundary
conditions have been applied in heat conduction, chemical engineering, underground
water flow-elasticity, etc. The existence of nonnegative solutions to these problems
have received a lot of attention; see [3] 8, [0 10, (11} 12] and reference therein.

Recently, by constructing a special cone and using the fixed point index theory,
Liu and Yan [9] proved the existence of multiple solutions to the singular boundary-
value problem

0
ay(0) — By’ (0) = yy(1) + 6y'(1) =0,

C([0,1,R"), o, 8,7,6 > 0, By + b + ay > 0,

where the parameter A in Rt, p € ,
€ C((0,1) x RT x R,R), but g must be controlled

f€C((0,1) x RY x R,RT),
by f.
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By using fixed point index theory in a cone, Yang [I0] studied the existence of
positive solutions to a system of second-order nonlocal boundary value problems

—u" = f(t7uav)
- = g(t’ u, U)
u(0) =v(0) =0

u(l) = H1</01 u(T)dOz(T))
o(1) = H2(/01U(T)dﬁ(7)),

where o and [ are increasing nonconstant functions defined on [0, 1] with «(0) =
0=06(0) and f,g € C((0,1) x Rt x RT,RT), H; € C(RT,R™T).

By using fixed point theory in a cone, Feng [12] studied positive solutions for the
boundary-value problem, with integral boundary conditions in Banach spaces,

2+ f(t,x) =0
with

or

2(0) = 0,2(1) = / g(t)z(t)dt,

0
where f € C([0,1] x P, P),g € L*[0,1], and P is a cone of E. All of these, we can
find the nonlinear term f is nonnegative.

In this paper, by using the fixed point theorem in double cones and the Leggett-
Williams fixed point theorem, we study the existence of multiple nonnegative solu-
tions to the boundary value problem

uy (t) + filt ua(t
uy (t) + fo(t, ua(t
ul(()) :UQ(O) =0 (11)

1

ul(l):/o gl(s)ul(s)ds,ug(l):/o 92(8)ua(s)ds,

where f1, fo € C((0,1) x RT x R* R), and g1, g2 are nonnegative functions in
L0, 1].

In this paper we assume that the following conditions:

(H1) f; € C((0,1) x Rt x RT,R), g; € L'[0,1] is nonnegative, i = 1,2;

(H2) 1 - fol 5g;(s)ds > 0;

2. PRELIMINARIES

Let X be a Banach space with norm || - || and K C X be a cone. For a constant
r > 0, denote K, = {z € K : ||z|| < r}, 0K, = {z € K : ||z|| = r}. Suppose
a : K — RT is a continuously increasing functional; i.e. « is continuous and
a(Az) < a(z) for A € (0,1). Let

K()={r e K:a(x) <b},0K((b) ={zr € K : a(r) =b}.
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and K,(b) = {x € K : ||z|]| > a,a(x) < b}. ¢ : K — RT is a continuously concave
functional. Denote

K(¢,a,b) ={z € K : ¢(z) > a, x| < b}.
We will use the following two theorem.

Theorem 2.1 ([I]). Let X be a real Banach space with norm || - | and K, K' C X
two cones with K' C K. Suppose T : K — K and T* : K' — K’ are two completely
continuous operators and o : K’ — RT is a continuously increasing functional
satisfying a(z) < ||z|| < Ma(z) for all x € K', where M > 1 is a constant. If there
are constants b > a > 0 such that

(C1) | Tz| < a, for z € OK,;

(C2) [T x| < a, for x € OK] and a(T*x) > b for x € OK'(b);

(C3) Te =T*x, forx e K, (b)N{u:T*u = u}.
Then T has at least two fixed points y1 and yo in K, such that

0<llmnll <a<llgall, aly2) <b.

Theorem 2.2 (Leggett-Williams fixed point theorem [13]). Let A : K. — K, be
completely continuous and ¢ be a nonnegative continuous concave functional on K
such that ¢(x) < ||z|| for all x € K.. Suppose that there exist 0 < d < a < b < ¢
such that

(C4) {x € K(¢,a,b): ¢(x) > a} #0 and ¢(Az) > a for x € K(¢,a,b);

(C5) [|Az]| < d for [lz]| < d;

(C6) ¢(Az) > a for x € K(¢,a,c) with ||Ax| > b.
Then A has at least three fized points x1, x2, x3 in K. satisfying

o1l <d, a <o), sl >d, ¢(x3) <a.

Lemma 2.3. Assume that (H2) holds. Then for any y; € C|0,1], the boundary
value problem

i (t) +yi(t) =0 (2.1)
1
u;(0) = 0,u;(1) = ; gi(s)ui(s)ds, (2.2)
has a unique solution
u;(t) :/0 H;(t,s)y;(s)ds, i=1,2, (2.3)

where
tfol g:(r)G(r, s)dr
1— fol 59i(s)ds

G(t,s)—{t(l_s)’ fo<t<s<lI,

Hi(t,s) =G(t,s) +

s(1—t), f0<s<t<1,
The proof is similar to [12], Lemma 2.1], and is omitted.

Lemma 2.4. Assume that (H2) holds. Let§ € (0, %), then for allt € [5,1-6],0,s €
[0,1], we have
]{1‘(0'7 S) > O, Hi<t, S) > (SHi(G‘, S) (24)
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Proof. Tt is clear that H;(c,s) > 0, From the properties of G(t, s), we obtain
G(t,s) > 6G(o,s), tel[s1—-94], o,5€]0,1],

then

tfol g:(M)G(r, s)dr

1— fol sgi(s)ds

5f01 g:()G(r, s)dr
1— fol 59;(s)ds

do fol g:(MG(r, s)dr
1— fol sgi(s)ds

The proof is complete. O

H(t,s) = G(t,s) +

> 0G(o,s) +

> 6G(0,s) + = 0H;(o,s)

Lemma 2.5. Assume that (H2) holds. If y; € C[0,1],y; > 0, then the unique
solution u;(t) of the boundary-value problem (2.1)-(2.2) satisfies u;(t) > 0 and
minge(s,1-6) wi(t) = Ol|uwil], i =1,2.

Proof. Tt is clear that u;(t) > 0, for all ¢ € [0,1], ¢ = 1,2. In fact, from (2.3) and
(2.4), for any t € [0,1 — 4], 8,0 € [0,1],% = 1,2, we have

1 1
u;(t) :/0 H;(t,s)y;(s)ds Z/o 0H; (o, s)y;(s)ds = du; (o).

Hence,
() > ) - .
wi(t) 2 8 o, us(o)] = ol
and mins<;<1_s u;(t) > d||u;||. The proof is complete. a
Let X = C[0,1] x C[0,1] with the norm |[[(u1,us)| = [Jui] + ||uzl], K =

{(ur,u2) € X : w; > 0,4 = 1,2} and K’ = {(u1,u2) € K: w;(t) is concave in
[0, 1],mint€[5’1,5] ’U,,L(t) Z (SH’U,,L||72 = 1,2}

Clearly, K, K' C X are cones with K’ C K. Let T; : K — C[0,1],i = 1,2 be
defined by

1
Ty w)(®) = (| A6 n@)ds) el

Ty, 2)(0) = | Bt ) folsvn (o). ua()ds) .t e 0.1),
where (B)" = max{B,0}. Let
T(uy, uz)(t) = (Ta(ur, u)(t), To(u1, u2)(t)),

Aq(uy,uz)(t) = /0 Hi(t,8)f1(s,u1(s),uz(s))ds, te]0,1],

1
As(uy,ug)(t) = /0 Hy(t, s) fa(s,u1(s),uz(s))ds, te][0,1],
Alur, u2)(t) = (A1 (ur, u2)(t), A2(u1, u2)(t)).
For (u1,us) € X, define § : X — K by

(0(u1, UQ))(t) = (max{ul(t)7 0}7 max{u2 (t)7 0})7
then T'=0o0 A.
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Let T} : K' — C[0,1],7 = 1,2 be defined by

T (un, ug) (£) = /0 Hi(t 8) i (5,01 (s), ua(s))ds, ¢ € [0, 1],
(2.5)

T35 (ug, uz)(t) = /0 Ha(t, 8) f5 (s,u1(s),uz(s))ds, t€[0,1],

and
T (w1, u2)(t) = (17 (w1, u2) (t), T5 (u1, u2)(t)).
Define a : K/ — R by

auy,ug) = 6§Ig1§i{1—6 up(t) + 55&12?—5 uz(t).

It is clear that « is a continuous increasing functional and a(uq,us) < ||(u1,u2)|l.
For u € K’, we have

i > = .
aun,un) = min ur(t) + min us(t) = 8u ]| + 8u ]| = o (ur, u2)]

Therefore,

a(ur,uz) < |[(u1,uz)|| < za(ur, uz).

)
Lemma 2.6. Suppose A : K — X is completely continuous. Then 0o A: K — K
s also a completely continuous operator.

Proof. The complete continuity of A implies that A is continuous and maps each
bounded subset of K to a relatively compact set of X. Let D C K be a bounded
set, for any € > 0, there exist P;(z;,y;) € X,i=1,2,...,m, such that

AD C U™, B(FP;,€),
where B(P;,€) := {(u1,us) €  lur — 2] + [Jluz — yi|| < €}. Then for any
Q*(r5,y5) € (00 A)(D), there ex1sts Q(zq,yq) € AD, such that
(x5,y5) = (max{zq, 0}, max{yq,0}).
We choose a P; € {Py, Pa, ..., Py}, such that
g — @il + llyg — vill <e
Since
g — il + llvg —vill < llwq — il +llyq —will <e,
we have Q* (75, y5) € B(P,€), and so (6 o A)(D) is relatively compact.

For each € > 0, there exists n > 0, such that ||A(z1,y1) — A(z2,y2)|| < €, for
lz1 — @2l + |ly1 — y2|| < n. Since

100 A)(@1y1) = (00 A) (@2, o)
= || (max{As (@1, 31),0} — max{As (w2, 12), 0},

max{Az(21,y1),0} — max{Az(w2,2), 0}) |
< ||JA(z1,y1) — A(z2,12)|| < e

We have [|(6 0 A)(z1,y1) — (6 0 A) (2, y2)[| <€, for [[w1 — za| + [lyr — yall <.
Hence, 6 o A is continuous in K and 6 o A is completely continuous. The proof
is complete. ([
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Since f; is continuous, it is clear that A : K — X and T* : K/ — X are
completely continuous. From Lemmas and we have T : K — K and
T* : K/ — K’ are completely continuous.

Lemma 2.7. If (uy,us2) is a fivred point of T, then (u1,uq) is a fized point of A.

Proof. Suppose (u1,us) is a fixed point of T, obviously, we just need to prove that
Ai(ug,uz)(t) >0,i=1,2, for t € [0, 1].

If there exist to € (0,1) and an 4 (i = 1,2) such that u,(t0) = T;(u1, uz)(to) =0
but A;(uy,us)(te) < 0. Without loss of generalization, let ¢ = 1 and (t1,t2) be the
maximal interval and contains ¢y such that Aj(uq,us)(t) < 0 for all t € (¢1,t2).
Obviously, (t1,t2) # (0,1). Or else, Ty (u1, uz)(t) = ui(t) = 0, for all ¢ € [0,1]. This
is in contradiction with (H3).

Case i: If to < 1, then Aj(u1,u2)(t2) = 0. Thus, 4] (u1,u2)(t2) > 0, We obtain

Alll(ul,’u,g)(t) = —fl(t,O,UQ) <0, for t € (t17t2).
So
Aj(ug, uz)(t

) >0,
We obtain t; = 0, and Af (u1,u2)(0) > 0, A1 (u1,u2)(0) < 0. This is in contradiction
with Al(ul,u2)(0) = 0.
Case ii: If t; > 0, we have Aj(u1,u2)(t1) = 0. Thus A} (u1,u2)(t1) < 0. We
obtain

fort e [tl,tg}

Al (ug,uz)(t) = — f1(t,0,uz) <0, fort € (t1,ta).
So
Al (ug,u2)(t) <0, fort e [t1,ta].
We obtain to = 1, A} (u1, u2)(1) < 0.
On the other hand, Aj(uy,us)(t) < 0, for t e (tl,tg) Al (ul,ug)( ) < 0 imply

Aj(ug,u2)(1) < 0. By (H1), Ai(ui,u2)(l) = fo g1(s)ui(s)ds > 0. This is a
contradiction. The proof is complete. (I

3. MAIN RESULT

1-5
M; = max / H;(t,s)ds, m;= min H;(t,s)ds,1 =1,2
te[0,1] te[s,1-4] J5

Theorem 3.1. Suppose that condition (H1)—(H3) hold. Assume that there exist
positive numbers §,a,b, \;, i, © = 1,2, such that 6 € (0 ,2) 0 <a<db<b,
A+ A2 <1, p1 + pe > 1, and satisfy

(H4) fi(t,u1,usz) >0 forte [0,1],u1 + ug € [0,0];

(H5) fi(t,u1,u2) < 9% [0,1], u1 4+ ug € [0, al;

(HG) fi(t7u17u2) Z Hnlib: fOT‘ te [57 1- 6]7”1 + Ug € [(Sb?b]
Then, (1.1) has at least two nonnegative solutions (u1,us) and (uf,ud) such that
0 < [[(ur, )|l < a < |[(uf,u3)ll, a(uf, us) < b,
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Proof. For all (uy,us) € OK,, from (H5) we have
ITi(u1, ug)|| = max / Hi(t, s) fi(s, u1(s), ua(s))ds) "
t€[0,1]
= max max{/ H;(t,s)fi(s,u1(s),uz(s))ds, 0}
t€[0,1]

Aia
H;(t,s)ds = \;
Mteol]/ (t,s)ds a.

Therefore,

1T (urs ug)l| = [T (ur, ug) | + [ T2(u1, ug)|| < Ara + Aga < a.
So (C1) of Theorem is satisfied.
For (u1,us) € 0K, from (H5), we have

|77 (ug,u2)|| = max/ H;(t,s)f;" (s,u1(s),uz(s))ds
te[0,1]

Aia
H;(t,s)ds = \a.
Mte[01/0 (¢, 5)ds “

We also obtain

173" (ur, o) [| = IT7 (ur, w2) || + (|15 (1, u2) || < Aaa+ Asa < a.

For (u1,us) € OK'(6b), ie., a(ur,uz) = 6b, For t € [5,1 — 4], by Lemma 2.5 we
have 0b < uq (t) + uz(t) < b. From (H6), we obtain

a(T* (u1,ug)) = tergnlntS / Hy(t,8)fi (s,u1(s),uz(s))ds

te[61 5/ Hy(t,5)f5 (s, u1(s), ua(s))ds
1-5
T te[s,1-6] J 5 Hi(t, 8)fi" (s, w1 (s), ua(s))ds
1-5

+ te%ﬁlgé] : Hay(t, 8) fof (s,u1(s),uz(s))ds

b 1-6 51) 1-6
> mé min Hq(t, s)ds+ —~— min

my te[s,1—9] Mo te[5,1—]

= 116b + podb > 6b.

Therefore (C2) of Theorem is satisfied.

Finally, we show that (C3) of Theorem [2.1] is satisfied. Let (uy,us) € K/ (db)
{(u1,uz2) : T*(ur,u2) = (u1,usz)}, we have

Hs(t,s)ds

aluy,ug) < 0b, ||(ur,us2)|| > a.
From Lemma [2.5] we know that

1
H(ulqu)H < ga(uh’lm) < b,

0< Ul(t) + ’LLQ(t) < b.
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From (H4), we obtain
Fi (s,un(s), uz(s)) = fi(s, ui(s), ua(s)).
This implies that T'(u1, ue) = T*(ug, ug) for
(u1,u2) € KL (6b) N {(ur,u2) : T (ug,uz) = (ug,uz)}.

By Theorem and Lemma we know that (1.1) has at least two nonnegative
solutions (u1,us) and (u},ud) such that

0 < [(ur, u2)ll < a < |[|(ug, u3)ll, auy, uz) <b.

The proof is complete. O

Define ¢ : K — R™ by

P(ur,uz) = Sggnél?_ém(t) + aéltnglgl_gw(t)

Theorem 3.2. Suppose that condition (H1)—~(H3) hold. There exist § € (0, %),
a,byNi,p; > 0,1 =1,2, such that 0 < a < b < b, \i + o < 1,1 +ps > 1, and

(H5), (H6) hold, and satisfy

(HT) fi(t,u1,uz2) >0, fort € [0,1], uy + ug € [0b,b].
(H8) fi(t,ur,up) < 322, for t € [0,1],u1 + uy € [0,b].

Then, (1.1) has at least three nonnegative solutions (uy,us), (uf,ud), (ui*, us*),
such that 0 < ||(u1, u2)|| < a < |[(uf,u3)|l, p(ui, us) < b, Pp(ui*, uz*) > b.

Proof. Firstly, we prove T : K, — K, is a completely continuous operator. From

(H8), for ¢ = 1,2, we obtain

|75 (ug, ug)|| = max / H;(t,s)fi(s,u1(s),ua(s ))ds)

te[0,1]

= max max{/ H;(t, s) fi(s,u1(s), uz(s))ds,0}

te[0,1]

<)\bmax/ H;(t,s)ds = \;b.
i t€[0,1]

Therefore,
1T (1, u2)|| = |1 T1 (w1, u2) || + 1T (ur, u2)|| < A+ A2b < b.

From Lemma we know T : K, — K, is a completely continuous operator. For
the operator T" and any u; +us € [0, a], from (H5) and Theorem [3.1] we know (C5)
of Theorem 2.2] is satisfied.

Next, we show that (C4) of Theorem [2.2]is satisfied. Clearly,

{(u1,u2) € K(6,0b,b) : ¢(ur,uz) > db} # 0.
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Assume (uy,us) € K(¢,b,b), for any ¢ € [§, 1 — 6], we have 6b < uy +uy < b. From
(H6) and (HT7) we obtain

o(T(uy,uz)) = min /Hl(t,s)fl(s,ul(s),uz(s))ds)Jr

te[d,1-4]

+
Hy(t d
TN § AT
> i H(t d
> i [ 6
ter[};ulné]/ Hy(t, 8) fa(s,u1(s), us(s))ds
1-6
N
_tef?,llriz;] : Hi(t, s)f1(s,u1(s),ua(s))ds
1-6
+ te{(rsuln . Hy(t, s) fa(s,ui(s), ua(s))ds
1-5 1-5
1100 min Hiq(t, s)ds+ 200 min Hy(t,s)ds
my tel[6,1-4] Js mo tel6,1-6] Js

= p10b + padb > db.
Finally, for (ui,us) € K(¢,db,b) and || T (u1, usz)|| > b, it is easy to prove that
(T (ur,uz)) = O[T (u1, ug)|| > 6b.

Then (C6) of Theorem is satisfied. Therefore from Theorem and Lemma
we know that (1.1)) has at least three nonnegative solutions (uy,us), (uf,us),
(ui*, u3*), such that

0 < [(ur,ug)ll < a <|[(ui,u3)ll, a(ui,uz) <b,  alur®,uy’) > b.

The proof is complete. (Il
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