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EXISTENCE AND UNIQUENESS FOR
MAGNETOHYDRODYNAMIC FLOWS IN PIPES WITH
VISCOSITY DEPENDENT ON THE TEMPERATURE

GIOVANNI CIMATTI

Abstract. The steady motion of a viscous fluid in pipes of arbitrary cross-
sections under a transverse magnetic field is studied, assuming that the vis-

cosity and the electric and thermal conductivity are given functions of the

temperature. Theorems of existence and uniqueness for the nonlinear elliptic
system governing the problem are presented.

1. Introduction

In this paper we study a class of steady, incompressible rectilinear flows of viscous
electrically and thermally conducting fluids along cylindrical channels of arbitrary
cross-section in the framework of the equations of magnetohydrodynamics. The
open and bounded subset Ω of R2 representing the cross-section of the pipe is
referred to the orthogonal frame Oxy with unit vectors i and j. Oz is the axis of
the channel with k as unit vector. The magnetic field H is assumed of the form

H = M + h(x, y)k,

where M is a vector constant and parallel to Ω. Rotating the Oxy frame we can
write

H = M i + h(x, y)k. (1.1)
Since the flow is laminar and rectilinear,

v = v(x, y)k (1.2)

is the velocity of the fluid and p = p(z) the pressure. In the steady state, Maxwell’s
equations reads

∇×E = 0, (1.3)

∇×H = J, (1.4)

where E is the electric field and J the current density. Taking the curl of Ohm’s
law

ρJ = E + v ×H
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where ρ is the resistivity and recalling (1.1), (1.2), (1.3) and (1.4), we have

∇ · (ρ∇h) +M
∂v

∂x
= 0. (1.5)

Moreover, in view of (1.1) and (1.2) the equation of motion reduces to

∇ · (η∇v) +M
∂h

∂x
= −k (1.6)

where k is the constant pressure gradient and η the viscosity. The system of partial
differential equations (1.5), (1.6) has been studied in [3] and [4] for its relevance
in applications, as e.g. in electromagnetic flow-measurements [5]. Crucial in this
treatment is the hypothesis of a constant viscosity and resistivity. In this paper we
study a non-linear version of the system (1.5), (1.6) in which viscosity and resistivity
are given functions of the temperature θ. In practical cases this dependence can be
quite strong. Thus we need to add the energy equation

−∇ · (κ∇θ) = η|∇v|2 + ρ|∇h|2 (1.7)

to the system. In (1.7) κ is the thermal conductivity, also a function of the temper-
ature. The first term on the right hand side of (1.7) reflects the viscous attrition
and the second the Joule heating. Let Γ be the boundary of Ω. Assuming the walls
of the pipe to be a perfect electrical insulant we have

J · n = 0 on Γ. (1.8)

Moreover, (1.4) reads

Jx =
∂h

∂y
, Jy = −∂h

∂x
, (1.9)

thus (1.8) and (1.9) imply that h is constant on Γ (with possibly different values if
Ω is not simply connected). We shall study two different boundary value problems
for the system (1.5), (1.6), (1.7), more precisely a “Poiseuille” case PbP

∇ · (η(θ)∇v) +M
∂h

∂x
= −k in Ω v = 0 on Γ, (1.10)

∇ · (ρ(θ)∇h) +M
∂v

∂x
= 0 in Ω h = 0 on Γ, (1.11)

−∇ · (κ(θ)∇θ) = η(θ)|∇v|2 + ρ(θ)|∇h|2 in Ω
θ = Θb on Γ,

(1.12)

and a “Couette” case in which Ω is doubly-connected with boundary consisting of
two curves Γ1 and Γ2 with Γ = Γ1 ∪ Γ2, and Γ1 ∩ Γ2 = ∅. The external wall of the
pipe, of cross-section Γ2, moves with respect to the internal one with cross-section
Γ1 with constant velocity V and with absence of pressure gradient. This implies
k = 0 in (1.6). In this way we obtain problem PbC

∇ · (η(θ)∇v) +M
∂h

∂x
= 0 in Ω

v = 0 on Γ1, v = V on Γ2,

∇ · (ρ(θ)∇h) +M
∂v

∂x
= 0 in Ω

h = 0 on Γ1, h = H on Γ2,

−∇ · (κ(θ)∇θ) = η(θ)|∇v|2 + ρ(θ)|∇h|2 in Ω
θ = Θb on Γ,
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where H is a given constant. The boundary value of the temperature is supposed
to be the trace of a function Θ ∈ H2(Ω) harmonic in Ω. Moreover we assume Γ to
be of class C2. In Section 2 we prove, using an elliptic regularization, that problems
PbP and PbC have at least one weak solution. A result of uniqueness for problem
PbC is presented in Section 3.

2. Existence and Uniqueness of Weak Solutions

We assume Γ to be regular (e.g. C2). For later use we recall the following results.

Lemma 2.1. Let a(x), b(x) ∈ L∞(Ω), x = (x, y) and

a(x) ≥ a0 > 0, b(x) ≥ b0 > 0. (2.1)

Then the system

v ∈ H1
0 (Ω),

∫
Ω

[
a(x)∇v · ∇ϕ−Mhxϕ

]
dX = k

∫
Ω

ϕdX, ∀ϕ ∈ H1
0 (Ω), (2.2)

h ∈ H1
0 (Ω),

∫
Ω

[
b(x)∇h · ∇ψ −Mvxψ

]
dX = 0, ∀ψ ∈ H1

0 (Ω), (2.3)

has one and only one solution. Moreover,

‖v‖H1
0 (Ω) + ‖h‖H1

0 (Ω) ≤ C, (2.4)

max
Ω

|v|+ max
Ω

|h| ≤ C, (2.5)

where the constant C depends only on a0, b0, k, M and Ω.

Proof. The bilinear form

a((v, h), (ϕ,ψ)) =
∫

Ω

[
a(x)∇v · ∇ϕ+ b(x)∇h · ∇ψ −M

(∂h
∂x
ϕ+

∂v

∂x
ψ

)]
dX

is bounded and coercive in H1
0 (Ω) × H1

0 (Ω), as easily verified. Therefore, by the
Lax-Milgram lemma, the system (2.2), (2.3) has one and only one solution which
satisfies (2.4). By standard elliptic regularity (see [2]), (2.5) follows. �

The main difficulty in problem PbP lies in the quadratic growth in the right
hand side of equation (1.12). However, from (1.10) and (1.11) we have

η(θ)|∇v|2+ρ(θ)|∇h|2 = ∇·(hρ(θ)∇h)+∇·(vη(θ)∇v)+Mh
∂v

∂x
+Mv

∂h

∂x
+kv. (2.6)

This suggests the following weak formulation:

v ∈ H1
0 (Ω),

∫
Ω

[
η(θ)∇v · ∇ϕ−M

∂h

∂x
ϕ
]
dX =

∫
Ω

kϕdX, ∀ϕ ∈ H1
0 (Ω), (2.7)

h ∈ H1
0 (Ω),

∫
Ω

[
ρ(θ)∇h · ∇ζ −M

∂v

∂x
ζ
]
dX = 0, ∀ζ ∈ H1

0 (Ω), (2.8)

θ −Θ ∈ H1
0 (Ω),

∫
Ω

κ(θ)∇θ · ∇ξdX

= −
∫

Ω

hρ(θ)∇h · ∇ξdX +M

∫
Ω

h
∂v

∂x
ξdX −

∫
Ω

vη(θ)∇v · ∇ξdX

+
∫

Ω

v
(
M
∂h

∂x
+ k

)
ξdX, ∀ξ ∈ H1

0 (Ω),

(2.9)
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where we assume η(u), ρ(u), κ(u) to be continuous and to satisfy

η1 ≥ η(u) ≥ η0 > 0, ρ1 ≥ ρ(u) ≥ ρ0 > 0, κ1 ≥ κ(u) ≥ κ0 > 0. (2.10)

To prove existence of a weak solution we consider the following sequence of approx-
imating problems Pbε:

vε ∈ H1
0 (Ω),

∫
Ω

η(θε)∇vε · ∇ϕdX −M

∫
Ω

∂hε

∂x
ϕdX = k

∫
Ω

ϕdX, ∀ϕ ∈ H1
0 (Ω)

(2.11)

hε ∈ H1
0 (Ω),

∫
Ω

ρ(θε)∇hε · ∇ζdX −M

∫
Ω

∂vε

∂x
ζdX = 0,∀ζ ∈ H1

0 (Ω) (2.12)

θε −Θ ∈ H2
0 (Ω), ε

∫
Ω

∆θε∆ξdX +
∫

Ω

κ(θε)∇θε · ∇ξdX

= −
∫

Ω

hερ(θε)∇hε · ∇ξdX +M

∫
Ω

hε
∂vε

∂x
ξdX −

∫
Ω

vεη(θε)∇vε · ∇ξdX

+
∫

Ω

vε

(
M
∂hε

∂x
+ k

)
ξdX, ∀ξ ∈ H2

0 (Ω).

(2.13)

Lemma 2.2. Let (vε, hε, θε) be a solution to Pbε. Then the following “a priori”
estimates hold:

‖vε‖H1
0 (Ω) ≤ C, (2.14)

‖hε‖H1
0 (Ω) ≤ C, (2.15)

‖θε −Θ|H1
0 (Ω) ≤ C, (2.16)

ε‖∆θε‖2
L2(Ω) ≤ C, (2.17)

max
Ω

|vε| ≤ C, max
Ω

|hε| ≤ C (2.18)

where the C’s denote constants, generally different, depending on η0, ρ0, κ0, Ω, M
and k, but not on ε

Proof. Setting ϕ = vε in (2.11) and ζ = hε in (2.12), we have∫
Ω

η(θε)|∇vε|2dX −M

∫
Ω

∂hε

∂x
vεdX = k

∫
Ω

vεdX,∫
Ω

ρ(θε)|∇hε|2dX +M

∫
Ω

∂hε

∂x
vεdX = 0.

Adding and using the Poincarè inequality we obtain (2.14) and (2.15) by (2.10).
Applying Lemma 2.1 we get (2.18). Choosing ξ = θε −Θ in (2.13) we have

ε

∫
Ω

∆θε∆(θε −Θ)dX +
∫

Ω

κ(θε)∇θε · ∇(θε −Θ)dX

= −
∫

Ω

hερ(θε)∇hε · ∇(θε −Θ)dX +M

∫
Ω

hε
∂vε

∂x
(θε −Θ)dX

−
∫

Ω

vεη(θε)∇vε · ∇(θε −Θ)dX +
∫

Ω

vε

(
M
∂hε

∂x
+ k

)
(θε −Θ)dX.

Using repeatedly the Hölder inequality and (2.10), ( 2.14), (2.15) we obtain

ε‖∆θε‖2
L2(Ω) + ‖∇θε‖2

L2(Ω) ≤ C
(
‖∆θε‖L2(Ω) + ‖∇θε‖L2(Ω) + 1

)
(2.19)

from which (2.16) and (2.17) follow. �
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We recall the classical Leray-Schauder fixed point theorem.

Theorem 2.3. Let B be a Banach space and T a continuous and compact mapping
from B × [0, 1] into B such that T (w; 0) = ū for all w ∈ B. If all solutions of the
equation

w = T (w;λ), w ∈ B, λ ∈ [0, 1]

are bounded in B by a constant not depending on λ, then T (w, 1) has a fixed point
in B.

Lemma 2.4. For every ε > 0 there exists at least one solution to Pbε.

Proof. We omit the dependence of ε in vε, hε and θε. Let B = H1
0 (Ω) and define

θ = T (w, λ), T : B × [0, 1] → B

via the linear problem

v ∈ H1
0 (Ω), ∇ · (η(λw)∇v) +M

∂h

∂x
= −k, (2.20)

h ∈ H1
0 (Ω), ∇ · (ρ(λw)∇h) +M

∂v

∂x
= 0, (2.21)

θ −Θ ∈ H2
0 (Ω), ε∆∆θ +∇ · (κ(λw)∇θ)

= ∇ · (hρ(λw)∇h) +Mh
∂v

∂x
+∇ · (vη(λw)∇v) + kv +Mv

∂h

∂x
.

(2.22)

Given w ∈ B the system (2.20), (2.21) is solvable by Lemma 2.1. Moreover,
the right hand side of (2.22) defines a bounded linear functional in H2(Ω). Hence
(2.22) is solvable with respect to θ and the mapping (w, λ) → θ is well-defined. Let
(v̄, h̄, θ̄) solve

v̄ ∈ H1
0 (Ω), ∇ · (η(0)∇v̄) +M

∂h̄

∂x
= −k,

h̄ ∈ H1
0 (Ω), ∇ · (ρ(0)∇h̄) +M

∂v̄

∂x
= 0,

θ̄ −Θ ∈ H2
0 (Ω), ε∆∆θ̄ +∇ · (κ(0)∇θ̄)

= ∇ · (h̄ρ(0)∇h̄) +Mh̄
∂v̄

∂x
+∇ · (v̄η(0)∇v̄) + kv̄ +Mv̄

∂h̄

∂x
.

We have T (w, 0) = θ̄ for all w ∈ B. To prove the continuity of T (w, λ), suppose
(wi, λi) → (w∗, λ∗) in B × [0, 1] and

θi = T (wi, λi), θ∗ = T (w∗, λ∗).

Let (vi, hi) ∈ H1
0 (Ω)×H1

0 (Ω) be solution of the system∫
Ω

η(λiwi)∇vi · ∇ϕdX −M

∫
Ω

∂hi

∂x
ϕdX = k

∫
Ω

ϕdX, for all ϕ ∈ H1
0 (Ω), (2.23)∫

Ω

ρ(λiwi)∇hi · ∇ζdX −M

∫
Ω

∂vi

∂x
ζdX = 0, for all ζ ∈ H1

0 (Ω), (2.24)

and (v∗, h∗) of the system∫
Ω

η(λ∗w∗)∇v∗ · ∇ϕdX −M

∫
Ω

∂h∗

∂x
ϕdX = k

∫
Ω

ϕdX, for all ϕ ∈ H1
0 (Ω),

(2.25)
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ρ(λ∗w∗)∇hi · ∇ζdX −M

∫
Ω

∂v∗

∂x
ζdX = 0, for all ζ ∈ H1

0 (Ω). (2.26)

Choosing ϕ = vi − v∗ in (2.23) and (2.25) and ζ = hi − h∗ in (2.24) and (2.26) we
have, after simple calculations,

‖vi − v∗‖2
H1

0 (Ω) + ‖hi − h∗‖2
H1

0 (Ω)

≤ C
[
‖η(wiλi)− η(λ∗w∗)‖L∞(Ω)‖vi‖H1

0 (Ω)‖vi − v∗‖H1
0 (Ω)

+ ‖ρ(wiλi)− ρ(λ∗w∗)‖L∞(Ω)‖hi‖H1
0 (Ω)‖hi − h∗‖H1

0 (Ω)

]
.

(2.27)

Hence
vi → v∗, hi → h∗ in H1

0 (Ω). (2.28)
Let θi and θ∗ be given respectively by

θi −Θ ∈ H2
0 (Ω), ε

∫
Ω

∆θi∆ξdX +
∫

Ω

κ(θi)∇θi · ∇ξdX

= −
∫

Ω

hiρ(λiwi)∇hi · ∇ξdX + k

∫
Ω

viξdX +M

∫
Ω

hi
∂vi

∂x
ξdX

+M

∫
Ω

vi
∂hi

∂x
ξdX −

∫
Ω

viη(λiwi)∇vi · ∇ξdX, for all ξ ∈ H2
0 (Ω),

(2.29)

θ∗ −Θ ∈ H2
0 (Ω), ε

∫
Ω

∆θ∗∆ξdX +
∫

Ω

κ(θ∗)∇θ∗ · ∇ξdX

= −
∫

Ω

h∗ρ(λ∗w∗)∇h∗ · ∇ξdX + k

∫
Ω

v∗ξdX +M

∫
Ω

h∗
∂v∗

∂x
ξdX

+M

∫
Ω

v∗
∂h∗

∂x
ξdX −

∫
Ω

v∗η(λ∗w∗)∇v∗ · ∇ξdX, for all ξ ∈ H2
0 (Ω).

(2.30)

By difference from (2.29) and (2.30), setting ξ = θi − θ∗ in the resulting equation,
using the Poincare inequality and the Sobolev imbedding theorem we have

ε‖∆(θi − θ∗)‖2
L2(Ω) + ‖∇(θi − θ∗)‖2

L2(Ω)

≤ C
[
‖hi − h∗‖H1

0 (Ω) + ‖vi − v∗‖H1
0 (Ω) + ‖ρ(λiwi)− ρ(λ∗w∗)‖L∞(Ω)

+ ‖η(λiwi)− η(λ∗w∗)‖L∞(Ω)

]
‖∆(θi − θ∗)‖L2(Ω).

(2.31)

From (2.31) the continuity of T (w, λ) easily follows. The mapping T (w, λ) is also
compact, since in dimension 2 bounded subsets of H2

0 (Ω) are compact in H1
0 (Ω).

Finally, repeating with minor changes the proof of Lemma 2.2, we can prove that
all solutions of the equation

θ = T (θ, λ)
are bounded in the B-norm by a constant not depending on λ. Hence problem Pbε
has at least one solution by the Leray-Schauder principle. �

Theorem 2.5. There exists at least one weak solution to problem PbP .

Proof. By (2.14), (2.15) and (2.16) we can extract from {vε}, {hε} and {θε} subse-
quences (not relabelled) such that

vε → v weakly in H1
0 (Ω), hε → h weakly in H1

0 (Ω),

θε → θ weakly in H1(Ω)
(2.32)
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and

θε → θ in L2(Ω), κ(θε) → κ(θ) in Lp(Ω),

ρ(θε) → ρ(θ) in Lp(Ω), η(θε) → η(θ) in Lp(Ω), 1 ≤ p <∞.
(2.33)

Letting ε → 0 in (2.11) and (2.12), we have (2.7) and (2.8). It remains to pass to
the limit for ε→ 0 in (2.13). By (2.17), the first term in the left hand side of (2.13)
vanishes when ε→ 0. Moreover, by (2.32), (2.33),∫

Ω

κ(θε)∇θε · ∇ξdX →
∫

Ω

κ(θ)∇θ · ∇ξdX.

To pass to the limit in the first term in the right hand side of (2.13) we write∫
Ω

[
hερ(θε)∇hε − hρ(θ)∇h

]
· ∇ξdX = I1 + I2 + I3

where

I1 =
∫

Ω

[
(hε − h)ρ(θε)∇hε

]
·∇ξdX, I2 =

∫
Ω

[
h
(
ρ(θε)− ρ(θ)

)
∇hε

]
· ∇ξdX,

I3 =
∫

Ω

hρ(θ)(∇hε −∇h) · ∇ξdX.

We have

|I1| ≤ ρ1‖hε − h‖L2(Ω)‖∇hε‖L2(Ω)‖∇ξ‖L∞(Ω),

|I2| ≤ ‖h‖Lp(Ω)‖ρ(θε)− ρ(θ)‖Lp(Ω)‖∇hε‖L2(Ω)‖∇ξ‖L∞(Ω), 1/p+ 1/q + 1/2 = 1.

Moreover, by (2.32) and (2.33),

I3 =
∫

Ω

hρ(θ)
(
∇hε −∇h) · ∇ξdX → 0, as ε→ 0.

The remaining terms in the right hand side of (2.13) can be dealt with similarly.
In the end we obtain (2.9). Thus problem PbP has a weak solution. �

3. The Couette Case

Only minor changes are needed to prove that also problem PbC has a solution.
Uniqueness seems to be, in general, an open question for both problems PbP and
PbC . However, in special cases existence, non-existence and uniqueness can be
proved for problem PbC , even suppressing the hypothesis of ellipticity (2.10).

Theorem 3.1. Suppose that in problem PbC : M = 0, Θb = 0, κ(θ) > 0, ρ(θ) > 0,
η(θ) > 0, ρ(θ) = γη(θ), γ > 0. Assume that∫ ∞

0

κ(t)
ρ(t)

dt = l <∞. (3.1)

Then, if 1 + γV 2

H2 < l problem PbC has one and only one solution. If l ≤ 1 + γV 2

H2

problem PbC has no solution. If, on the contrary,∫ ∞

0

κ(t)
ρ(t)

dt = ∞,

then problem PbC has one and only one solution.
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The proof is based on the transformation

Ψ =
1
2
h2 +

γ

2
v2 +

∫ θ

0

κ(t)
ρ(t)

dt, (3.2)

which gives the equations

∇ · (ρ(θ)∇Ψ) = 0, (3.3)

∇ · (ρ(θ)∇v) = 0, (3.4)

∇ · (ρ(θ)∇h) = 0, (3.5)

and the boundary conditions

Ψ = 0 on Γ1, Ψ =
1
2
H2 +

γ

2
V 2 on Γ2,

v = 0 on Γ1, v = V on Γ2,

h = 0 on Γ1, h = H on Γ2.

The system of the three equations (3.3), (3.4), (3.5), together with the functional
relation (3.2), can be reduced, quite surprisingly, to the linear Dirichlet problem

∆Φ = 0 in Ω, Φ = 0 on Γ1, Φ = 1 on Γ2.

For more details, we refer the reader to [1].
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