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MULTIPLE NONNEGATIVE SOLUTIONS FOR SECOND-ORDER
BOUNDARY-VALUE PROBLEMS WITH SIGN-CHANGING

NONLINEARITIES

SHOULIANG XI, MEI JIA, HUIPENG JI

Abstract. In this paper, we study the existence of multiple nonnegative solu-

tions for second-order boundary-value problems of differential equations with

sign-changing nonlinearities. Our main tools are the fixed-point theorem in
double cones and the Leggett-Williams fixed point theorem. We present also

the integral kernel associated with the boundary-value problem.

1. Introduction

Boundary-value problems with nonnegative solutions describe many phenomena
in the applied science, and they are widely used in fields, such as chemistry, bi-
ological, etc.; see for example [2, 4, 5, 6, 7, 8]. Problems with integral boundary
conditions have been applied in heat conduction, chemical engineering, underground
water flow-elasticity, etc. The existence of nonnegative solutions to these problems
have received a lot of attention; see [3, 8, 9, 10, 11, 12] and reference therein.

Recently, by constructing a special cone and using the fixed point index theory,
Liu and Yan [9] proved the existence of multiple solutions to the singular boundary-
value problem

(p(t)x′(t))′ + λf(t, x(t), y(t)) = 0

(p(t)y′(t))′ + λg(t, x(t), y(t)) = 0

αx(0)− βx′(0) = γx(1) + δx′(1) = 0

αy(0)− βy′(0) = γy(1) + δy′(1) = 0,

where the parameter λ in R+, p ∈ C([0, 1], R+), α, β, γ, δ ≥ 0, βγ + αδ + αγ > 0,
f ∈ C((0, 1) × R+ × R, R+), g ∈ C((0, 1) × R+ × R, R), but g must be controlled
by f .
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By using fixed point index theory in a cone, Yang [10] studied the existence of
positive solutions to a system of second-order nonlocal boundary value problems

−u′′ = f(t, u, v)

−v′′ = g(t, u, v)

u(0) = v(0) = 0

u(1) = H1

( ∫ 1

0

u(τ)dα(τ)
)

v(1) = H2

( ∫ 1

0

v(τ)dβ(τ)
)
,

where α and β are increasing nonconstant functions defined on [0, 1] with α(0) =
0 = β(0) and f, g ∈ C((0, 1)× R+ × R+, R+), Hi ∈ C(R+, R+).

By using fixed point theory in a cone, Feng [12] studied positive solutions for the
boundary-value problem, with integral boundary conditions in Banach spaces,

x′′ + f(t, x) = 0

with

x(0) =
∫ 1

0

g(t)x(t)dt, x(1) = 0

or

x(0) = 0, x(1) =
∫ 1

0

g(t)x(t)dt,

where f ∈ C([0, 1]× P, P ), g ∈ L1[0, 1], and P is a cone of E. All of these, we can
find the nonlinear term f is nonnegative.

In this paper, by using the fixed point theorem in double cones and the Leggett-
Williams fixed point theorem, we study the existence of multiple nonnegative solu-
tions to the boundary value problem

u′′1(t) + f1(t, u1(t), u2(t)) = 0

u′′2(t) + f2(t, u1(t), u2(t)) = 0

u1(0) = u2(0) = 0

u1(1) =
∫ 1

0

g1(s)u1(s)ds, u2(1) =
∫ 1

0

g2(s)u2(s)ds,

(1.1)

where f1, f2 ∈ C((0, 1) × R+ × R+, R), and g1, g2 are nonnegative functions in
L1[0, 1].

In this paper we assume that the following conditions:
(H1) fi ∈ C((0, 1)× R+ × R+, R), gi ∈ L1[0, 1] is nonnegative, i = 1, 2;
(H2) 1−

∫ 1

0
sgi(s)ds > 0;

(H3) f1(t, 0, u2(t)) ≥ 0(6≡ 0), f2(t, u1(t), 0) ≥ 0(6≡ 0), t ∈ [0, 1].

2. Preliminaries

Let X be a Banach space with norm ‖ · ‖ and K ⊂ X be a cone. For a constant
r > 0, denote Kr = {x ∈ K : ‖x‖ < r}, ∂Kr = {x ∈ K : ‖x‖ = r}. Suppose
α : K → R+ is a continuously increasing functional; i.e. α is continuous and
α(λx) ≤ α(x) for λ ∈ (0, 1). Let

K(b) = {x ∈ K : α(x) < b}, ∂K(b) = {x ∈ K : α(x) = b}.
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and Ka(b) = {x ∈ K : ‖x‖ > a, α(x) < b}. φ : K → R+ is a continuously concave
functional. Denote

K(φ, a, b) = {x ∈ K : φ(x) ≥ a, ‖x‖ ≤ b}.
We will use the following two theorem.

Theorem 2.1 ([1]). Let X be a real Banach space with norm ‖ · ‖ and K, K ′ ⊂ X
two cones with K ′ ⊂ K. Suppose T : K → K and T ∗ : K ′ → K ′ are two completely
continuous operators and α : K ′ → R+ is a continuously increasing functional
satisfying α(x) ≤ ‖x‖ ≤ Mα(x) for all x ∈ K ′, where M ≥ 1 is a constant. If there
are constants b > a > 0 such that

(C1) ‖Tx‖ < a, for x ∈ ∂Ka;
(C2) ‖T ∗x‖ < a, for x ∈ ∂K ′

a and α(T ∗x) > b for x ∈ ∂K ′(b);
(C3) Tx = T ∗x, for x ∈ K ′

a(b) ∩ {u : T ∗u = u}.
Then T has at least two fixed points y1 and y2 in K, such that

0 ≤ ‖y1‖ < a < ‖y2‖, α(y2) < b.

Theorem 2.2 (Leggett-Williams fixed point theorem [13]). Let A : Kc → Kc be
completely continuous and φ be a nonnegative continuous concave functional on K
such that φ(x) ≤ ‖x‖ for all x ∈ Kc. Suppose that there exist 0 < d < a < b ≤ c
such that

(C4) {x ∈ K(φ, a, b) : φ(x) > a} 6= ∅ and φ(Ax) > a for x ∈ K(φ, a, b);
(C5) ‖Ax‖ < d for ‖x‖ ≤ d;
(C6) φ(Ax) > a for x ∈ K(φ, a, c) with ‖Ax‖ > b.

Then A has at least three fixed points x1, x2, x3 in Kc satisfying

‖x1‖ < d, a < φ(x2), ‖x3‖ > d, φ(x3) < a.

Lemma 2.3. Assume that (H2) holds. Then for any yi ∈ C[0, 1], the boundary
value problem

u′′i (t) + yi(t) = 0 (2.1)

ui(0) = 0, ui(1) =
∫ 1

0

gi(s)ui(s)ds, (2.2)

has a unique solution

ui(t) =
∫ 1

0

Hi(t, s)yi(s)ds, i = 1, 2, (2.3)

where

Hi(t, s) = G(t, s) +
t
∫ 1

0
gi(r)G(r, s)dr

1−
∫ 1

0
sgi(s)ds

, i = 1, 2,

G(t, s) =

{
t(1− s), if 0 ≤ t ≤ s ≤ 1,

s(1− t), if 0 ≤ s ≤ t ≤ 1,

The proof is similar to [12, Lemma 2.1], and is omitted.

Lemma 2.4. Assume that (H2) holds. Let δ ∈ (0, 1
2 ), then for all t ∈ [δ, 1−δ], σ, s ∈

[0, 1], we have
Hi(σ, s) ≥ 0, Hi(t, s) ≥ δHi(σ, s). (2.4)
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Proof. It is clear that Hi(σ, s) ≥ 0, From the properties of G(t, s), we obtain

G(t, s) ≥ δG(σ, s), t ∈ [δ, 1− δ], σ, s ∈ [0, 1],

then

Hi(t, s) = G(t, s) +
t
∫ 1

0
gi(r)G(r, s)dr

1−
∫ 1

0
sgi(s)ds

≥ δG(σ, s) +
δ
∫ 1

0
gi(r)G(r, s)dr

1−
∫ 1

0
sgi(s)ds

≥ δG(σ, s) +
δσ

∫ 1

0
gi(r)G(r, s)dr

1−
∫ 1

0
sgi(s)ds

= δHi(σ, s)

The proof is complete. �

Lemma 2.5. Assume that (H2) holds. If yi ∈ C[0, 1], yi ≥ 0, then the unique
solution ui(t) of the boundary-value problem (2.1)-(2.2) satisfies ui(t) ≥ 0 and
mint∈[δ,1−δ] ui(t) ≥ δ‖ui‖, i = 1, 2.

Proof. It is clear that ui(t) ≥ 0, for all t ∈ [0, 1], i = 1, 2. In fact, from (2.3) and
(2.4), for any t ∈ [δ, 1− δ], s, σ ∈ [0, 1], i = 1, 2, we have

ui(t) =
∫ 1

0

Hi(t, s)yi(s)ds ≥
∫ 1

0

δHi(σ, s)yi(s)ds = δui(σ).

Hence,
ui(t) ≥ δ max

0≤σ≤1
|ui(σ)| = δ‖ui‖,

and minδ≤t≤1−δ ui(t) ≥ δ‖ui‖. The proof is complete. �

Let X = C[0, 1] × C[0, 1] with the norm ‖(u1, u2)‖ := ‖u1‖ + ‖u2‖, K =
{(u1, u2) ∈ X : ui ≥ 0, i = 1, 2} and K ′ = {(u1, u2) ∈ K: ui(t) is concave in
[0, 1],mint∈[δ,1−δ] ui(t) ≥ δ‖ui‖, i = 1, 2}.

Clearly, K, K ′ ⊂ X are cones with K ′ ⊂ K. Let Ti : K → C[0, 1], i = 1, 2 be
defined by

T1(u1, u2)(t) =
( ∫ 1

0

H1(t, s)f1(s, u1(s), u2(s))ds
)+

, t ∈ [0, 1],

T2(u1, u2)(t) =
( ∫ 1

0

H2(t, s)f2(s, u1(s), u2(s))ds
)+

, t ∈ [0, 1],

where (B)+ = max{B, 0}. Let

T (u1, u2)(t) = (T1(u1, u2)(t), T2(u1, u2)(t)),

A1(u1, u2)(t) =
∫ 1

0

H1(t, s)f1(s, u1(s), u2(s))ds, t ∈ [0, 1],

A2(u1, u2)(t) =
∫ 1

0

H2(t, s)f2(s, u1(s), u2(s))ds, t ∈ [0, 1],

A(u1, u2)(t) = (A1(u1, u2)(t), A2(u1, u2)(t)).

For (u1, u2) ∈ X, define θ : X → K by

(θ(u1, u2))(t) = (max{u1(t), 0},max{u2(t), 0}),
then T = θ ◦A.
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Let T ∗
i : K ′ → C[0, 1], i = 1, 2 be defined by

T ∗
1 (u1, u2)(t) =

∫ 1

0

H1(t, s)f+
1 (s, u1(s), u2(s))ds, t ∈ [0, 1],

T ∗
2 (u1, u2)(t) =

∫ 1

0

H2(t, s)f+
2 (s, u1(s), u2(s))ds, t ∈ [0, 1],

(2.5)

and
T ∗(u1, u2)(t) = (T ∗

1 (u1, u2)(t), T ∗
2 (u1, u2)(t)).

Define α : K ′ → R+ by

α(u1, u2) = min
δ≤t≤1−δ

u1(t) + min
δ≤t≤1−δ

u2(t).

It is clear that α is a continuous increasing functional and α(u1, u2) ≤ ‖(u1, u2)‖.
For u ∈ K ′, we have

α(u1, u2) = min
δ≤t≤1−δ

u1(t) + min
δ≤t≤1−δ

u2(t) ≥ δ‖u1‖+ δ‖u2‖ = δ‖(u1, u2)‖.

Therefore,

α(u1, u2) ≤ ‖(u1, u2)‖ ≤
1
δ
α(u1, u2).

Lemma 2.6. Suppose A : K → X is completely continuous. Then θ ◦A : K → K
is also a completely continuous operator.

Proof. The complete continuity of A implies that A is continuous and maps each
bounded subset of K to a relatively compact set of X. Let D ⊂ K be a bounded
set, for any ε > 0, there exist Pi(xi, yi) ∈ X, i = 1, 2, . . . ,m, such that

AD ⊂ ∪m
i=1B(Pi, ε),

where B(Pi, ε) := {(u1, u2) ∈ K : ‖u1 − xi‖ + ‖u2 − yi‖ < ε}. Then for any
Q∗(x∗Q, y∗Q) ∈ (θ ◦A)(D), there exists Q(xQ, yQ) ∈ AD, such that

(x∗Q, y∗Q) = (max{xQ, 0},max{yQ, 0}).

We choose a Pi ∈ {P1, P2, . . . , Pm}, such that

‖xQ − xi‖+ ‖yQ − yi‖ < ε.

Since
‖x∗Q − x∗i ‖+ ‖y∗Q − y∗i ‖ ≤ ‖xQ − xi‖+ ‖yQ − yi‖ < ε,

we have Q∗(x∗Q, y∗Q) ∈ B(P ∗
i , ε), and so (θ ◦A)(D) is relatively compact.

For each ε > 0, there exists η > 0, such that ‖A(x1, y1) − A(x2, y2)‖ < ε, for
‖x1 − x2‖+ ‖y1 − y2‖ < η. Since

‖(θ ◦A)(x1, y1)− (θ ◦A)(x2, y2)‖

= ‖
(

max{A1(x1, y1), 0} −max{A1(x2, y2), 0},

max{A2(x1, y1), 0} −max{A2(x2, y2), 0}
)
‖

≤ ‖A(x1, y1)−A(x2, y2)‖ < ε.

We have ‖(θ ◦A)(x1, y1)− (θ ◦A)(x2, y2)‖ < ε, for ‖x1 − x2‖+ ‖y1 − y2‖ < η.
Hence, θ ◦ A is continuous in K and θ ◦ A is completely continuous. The proof

is complete. �
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Since fi is continuous, it is clear that A : K → X and T ∗ : K ′ → X are
completely continuous. From Lemmas 2.6 and 2.5, we have T : K → K and
T ∗ : K ′ → K ′ are completely continuous.

Lemma 2.7. If (u1, u2) is a fixed point of T , then (u1, u2) is a fixed point of A.

Proof. Suppose (u1, u2) is a fixed point of T , obviously, we just need to prove that
Ai(u1, u2)(t) ≥ 0, i = 1, 2, for t ∈ [0, 1].

If there exist t0 ∈ (0, 1) and an i (i = 1, 2) such that ui(t0) = Ti(u1, u2)(t0) = 0
but Ai(u1, u2)(t0) < 0. Without loss of generalization, let i = 1 and (t1, t2) be the
maximal interval and contains t0 such that A1(u1, u2)(t) < 0 for all t ∈ (t1, t2).
Obviously, (t1, t2) 6= (0, 1). Or else, T1(u1, u2)(t) = u1(t) = 0, for all t ∈ [0, 1]. This
is in contradiction with (H3).

Case i: If t2 < 1, then A1(u1, u2)(t2) = 0. Thus, A′
1(u1, u2)(t2) ≥ 0, We obtain

A′′
1(u1, u2)(t) = −f1(t, 0, u2) ≤ 0, for t ∈ (t1, t2).

So

A′
1(u1, u2)(t) ≥ 0, for t ∈ [t1, t2]

We obtain t1 = 0, and A′
1(u1, u2)(0) ≥ 0, A1(u1, u2)(0) < 0. This is in contradiction

with A1(u1, u2)(0) = 0.
Case ii: If t1 > 0, we have A1(u1, u2)(t1) = 0. Thus A′

1(u1, u2)(t1) ≤ 0. We
obtain

A′′
1(u1, u2)(t) = −f1(t, 0, u2) ≤ 0, for t ∈ (t1, t2).

So

A′
1(u1, u2)(t) < 0, for t ∈ [t1, t2].

We obtain t2 = 1, A′
1(u1, u2)(1) ≤ 0.

On the other hand, A1(u1, u2)(t) < 0, for t ∈ (t1, t2), A′
1(u1, u2)(1) ≤ 0 imply

A1(u1, u2)(1) < 0. By (H1), A1(u1, u2)(1) =
∫ 1

0
g1(s)u1(s)ds ≥ 0. This is a

contradiction. The proof is complete. �

3. Main result

Denote

Mi = max
t∈[0,1]

∫ 1

0

Hi(t, s)ds, mi = min
t∈[δ,1−δ]

∫ 1−δ

δ

Hi(t, s)ds, i = 1, 2

Theorem 3.1. Suppose that condition (H1)–(H3) hold. Assume that there exist
positive numbers δ, a, b, λi, µi, i = 1, 2, such that δ ∈ (0, 1

2 ), 0 < a < δb < b,
λ1 + λ2 ≤ 1, µ1 + µ2 > 1, and satisfy

(H4) fi(t, u1, u2) ≥ 0, for t ∈ [0, 1], u1 + u2 ∈ [0, b];
(H5) fi(t, u1, u2) < λia

Mi
, for t ∈ [0, 1], u1 + u2 ∈ [0, a];

(H6) fi(t, u1, u2) ≥ µiδb
mi

, for t ∈ [δ, 1− δ], u1 + u2 ∈ [δb, b].

Then, (1.1) has at least two nonnegative solutions (u1, u2) and (u∗1, u
∗
2) such that

0 ≤ ‖(u1, u2)‖ < a < ‖(u∗1, u∗2)‖, α(u∗1, u
∗
2) < δb.
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Proof. For all (u1, u2) ∈ ∂Ka, from (H5) we have

‖Ti(u1, u2)‖ = max
t∈[0,1]

(
∫ 1

0

Hi(t, s)fi(s, u1(s), u2(s))ds)+

= max
t∈[0,1]

max{
∫ 1

0

Hi(t, s)fi(s, u1(s), u2(s))ds, 0}

<
λia

Mi
max

t∈[0,1]

∫ 1

0

Hi(t, s)ds = λia.

Therefore,

‖T (u1, u2)‖ = ‖T1(u1, u2)‖+ ‖T2(u1, u2)‖ < λ1a + λ2a ≤ a.

So (C1) of Theorem 2.1 is satisfied.
For (u1, u2) ∈ ∂K ′

a, from (H5), we have

‖T ∗
i (u1, u2)‖ = max

t∈[0,1]

∫ 1

0

Hi(t, s)f+
i (s, u1(s), u2(s))ds

<
λia

Mi
max

t∈[0,1]

∫ 1

0

Hi(t, s)ds = λia.

We also obtain

‖T ∗
i (u1, u2)‖ = ‖T ∗

1 (u1, u2)‖+ ‖T ∗
2 (u1, u2)‖ < λ1a + λ2a ≤ a.

For (u1, u2) ∈ ∂K ′(δb), i.e., α(u1, u2) = δb, For t ∈ [δ, 1 − δ], by Lemma 2.5, we
have δb ≤ u1(t) + u2(t) ≤ b. From (H6), we obtain

α(T ∗(u1, u2)) = min
t∈[δ,1−δ]

∫ 1

0

H1(t, s)f+
1 (s, u1(s), u2(s))ds

+ min
t∈[δ,1−δ]

∫ 1

0

H2(t, s)f+
2 (s, u1(s), u2(s))ds

≥ min
t∈[δ,1−δ]

∫ 1−δ

δ

H1(t, s)f+
1 (s, u1(s), u2(s))ds

+ min
t∈[δ,1−δ]

∫ 1−δ

δ

H2(t, s)f+
2 (s, u1(s), u2(s))ds

≥ µ1δb

m1
min

t∈[δ,1−δ]

∫ 1−δ

δ

H1(t, s)ds +
µ2δb

m2
min

t∈[δ,1−δ]

∫ 1−δ

δ

H2(t, s)ds

= µ1δb + µ2δb > δb.

Therefore (C2) of Theorem 2.1 is satisfied.
Finally, we show that (C3) of Theorem 2.1 is satisfied. Let (u1, u2) ∈ K ′

a(δb) ∩
{(u1, u2) : T ∗(u1, u2) = (u1, u2)}, we have

α(u1, u2) < δb, ‖(u1, u2)‖ > a.

From Lemma 2.5, we know that

‖(u1, u2)‖ ≤
1
δ
α(u1, u2) < b,

0 ≤ u1(t) + u2(t) < b.
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From (H4), we obtain

f+
i (s, u1(s), u2(s)) = fi(s, u1(s), u2(s)).

This implies that T (u1, u2) = T ∗(u1, u2) for

(u1, u2) ∈ K ′
a(δb) ∩ {(u1, u2) : T ∗(u1, u2) = (u1, u2)}.

By Theorem 2.1 and Lemma 2.7, we know that (1.1) has at least two nonnegative
solutions (u1, u2) and (u∗1, u

∗
2) such that

0 ≤ ‖(u1, u2)‖ < a < ‖(u∗1, u∗2)‖, α(u∗1, u
∗
2) < b.

The proof is complete. �

Define φ : K → R+ by

φ(u1, u2) = min
δ≤t≤1−δ

u1(t) + min
δ≤t≤1−δ

u2(t)

Theorem 3.2. Suppose that condition (H1)–(H3) hold. There exist δ ∈ (0, 1
2 ),

a, b, λi, µi > 0, i = 1, 2, such that 0 < a < δb < b, λ1 + λ2 ≤ 1, µ1 + µ2 > 1, and
(H5), (H6) hold, and satisfy

(H7) fi(t, u1, u2) ≥ 0, for t ∈ [0, 1], u1 + u2 ∈ [δb, b].
(H8) fi(t, u1, u2) ≤ λib

Mi
, for t ∈ [0, 1], u1 + u2 ∈ [0, b].

Then, (1.1) has at least three nonnegative solutions (u1, u2), (u∗1, u
∗
2), (u∗∗1 , u∗∗2 ),

such that 0 ≤ ‖(u1, u2)‖ < a < ‖(u∗1, u∗2)‖, φ(u∗1, u
∗
2) < b, φ(u∗∗1 , u∗∗2 ) ≥ b.

Proof. Firstly, we prove T : Kb → Kb is a completely continuous operator. From
(H8), for i = 1, 2, we obtain

‖Ti(u1, u2)‖ = max
t∈[0,1]

( ∫ 1

0

Hi(t, s)fi(s, u1(s), u2(s))ds
)+

= max
t∈[0,1]

max
{ ∫ 1

0

Hi(t, s)fi(s, u1(s), u2(s))ds, 0
}

<
λib

Mi
max

t∈[0,1]

∫ 1

0

Hi(t, s)ds = λib.

Therefore,

‖T (u1, u2)‖ = ‖T1(u1, u2)‖+ ‖T2(u1, u2)‖ < λ1b + λ2b ≤ b.

From Lemma 2.6, we know T : Kb → Kb is a completely continuous operator. For
the operator T and any u1 +u2 ∈ [0, a], from (H5) and Theorem 3.1, we know (C5)
of Theorem 2.2 is satisfied.

Next, we show that (C4) of Theorem 2.2 is satisfied. Clearly,

{(u1, u2) ∈ K(φ, δb, b) : φ(u1, u2) > δb} 6= ∅.
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Assume (u1, u2) ∈ K(φ, δb, b), for any t ∈ [δ, 1− δ], we have δb ≤ u1 +u2 ≤ b. From
(H6) and (H7) we obtain

φ(T (u1, u2)) = min
t∈[δ,1−δ]

( ∫ 1

0

H1(t, s)f1(s, u1(s), u2(s))ds
)+

+ min
t∈[δ,1−δ]

( ∫ 1

0

H2(t, s)f2(s, u1(s), u2(s))ds
)+

≥ min
t∈[δ,1−δ]

∫ 1

0

H1(t, s)f1(s, u1(s), u2(s))ds

+ min
t∈[δ,1−δ]

∫ 1

0

H2(t, s)f2(s, u1(s), u2(s))ds

≥ min
t∈[δ,1−δ]

∫ 1−δ

δ

H1(t, s)f1(s, u1(s), u2(s))ds

+ min
t∈[δ,1−δ]

∫ 1−δ

δ

H2(t, s)f2(s, u1(s), u2(s))ds

≥ µ1δb

m1
min

t∈[δ,1−δ]

∫ 1−δ

δ

H1(t, s)ds +
µ2δb

m2
min

t∈[δ,1−δ]

∫ 1−δ

δ

H2(t, s)ds

= µ1δb + µ2δb > δb.

Finally, for (u1, u2) ∈ K(φ, δb, b) and ‖T (u1, u2)‖ > b, it is easy to prove that

φ(T (u1, u2)) ≥ δ‖T (u1, u2)‖ > δb.

Then (C6) of Theorem 2.2 is satisfied. Therefore from Theorem 2.2 and Lemma
2.7 we know that (1.1) has at least three nonnegative solutions (u1, u2), (u∗1, u

∗
2),

(u∗∗1 , u∗∗2 ), such that

0 ≤ ‖(u1, u2)‖ < a < ‖(u∗1, u∗2)‖, α(u∗1, u
∗
2) < b, α(u∗∗1 , u∗∗2 ) ≥ b.

The proof is complete. �
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