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THE FIRST STEP NORMALIZATION FOR HAMILTONIAN
SYSTEMS WITH TWO DEGREES OF FREEDOM OVER

ORBIT CYLINDERS

GUILLERMO DÁVILA-RASCÓN, YURI VOROBIEV

Abstract. The near integrability property is studied for a class of perturbed

Hamiltonian systems with two degrees of freedom on a phase space whose
symplectic form depends non-uniformly on a small parameter.

1. Introduction

The recognition of a Hamiltonian system as a nearly integrable system is the first
step of the normalization procedures in the framework of KAM theory or averaging
methods. The question on the near integrability arises in the study of Hamiltonian
dynamics near an invariant non-zero dimensional submanifold, typically, a periodic
trajectory or a quasi-periodic torus (see, for example [2, 3, 4, 5, 6, 12]). In the
present paper, we discuss the first step normalization for Hamiltonian systems with
2-degrees of freedom in the following setting which generalizes the case of a 2-
submanifold of periodic trajectories (an orbit cylinder) [2, 3, 6, 13].

Let M = (R1×S1)×R2 be the product manifold equipped with symplectic form
non-uniformly depending on a parameter ε > 0,

Ωε = ds ∧ dϕ + ε dp ∧ dq, (1.1)

where (s, ϕ mod 2π) ∈ R1 × S1 and (p, q) ∈ R2. Consider a Hamiltonian system
on (M,Ωε) given by a smooth Hamiltonian of the form

Hε = f(s) + ε F (s, ϕ, p, q). (1.2)
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The corresponding equations of motion read

ṡ = −ε
∂F

∂ϕ
, (1.3)

ϕ̇ = ω1(s) + ε
∂F

∂s
, (1.4)

ṗ = −∂F

∂q
, (1.5)

q̇ =
∂F

∂p
, (1.6)

where ω1(s) = ∂f(s)/∂s > 0. In general, this system is not completely integrable
and our point is to study (1.3)-(1.6) for small ε, in the context of the Hamiltonian
perturbation theory.

We remark that an alternative setting can be given on the standard phase space
(R4,dp1∧dq1+dp2∧dq2) by considering the following class of Hamiltonian systems
on R4:

H = H0(p1, q1) + εH1(p1, q1, p2/εµ, q2/ε1−µ), (1.7)
where µ ∈ [0, 1]. If an open domain C ⊂ R2 is foliated by periodic trajectories of
H0, then as ε → 0, the behavior of H in a region {(p1, q1) ∈ C, p2 ∼ εµ, q2 ∼ ε1−µ}
is described by a system like (1.3)-(1.6). In particular, when µ = 1/2 and H1 is
quadratic in p2 and q2, the Hamiltonian system H is independent of ε and has an
orbit cylinder C × {0}.

Let Xε = XHε be the Hamiltonian vector field of (1.3)-(1.6) viewed as a per-
turbed dynamical system on M . Then, Xε = X0 + εW , where

X0 = ω1(s)
∂

∂ϕ
+

∂F

∂p

∂

∂q
− ∂F

∂q

∂

∂p
, (1.8)

corresponds to the unperturbed dynamics and

W = −∂F

∂ϕ

∂

∂s
+

∂F

∂s

∂

∂ϕ
, (1.9)

is a perturbation vector field. We assume that unperturbed system X0 admits
an additional integral of motion besides the trivial one, s. This means that the
family of time-dependent Hamiltonian systems on R2 associated to X0 is completely
integrable. Nevertheless, in the context of near integrability of the perturbed system
Xε, the main difficulty is that the vector field X0 (as an autonomous system) is
not Hamiltonian relative to the original symplectic structure Ωε. This effect comes
from the singular dependence of Ωε on the parameter ε (Ωε becomes degenerate at
ε = 0). The idea is to search for a symplectic mapping Υε (smoothly depending on
ε) from M to a canonical model phase space N such that the transformed perturbed
system (Υε)∗Hε is ε2-close to a completely integrable Hamiltonian system on N .
The existence of such a twisting map can be explained by the following observation
[7, 8]: the unperturbed system X0 is, in fact, Hamiltonian in a “deformed” non-
canonical symplectic structure (see also [6, 13]). Here, we show that the normalizing
transformation is represented as the composition Υε = Ψε ◦ T of an ε-independent
mapping T and a near identity transformation Ψε. The mapping T transforms X0

to a system with parallel dynamics but it is is not symplectic. The mapping Ψε is
defined as the time-1 flow of a non-autonomous system and gives a near identity
isomorphism between the transformed symplectic form T∗Ωε and the canonical
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symplectic structure on N . Here we apply a parameter-dependent version of the
Moser homotopy method [9]. In general, the transformation Ψε is not infinitesimal,
except for some particular cases, for example, when F in (1.2) is independent of s
(see [2, 3, 5]). In the linear case, when F is quadratic in p, q, the unperturbed vector
field X0 describes the linearized dynamics at the orbit cylinder and the existence
of an additional integral of motion is provided by the stability property of X0.
The mapping T corresponds to the reducibility transformation in the sense of the
Floquet theory for linear periodic Hamiltonian systems [14].

2. Main Results

On the phase space M = (R1 × S1)× R2, consider the dynamical system of the
unperturbed vector field X0:

ṡ = 0, (2.1)

ϕ̇ = ω1(s), (2.2)

ṗ = −∂F

∂q
(s, ϕ, p, q), (2.3)

q̇ =
∂F

∂p
(s, ϕ, p, q). (2.4)

Denote by π : M → R1 × S1 the canonical projection onto the first factor and
consider M as the total space of the trivial symplectic vector bundle π over R1×S1

with fiberwise symplectic structure dp ∧ dq. The base is trivially foliated by the
periodic orbits of subsystem (2.1),(2.2) which is viewed as a Hamiltonian system
with one degree of freedom. Geometrically, system (2.1)-(2.4) belongs to the class of
projectable systems, that is, the trajectories of X0 project under π to the periodic
orbits of (2.1),(2.2). To each function G on M , one can associate the vertical
Hamiltonian vector field

VG =
∂G

∂p

∂

∂q
− ∂G

∂q

∂

∂p
. (2.5)

It is clear that the trajectory of VG passing through a point m ∈ M belongs to the
fiber over π(m). In other words, we can think of VG as a family of autonomous
Hamiltonian system on R2 whose Hamiltonian Gs,ϕ depends parametrically on
(s, ϕ) ∈ R1 × S1.

We assume that the following integrability hypothesis holds:
(IH) There exists an open domain M ⊂ M and a smooth integral of motion

G : M→ R of X0,

LX0G ≡ ω1
∂G

∂ϕ
+

∂F

∂p

∂G

∂q
− ∂F

∂q

∂G

∂p
= 0, (2.6)

such that M is foliated by the periodic trajectories of VG, M∩ π−1(b) is
connected for every b = (s, ϕ) and

π(M) = ∆× S1, (2.7)

where ∆ ⊂ R is an open interval.
Consider the second product manifold

N = (R1 × S1)× (R1 × S1) =
{
(s1, ϕ1 mod 2π, s2, ϕ2 mod 2π)

}
, (2.8)
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with natural projection ν : N → R1 × S1 onto the first factor. Then, N is the
total space of the trivial symplectic bundle with fiberwise symplectic structure
ds2 ∧ dϕ2. Therefore, we have two trivial symplectic bundles π and ν over one
and the same base R1 × S1. We say that a subset N ⊂ N is a simple toroidal
domain if ν(N ) = ∆ × S1 and ι(N ) = DN × T2, where D = DN ⊂ R2 is an
open, connected and simply connected subset. Here ι : N → R2 × T2 denotes the
canonical identification, ι(s1, ϕ1, s2, ϕ2) = (s1, s2, ϕ1, ϕ2).

Proposition 2.1 (Reducibility). There exist a simple toroidal domain N ⊂ N and
a fibered diffeomorphism T : M→N over ∆× S1,

T (s, ϕ, p, q) =
(
s, ϕ, Ts,ϕ(p, q)

)
, (2.9)

which preserves the fiberwise symplectic structures,

(Ts,ϕ)∗dp ∧ dq = ds2 ∧ dϕ2, (2.10)

and such that the dynamical system of the push-forward T∗X0 takes the form

ṡ1 = 0, (2.11)

ϕ̇1 = ω1(s1), (2.12)

ṡ2 = 0, (2.13)

ϕ̇2 = ω2(s1, s2), (2.14)

where ω2 = ω2(s1, s2) is a smooth function on DN .

As a consequence, we get that the domain M is trivially foliated by 2-tori

Λc1,c2 = T −1(T2
c1,c2

), (2.15)

where (c1, c2) runs over D and T2
c1,c2

= {s1 = c1, s2 = c2}. Each torus Λc1,c2 is the
level set of the integrals of motion s and G, carrying a quasi-periodic motion along
the trajectories of X0 with frequencies ω1(c1) and ω2(c1, c2). However, if ∂G/∂ϕ 6=
0, then Λc1,c2 are not Lagrangian tori with respect to the symplectic structure
(1.1). An interpretation of Λc1,c2 as Liouville tori is related with a Hamiltonian
formulation for (2.1)-(2.4) in a non-canonical symplectic structure on M [7, 8].
In Section 3, we give a construction of T which is based on the Poincaré–Cartan
invariant. In Section 5, we show that in the particular case when X0 corresponds
to the linearized dynamics around the orbit cylinder, the mapping T is just the
Floquet–Lyapunov transformation [11, 14].

Fix a diffeomorphism T in Proposition 2.1 and consider N as a model phase
space equipped with non-uniform canonical symplectic form

Ω̃ε = ds1 ∧ dϕ1 + ε ds2 ∧ dϕ2. (2.16)

The following observation says that the reducibility map is not symplectic.

Proposition 2.2. The original symplectic structure Ωε (1.1) is transformed under
T to the following non-canonical symplectic form on N ,

T∗Ωε = Ω̃ε − ε dQ, (2.17)

where
Q = Q1(s1, ϕ1, s2, ϕ2) ds1 + Q2(s1, ϕ1, s2, ϕ2) dϕ1, (2.18)

is a horizontal 1-form.
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The 2-form (2.17) gives a special deformation of Ω̃ε and belongs to the class of the
so-called weak coupling of symplectic structures [9]. To complete the normalization
procedure, we search for an isomorphism between T∗Ωε and Ω̃ε in the class of near
identity transformations.

Given ∆ and M in (IH), we say that another open domain M0 ⊂ M , also
satisfying the hypothesis (IH), is admissible if (2.7) holds for a certain open interval
∆0 such that ∆0 ⊂ ∆, the closure M0 is compact and M0 ⊂ M. It is clear that
an admissible domain always exists.

Now, we formulate our main result.

Theorem 2.3. Let M0 ⊂ M be an admissible domain and N0 = T (M0). For
sufficiently small ε ≥ 0, there exists a diffeomorphism Ψε : N0 → N onto its
image, smoothly depending on ε, with Ψ0 = id and such that

Υε = Ψε ◦ T , (2.19)

is a symplectic map,

(Υε)∗Ωε = Ω̃ε, (ε > 0), (2.20)

transforming the original Hamiltonian system (1.3)-(1.6) into the normal form,

H̃ε := (Υε)∗Hε = f(s1) + ε h(s1, s2) + O(ε2), (2.21)

where
∂h

∂s2
(s1, s2) = ω2(s1, s2). (2.22)

In Section 4, the near identity transformation Ψε is constructed by means of a
parameter dependent version of the Moser homotopy method [9]. The transformed
perturbed Hamiltonian H̃ε is ε2-close to the Hamiltonian H̃

(0)
ε = f(s1)+ ε h(s1, s2)

which defines a completely integrable Hamiltonian system on (N, Ω̃ε). The in-
variant tori T2

c1,c2
of system (2.11)-(2.14) are now the Liouville tori of H̃

(0)
ε which

carry the quasi-periodic motion with deformed frequencies ω1(c1)+ε ∂h(c1, c2)/∂s1

and ω(c1, c2). If the frequencies satisfy some appropriate nondegeneracy condition
(for example, in the sense of Kolmogorov or Rüssmann), then one can apply the
KAM type results [4] to state the persistence of quasi-periodic tori Υ−1

ε (T2
c1,c2

) for
perturbed system (1.3)-(1.6) as ε → 0.

Example 2.4. On the phase space (R4 = {(y, x, p, q)},Ωε = dy ∧ dx + ε dp ∧ dq),
consider the perturbed Hamiltonian system

Hε =
y2

2
+ U0(x) + ε

(p2

2
+

U ′
0(x)
2x

q2 +
1
x2

U1

( q

x

) )
, (2.23)

where U0, U1 are arbitrary smooth functions. Then, the corresponding unperturbed
system

ẏ = −U ′
0(x), (2.24)

ẋ = y, (2.25)

ṗ = −U ′
0(x)
x

q − 1
x3

U ′
1

( q

x

)
, (2.26)

q̇ = p, (2.27)
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has the following integral of motion, [16, 17],

G =
1
2

(xp− yq)2 + U ′
1

( q

x

)
. (2.28)

Suppose that the potentials U0 and U1 have local nondegenerate minima at some
points x0 and z0, respectively. In this case, under passing to the standard action-
angle variables (y, x) 7→ (s, ϕ) around (0, x0) associated with (2.24), (2.25), system
(2.24)-(2.27) takes the form (2.1)-(2.4). Moreover, for a fixed (y, x), the equilibrium
(yz0, xz0) of VG is surrounded by periodic trajectories. Therefore, the integral of
motion G in (2.28) satisfies the condition (IH) and we can apply Theorem 2.3.

In the linear case, when F in (1.2) is quadratic in p, q, the integrability hypoth-
esis holds if the unperturbed system X0 is strongly stable. The linear version of
Theorem 2.3 is discussed in Section 5.

3. Reducibility

Here we describe an algorithm for the construction of the reducibility transfor-
mation T in Proposition 2.1, assuming that hypothesis (IH) holds and the corre-
sponding data (∆,M, G) are given.

Consider the vector field X0 of system (2.1)-(2.4) which can be rewritten in the
form

X0 = ω1
∂

∂ϕ
+ VF , (3.1)

where VF is the vertical Hamiltonian vector field given by (2.5). Then, X0 has
two integrals of motion, namely, s and G. Let J : M → R2 be the correspond-
ing “momentum” map, J(s, ϕ, p, q) =

(
s,G(s, ϕ, p, q)

)
. It follows from (IH) that(

∂G
∂p , ∂G

∂q

)
6= 0 on M and hence, J is a surjective submersion onto its image. More-

over, M is foliated by the compact connected 2-manifolds

Λξ = J−1(ξ),
(
ξ ∈ J(M)

)
. (3.2)

We have also the following properties of vector fields X0 and VG:
(a) X0 and VG are linear independent on M;
(b) VG is tangent to each fiber Λξ;
(c) X0 and VG commute,

[X0, VG] = VLX0G = 0. (3.3)

It follows from here [1, 15] that every level set Λξ is diffeomorphic to the 2-torus
and carries a quasi-periodic motion along the trajectories of X0. In particular, X0

is a complete vector field on M. However, as we mentioned above, X0 is not Hamil-
tonian relative to the original symplectic structure and we can not directly apply
the Arnold-Liouville theorem on the action-angle variables to construct T . Our ar-
gument is based on the Poincaré–Cartan invariant for time-dependent Hamiltonian
systems.

Denote by FltX0
: M → M the flow of X0. For a fixed s ∈ ∆, one can as-

sociate to X0 the time-dependent Hamiltonian system on R2 with Hamiltonian
F (s, ω1(s) t, p, q). Then, we have the following fact [1, 15]: for any closed curve
Γ ⊂ {s} × S1 × R2 transversal to X0, the integral∮

Γt

[
p dq − F (s, ϕ, p, q)

dϕ

ω1(s)

]
= const, (3.4)
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that is, does not depend on t. Here Γt = FltX0
(Γ).

For every (s, ϕ) ∈ ∆ × S1, denote by Gs,ϕ : R2 → R the function given by
Gs,ϕ(p, q) = G(s, ϕ, p, q). Let π−1(s, ϕ) = {(s, ϕ)} × R2 be the fiber of π over
(s, ϕ). We have

π−1(s, ϕ) ∩M = {(s, ϕ)} × Us,ϕ, (3.5)
where Us,ϕ is an open connected domain in R2. Observe that under varying (s, ϕ),
the set of values of Gs,ϕ on Us,ϕ is independent of ϕ. This follows from (3.3) and
the property that the flow FltX0

preserves the fibers of π. Taking into account that
G can be renormalized by multiplication for any nonzero function of s, without lost
of generality, we may assume that

Gs,ϕ(Us,ϕ) = (E1, E2), (3.6)

for some constants E1 < E2.
Fix (s, ϕ) and consider the Hamiltonian system on R2 associated with the re-

striction of the vertical field VG to the fiber over (s, ϕ):
dp

dt
= −∂Gs,ϕ

∂q
, (3.7)

dq

dt
=

∂Gs,ϕ

∂p
. (3.8)

By the hypothesis, the level set

γs,ϕ(E) = {(p, q) ∈ Us,ϕ : Gs,ϕ(p, q) = E}, (3.9)

is a periodic trajectory of system (3.7), (3.8) for every E ∈ (E1, E2). It is clear
that Us,ϕ is trivially foliated by γs,ϕ(E) over (E1, E2). Thus, one can introduce the
standard action-angle variables on Us,ϕ associated to this foliation. The point is to
choose these coordinates to be smooth functions of the parameters (s, ϕ).

Let g : M → (∆ × S1) × (E1, E2) be the surjective submersion defined as g =
π ×G. Then, the fibers

Γs,ϕ(E) := g−1(s, ϕ, E) ≡ {(s, ϕ)} × γs,ϕ(E), (3.10)

are just the periodic trajectories of VG in M. It follows from (3.3) that the flow
FltX0

is also a fiber preserving map with respect to g,

FltX0
(Γs,ϕ(E)) = Γs,ϕ+ω1(s)t(E). (3.11)

Putting Γ = Γs,ϕ(E) into (3.4) and using (3.11), we get that the action along
γs,ϕ(E) is independent of ϕ,

a(s,E) =
1
2π

∮
γs,ϕ(E)

p dq, (3.12)

and defines a smooth function a : ∆× (E1, E2) → R. The period of γs,ϕ(E) is given
by

T (s,E) =
∂a

∂E
(s,E). (3.13)

Let us define
A := a ◦ J, (3.14)

or, equivalently, A(s, ϕ, p, q) = a(s,G(s, ϕ, p, q)). It is clear that A is an integral
of motion of X0 which represents a parameter-dependent action variable of (3.7),
(3.8). The construction of the corresponding angle variable (smoothly depending
on s and ϕ) is related with the existence of a global section of the fibration g.
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Lemma 3.1. The domain M is trivially fibered by periodic trajectories Γs,ϕ(E)
of VG, that is, there exists a smooth section L : (∆ × S1) × (E1, E2) → M of g,
g ◦ L = id.

Proof. Let g0 : M0 → ∆ × (E1, E2) be the restriction of g to the slice M0 =
M ∩ {ϕ = 0} which is a contractible open subset. Then, there exists a smooth
section L0 of g0, L0(s,E) ∈ Γs,0(E). To extend L0 to the whole M, let us consider
a vector field on M of the form

Y =
1
ω1

X0 −
τ ◦ J

2π
VG,

Here τ is a smooth function on ∆× (E1, E2) which is defined in the following way.
Fix (s,E) and consider the 2-torus Λs,E = J−1(s,E). Then, Λs,E is the disjoint
union of the periodic trajectories of VG,

Λs,E = ∪ϕ∈(0,2π]Γs,ϕ(E).

Pick a point m = (s, ϕ, p, q) ∈ Γs,ϕ(E). It follows from (3.11) that the trajectory
of X0 starting at m stays on Λs,E and meets again the trajectory Γs,ϕ(E) at the
point m̃ after the time t0 = 2π/ω1(s),

Flt0X0
(m) = m̃ ∈ Γs,ϕ(E).

Let τ be the time along the trajectory of VG from m to m̃, FlτVG
(m) = m̃. One

can show that τ does not depend on the choice of m and τ = τ(s,E) smoothly
varies with (s,E). Taking into account that [Y, VG] = 0, we derive the following
properties: (i) the flow of Y is 2π-periodic, and (ii) FltY (Γs,ϕ(E)) = Γs,ϕ+t(E).
Finally, we put

L(s, ϕ, E) = FlϕY (L0(s,E)). (3.15)

�

We will suppose that a section L in (3.15) is given. Consider now the prod-
uct manifold N = (R1 × S1) × (R1 × S1) with coordinates (s1, ϕ1 mod 2π, s2, ϕ2

mod 2π). Denote by E(s1, s2) the solution of the equation s2 = a(s1, E). Here
(s1, s2) runs over the open domain

D = ∪s1∈∆{s1} ×Ds1 ⊂ R2, (3.16)

where Ds1 = {s2 = a(s1, E), E ∈ (E1, E2)}. Define also

N := ∪s1∈∆{s1} × S1 ×Ds1 × S1. (3.17)

It is clear that N is a simple toroidal domain in N . Let Z = (T ◦ J/2π)VG be
the infinitesimal generator of the trivial S1-action on M whose orbits are just the
periodic trajectories Γs,ϕ(E). Using the section L and the flow of Z, we define a
mapping R : N →M as follows:

R(s1, ϕ1, s2, ϕ2) := Flϕ2
Z

(
L(s1, ϕ1, E(s1, s2))

)
. (3.18)

It follows that R is a fiber preserving diffeomorphism covering the identity, with
the inverse R−1 : M→N given by

s1 ◦ R−1 = s, ϕ1 ◦ R−1 = ϕ, (3.19)

s2 ◦ R−1 = A, ϕ2 ◦ R−1 = φ0. (3.20)
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Therefore, A = A(s, ϕ, p, q) and φ0 = φ0(s, ϕ, p, q) in (3.20) are the standard action-
angle coordinates of system (3.7), (3.8), parametrically depending on s and ϕ. It
follows that

{A,φ0} :=
∂A

∂p

∂φ0

∂q
− ∂A

∂q

∂φ0

∂p
= 1. (3.21)

Lemma 3.2. Under the coordinate change R−1 : (s, ϕ, p, q) 7→ (s1, ϕ1, s2, ϕ2), the
equations of motion of R∗X0 take the form

ṡ1 = 0, (3.22)

ϕ̇1 = ω1(s1), (3.23)

ṡ2 = 0, (3.24)

ϕ̇2 = Θ(s1, ϕ1, s2), (3.25)

where Θ is 2π-periodic function in ϕ1.

Proof. Equations (3.22)-(3.24) follow directly from the definition of R. The time
evolution of ϕ2 = φ0 ◦ R, according to (2.1)-(2.4) is given by ϕ̇2 = θ ◦ R, where

θ = ω1(s)
∂φ0

∂ϕ
+ {F, φ0}. (3.26)

Observe that
{θ, A} = 0. (3.27)

Indeed, combining relations (3.21) and (3.26) with the Jacobi identity for the
bracket {, }, we derive

{θ, A} = ω1

{∂φ0

∂ϕ
,A

}
+ {{F, φ0}, A}

= ω1

{∂φ0

∂ϕ
,A

}
− {{φ0, A}, F} − {{A,F}, φ0}

= ω1

{∂φ0

∂ϕ
,A

}
− {φ0, {F,A}}

= ω1

{∂φ0

∂ϕ
,A

}
+ ω1

{
φ0,

∂A

∂ϕ

}
= ω1

∂

∂ϕ
{φ0, A} = 0.

Now, from (3.27) we have

{θ, A} ◦ R = {θ ◦ R, A ◦ R} = {θ ◦ R, s2} = − ∂

∂ϕ2
(θ ◦ R) = 0,

and hence θ = Θ(s, ϕ, A(s, ϕ, p, q)), where Θ = Θ(s1, ϕ1, s2) is a smooth function
2π-periodic in ϕ1. �

Next, given an arbitrary smooth function χ = χ(s1, ϕ1, s2) which is 2π-periodic
in ϕ1, one can correct the angle variable as follows: φ0 7→ φ ≡ φ0 + χ ◦ A. Here,
A(s, ϕ, p, q) = (s, ϕ, A(s, ϕ, p, q)). It is clear that such a transformation preserves
bracket relation (3.21). In order to eliminate the dependence on ϕ1 in the right
hand side of (3.25), we have to put

χ = ω2(s1, s2)ϕ1 −
∫ ϕ1

0

Θ(s1, ϕ
′
1, s2) dϕ′1, (3.28)
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where

ω2(s1, s2) =
1
2π

∫ 2π

0

Θ(s1, ϕ1, s2) dϕ1, (3.29)

for (s1, s2) ∈ D. Summarizing, we get that the transformation T : M → N
satisfying the assertions of Proposition 2.1 is given by the formula

T (s, ϕ, p, q) =
(
s, ϕ, A(s, ϕ, p, q), φ(s, ϕ, p, q)

)
, (3.30)

with
A = a ◦ J, φ = ϕ2 ◦ R−1 + χ ◦ A. (3.31)

Remark 3.3. According to the standard time-dependent Hamiltonian approach
[1, 15], one can associate to X0 the s-parameter family of completely integrable
Hamiltonian systems F̃s = ω1(s) η +F (s, ϕ, p, q) on the phase space (R1×S1)×R2

with canonical symplectic structure dη ∧ dϕ + dp∧ dq. Then, functions A and φ in
(3.31) can be also derived form the action-angle variables associated to the trivial
foliation by the Liouville 2-tori {F̃s = const, Gs = const} (see, for example, [10]).

4. Constructing a Near Identity Transformation

Fix a section L in (3.15) and consider the corresponding reducibility map T :
M→ N given by (3.30). First we show that the symplectic structure Ωε is trans-
formed under T by the rule (2.17). Pick a (s, ϕ) ∈ R1 × S1 and consider the
connected open domain Us,ϕ ⊂ R2 in (3.5). Let Ts,ϕ : Us,ϕ → R1×S1 be a mapping
defined by Ts,ϕ(p, q) = T (s, ϕ, p, q). Introduce the following 1-form on Us,ϕ,

αs,ϕ = T ∗s,ϕ(s2 dϕ2)− p dq.

Denote by d1 and d2 the partial exterior derivatives on M along the factors R1×S1

and R2, respectively. Then, d = d1 + d2 and d1 ◦ d2 + d2 ◦ d1 = 0. The following
observation says that αs,ϕ is exact on Us,ϕ ⊂ R2 and there exists a primitive which
smoothly varies with (s, ϕ).

Lemma 4.1. There exists a smooth function K = K(s, ϕ, p, q) on M ⊂ (R1 ×
S1)× R2 such that

αs,ϕ = −d2K, (4.1)

on Us,ϕ.

Proof. For every (s, ϕ), the open domain Us,ϕ is trivially foliated by periodic orbits
γs,ϕ(E) over (E1, E2) and it is isomorphic to the 1-cylinder. Taking into account
that

T ∗s,ϕ(s2 dϕ2) = A(s, ϕ, p, q)
[∂φ

∂p
dp +

∂φ

∂q
dq

]
,

we get ∮
Γs,ϕ(E)

αs,ϕ =
∮

Γs,ϕ(E)

T ∗s,ϕ(s2 dϕ2)−
∮

Γs,ϕ(E)

p dq

=
∫ 2π

0

a(s,E) dφ− 2πa(s,E) = 0.
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This means that αs,ϕ is exact on Us,ϕ. Using the section L in (3.15) and fixing
E0 ∈ (E1, E2), we define the primitive −Ks,ϕ of αs,ϕ smoothly depending on s and
ϕ (as parameters) by

Ks,ϕ(p, q) = −
∫ (p,q)

(p0,q0)

αs,ϕ.

Here, the integral is taken over a curve joining any point (p, q) ∈ Us,ϕ and the point
(p0, q0) =

(
p0(s, ϕ, E0), q0(s, ϕ, E0)

)
given by

L(s, ϕ, E0) = {(s, ϕ)} ×
{(

p0(s, ϕ, E0), q0(s, ϕ, E0)
)}

.

�

We remark that in terms of A and φ, condition (4.1) is rewritten as follows

A d2φ = p dq − d2K, (4.2)

or, equivalently,
∂K

∂p
= −A

∂φ

∂p
,

∂K

∂q
= −A

∂φ

∂q
+ p.

Lemma 4.2. The pull-back of the symplectic form Ω̃ε under the transformation T
is

T ∗Ω̃ε = Ωε + ε dP, (4.3)

where P = P1 ds + P2 dϕ is a horizontal 1-form on M with coefficients

P1 = A
∂φ

∂s
+

∂K

∂s
, (4.4)

P2 = A
∂φ

∂ϕ
+

∂K

∂ϕ
. (4.5)

Proof. By (4.4), (4.5) we have

P = A d1φ + d1K. (4.6)

From (4.2) and (4.6) we derive that P = A dφ−p dq +dK, which implies (4.3). �

As a consequence of (4.3), we get formula (2.17), where Q = Q1 ds1 + Q2 dϕ1 is
a horizontal 1-form on N with coefficients

Q1 =
(
A

∂φ

∂s
+

∂K

∂s

)
◦ T −1, (4.7)

Q2 =
(
A

∂φ

∂ϕ
+

∂K

∂ϕ

)
◦ T −1. (4.8)

This proves Proposition 2.2.
Using (4.7), (4.8), one can show that Q1 and Q2 are related by the following

“zero curvature” equation [7, 13]:

∂Q2

∂s1
− ∂Q1

∂ϕ1
+ {Q1, Q2} = 0. (4.9)

Let us denote Ω̃ε
Q = Ω̃ε − ε dQ. It is clear that Ω̃ε

Q is nondegenerate on N for all
ε 6= 0. Observe also that Ω̃ε

Q admits the following representation:

Ω̃ε
Q = ds1 ∧ dϕ1 +

1
ε

Γ1 ∧ Γ2, (4.10)
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where

Γ1 = ε
[
ds2 +

∂Q1

∂ϕ2
ds1 +

∂Q2

∂ϕ2
dϕ1

]
, (4.11)

Γ2 = ε
[
dϕ2 −

∂Q1

∂s2
ds1 −

∂Q2

∂s2
dϕ1

]
. (4.12)

From (4.9), (4.10) we derive that the Poisson bracket on N corresponding to Ω̃ε
Q is

given by the relations:

{s1, ϕ1}N = 1, (4.13)

{s1, s2}N = −∂Q2

∂ϕ2
, {s1, ϕ2}N =

∂Q2

∂s2
, (4.14)

{ϕ1, s2}N =
∂Q1

∂ϕ2
, {ϕ1, ϕ2}N = −∂Q1

∂s2
, (4.15)

{s2, ϕ2}N =
1
ε

+
(
− ∂Q1

∂ϕ2

∂Q2

∂s2
+

∂Q1

∂s2

∂Q2

∂ϕ2

)
. (4.16)

Now we proceed to the construction of a near identity symplectomorphism Ψε

and a proof of Theorem 2.3. Consider the original perturbed system (1.3)-(1.6). The
push-forward of Hε by T gives a Hamiltonian system on (N , Ω̃ε

Q) with Hamiltonian
Hε ◦T −1 = f +ε F ◦T −1. By Proposition 2.1, the corresponding dynamical system
on N is of the form

ṡ1 = O(ε), (4.17)

ϕ̇1 = ω1(s1) + O(ε), (4.18)

ṡ2 = O(ε), (4.19)

ϕ̇2 = ω2(s1, s2) + O(ε), (4.20)

where ω2 is given by (3.29).
The function K is uniquely determined by (4.1) up to adding an arbitrary func-

tion depending on s1, ϕ1. This means that we have certain freedom in choosing the
1-form Q. To fix Q, we use the following criterion.

Lemma 4.3. One can choose Q in (4.7), (4.8) and a smooth function h = h(s1, s2)
on D such that

∂h(s1, s2)
∂s2

= ω2(s1, s2), (4.21)

and
F ◦ T −1 = −ω1 Q2 + h. (4.22)

Proof. Suppose we are given some Q in (4.7), (4.8) and h satisfying (4.21). Comput-
ing the components of the Hamiltonian vector field of Hε ◦ T −1 relative to bracket
(4.13)-(4.16) up to O(ε) and comparing with the right hand side of (4.17)-(4.20),
we obtain the following relationship between F , Q and h:

F ◦ T −1 = −ω1 Q2 + h + µ (4.23)

where µ = µ(s1, ϕ1) is a smooth function, 2π-periodic in ϕ1. Clearly, Q and h are
uniquely determined up to the transformations

h 7→ h + c1, Q 7→ Q + d1c2,
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for any smooth functions c1 = c1(s1) and c2 = c2(s1, ϕ1) = c2(s1, ϕ1 + 2π). To
eliminate µ in (4.23), we take

c1 =
1
2π

∫ 2π

0

µdϕ1, c2 =
1
ω1

( ∫ ϕ1

0

µdϕ′1 − ϕ1c1

)
.

�

We shall assume that h and Q satisfying (4.21) and (4.22) are given. Introduce
the following curve of closed 2-forms [0, 1] 3 λ 7→ σε

λ joining Ω̃ε
Q and Ω̃ε:

σε
λ = (1− λ) Ω̃ε

Q + λ Ω̃ε

= ds1 ∧ dϕ1 + ε ds2 ∧ dϕ2 − ε (1− λ) dQ.

Using (4.9), by straightforward computations we show that σε
λ has the representa-

tion
σε

λ = m ds1 ∧ dϕ1 +
1
ε

Γ1
λ ∧ Γ2

λ, (4.24)

where
m = 1− λ (1− λ)ε

(∂Q2

∂s1
− ∂Q1

∂ϕ1

)
,

and 1-forms Γ1
λ, Γ2

λ are defined by formulas (4.11), (4.12) under replacing Q by
(1−λ)Q. Let M0 ⊂M be an admissible domain N0 = T (M0) ⊂ N . Pick another
open domain W in N such that N0 ⊂ W and W is compact. Then, the functions
Q1 and Q2 are bounded on W and

δ0 =
1

4 maxW |∂Q2
∂s1

− ∂Q1
∂ϕ1

|
> 0.

From here and (4.24), we derive the key property.

Lemma 4.4. For any ε ∈ (0, δ0) and λ ∈ [0, 1] the 2-form σε
λ is nondegenerate on

W.

Therefore, for every ε ∈ (0, δ0), we have the family {σε
λ}λ∈[0,1] of symplectic

structures on W. According to a general scheme [9], an isomorphism between σε
λ

and σε
0 is given by the flow FlλZλ

of a time-dependent vector field Zλ satisfying the
homological equation

LZλ
σε

λ −
dσε

λ

dλ
= 0.

In this case, (FlλZλ
)∗σε

λ = σε
0. By standard arguments, finding Zλ is reduced to

solving the algebraic equation
iZλ

σε
λ = Q. (4.25)

By (4.24), we derive that the dynamical system of the vector field Zλ satisfying
(4.25), is of the form

ds1

dλ
= − ε

m
Q2, (4.26)

dϕ1

dλ
=

ε

m
Q1, (4.27)

ds2

dλ
=

ε(1− λ)
m

[
Q2

∂Q1

∂ϕ2
−Q1

∂Q2

∂ϕ2

]
, (4.28)

dϕ2

dλ
=

ε(1− λ)
m

[
Q1

∂Q2

∂s2
−Q2

∂Q1

∂s2

]
, (4.29)
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Therefore, for every ε ∈ [0, δ0) we have a time-dependent vector field Zλ on W
which vanishes at ε = 0. From this property and the compactness of N0 it follows
that there is a δ1 ∈ (0, δ0) such that the flow FlλZλ

on N0 is well-defined for all
ε ∈ [0, δ1) and λ ∈ [0, 1].

We arrive at the following result.

Lemma 4.5. For every ε ∈ [0, δ1), the time-1 flow Ψε = Fl1Zλ
: N0 → N of system

(4.26)-(4.29) is a near identity symplectomorphism between Ω̃ε
Q and Ω̃ε,

Ψ0 = id and (Ψε)∗Ω̃ε
Q = Ω̃ε.

We remark that the inverse Ψ−1
ε is defined as the time-1 flow of the following

non-autonomous system

ds1

dλ
=

ε

m
Q2,

dϕ1

dλ
= − ε

m
Q1,

ds2

dλ
=

ελ

m

[
Q1

∂Q2

∂ϕ2
−Q2

∂Q1

∂ϕ2

]
,

dϕ2

dλ
=

ελ

m

[
Q2

∂Q1

∂s2
−Q1

∂Q2

∂s2

]
,

which corresponds to the vector field Z̃λ = −Z1−λ. Finally, using (4.21) and (4.22),
for H̃ε = Hε ◦ T −1, we compute

H̃ε ◦Ψ−1
ε = H̃ε − LZλ

H̃ε + O(ε2)

= f + ε (−ω1Q2 + h)− ε LZλ
f + O(ε2)

= f + ε h + O(ε2).

It follows that Υε = Ψε ◦ T satisfies (2.20), (2.21). This completes the proof of
Theorem 2.3.

Corollary 4.6. If F in (1.2) is independent of s, F = F (ϕ, p, q), then one can
choose Q1 = 0 and Q2 = Q2(ϕ1, s2, ϕ2). In this case, Ψε is an infinitesimal
transformation of the form

Ψε(s1, ϕ1, s2, ϕ2) =
(
s1 − ε Q2(ϕ1, s2, ϕ2), ϕ1, s2, ϕ2

)
.

Such type of transformations appear in the normalization of Hamiltonian systems
near an individual periodic trajectory [2, 3, 5].

5. The Linear Case

As an illustration of above results, we consider the case when the function F in
(1.2) is quadratic in coordinates p and q,

F =
1
2
(
w1p

2 + 2 w2pq + w3q
2
)
.
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Here wi = wi(s, ϕ) (i = 1, 2, 3) are smooth functions, 2π-periodic in ϕ. Then,
unperturbed system (2.1)-(2.4) takes the form

ṡ = 0, (5.1)

ϕ̇ = ω1(s), (5.2)(
ṗ
q̇

)
= J W (s, ϕ)

(
p
q

)
, (5.3)

where

W (s, ϕ) =
[
w1(s, ϕ) w2(s, ϕ)
w2(s, ϕ) w3(s, ϕ)

]
, J =

[
0 −1
1 0

]
.

Therefore, (5.1)-(5.3) corresponds to a s-parameter family of linear time-periodic
Hamiltonian systems on R2.

Recall that a linear periodic Hamiltonian system is said to be stable (in the sense
of Lyapunov) if all solutions are bounded for t ∈ (−∞,∞). Moreover, a stable linear
T -periodic Hamiltonian system is called strongly stable ( or parametrically stable),
if all sufficiently small linear T -periodic Hamiltonian perturbations of this system
are stable as well [11, 12, 14].

We assume that system (5.1)-(5.3) is strongly stable for every s ∈ ∆ = (∆1,∆2).
Let F(s, ϕ) be the fundamental solution of the corresponding linear problem,

ω1(s)
dF
dϕ

= J W (s, ϕ) F,

F(s, 0) = I.

Then, F is a Sp(1, R)-valued smooth function in s, ϕ with det F(s, ϕ) = 1. In
terms of the monodromy matrix M(s) = F(s, 2π), the strongly stability condition
is formulated as follows [11, 14]: −2 < trM(s) < 2, for s ∈ ∆. This means that
the spectrum of the the monodromy matrix M(s) is simple and belongs to the unit
circle in the complex plane, Spec M(s) = {exp(±2π i β(s))}, where β(s) > 0 is the
Floquet exponent.

Let us associate to system (5.1)-(5.3) the following Riccati equation for a C-
valued function (s, ϕ) 7→ D(s, ϕ) (depending on s as a parameter):

ω1
∂D

∂ϕ
+ w1D

2 + 2w2D + w3 = 0. (5.4)

Proposition 5.1. [11] If system (5.1)-(5.3) is strongly stable, then:
(a) There exists a unique smooth solution D(s, ϕ) = D1(s, ϕ)+ iD2(s, ϕ) of the

Riccati equation (5.4) satisfying the following properties

D2(s, ϕ) > 0, (5.5)

D2(s, ϕ + 2π) = D2(s, ϕ), (5.6)

for all s, ϕ. The Floquet exponent β = β(s) is smoothly varying with s and
has the representation

β(s) =
1

2πω1(s)

∫ 2π

0

w1(s, ϕ) D2(s, ϕ) dϕ.

(b) System (5.1)-(5.3) admits an integral of motion G : (∆ × S1) × R2 → R
given by

G(s, ϕ, p, q) =
1

2 D2

[
(p−D1 q)2 + (D2 q)2

]
. (5.7)
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The dynamical system of the vertical Hamiltonian vector field VG is easily inte-
grated by reducing it to the harmonic oscillator under the change of variables

p 7→ p−D1 q√
D2

, q 7→
√

D2 q

For every (s, ϕ) and E > 0, the level set γs,ϕ(E) of Gs,ϕ in R2 is an elliptic
trajectory of VG with period T = 2π. The action along γs,ϕ(E) is a(s,E) = E. Let
Us,ϕ be the open domain defined as the union of γs,ϕ(E), where E runs over (0,∞).
Then, the hypothesis (IH) is satisfied for the domain M = ∪(s,ϕ)∈∆×S1Us,ϕ and G

(5.7). Taking L(s, ϕ, E) =
(
s, ϕ,

√
2E D2(s, ϕ), 0

)
, and applying the algorithm for

constructing A and φ in Section 3, we get that the inverse T −1
s1,ϕ1

: (s2, ϕ2) 7→ (p, q)
of the reducibility transformation T (3.30) is given by

p =
√

2s2 D2 cos(ϕ2 + χ) + D1

√
2s2

D2
sin(ϕ2 + χ), q =

√
2s2

D2
sin(ϕ2 + χ).

Here D1 = D1(s1, ϕ1),D2 = D2(s1, ϕ1) and

χ(s1, ϕ1) =
1

ω1(s1)

[
ω2(s1)ϕ1 −

∫ ϕ1

0

w1(s1, ϕ
′
1) D2(s1, ϕ

′
1) dϕ′1

]
,

ω2(s1) = ω1(s1) β(s1) =
1
2π

∫ 2π

0

w1(s1, ϕ1) D2(s1, ϕ1) dϕ1.

It follows that

T (s, ϕ, p, q) =
(
s, ϕ, G(s, ϕ, p, q), arctg

( D2

(p/q)−D1

)
+ χ

)
, (5.8)

and N = T (M) = (∆ × S1) × (R1
+ × S1). It is easy to see that a function K in

(4.1), can be chosen in the form K = (p q/2)−D1 q2. Substituting the formulas for
K and T into (4.7), (4.8) gives

Q1 =
s2

2 D2

[
sin 2(ϕ2 + χ)

∂D2

∂s1
+ (1− cos 2(ϕ2 + χ))

∂D1

∂s1
+

∂χ

∂s1

]
, (5.9)

Q2 =
s2

2 D2

[
sin 2(ϕ2 + χ)

∂D2

∂ϕ1
+ (1− cos 2(ϕ2 + χ))

∂D1

∂ϕ1
+

∂χ

∂ϕ1

]
. (5.10)

Finally, we observe that if we take h(s1, s2) = s2 ω2(s1), then (4.22) holds. Fix
some E1 and E2 such that 0 < E1 < E2 < ∞, and consider the admissible domain
M0 which is the union of the open elliptic rings U0

s,ϕ = ∪E1<E<E2 γs,ϕ(E) in R2.
Then, according to Theorem 2.3, for small enough ε, the symplectomorphism Υε =
Ψε ◦ T : M0 → N transforms Hε into the normal form f(s1) + ε s2 ω2(s1) + O(ε2).
Here, T is the reducibility transformation in (5.8) and Ψε is the time-1 flow of
system (4.26)-(4.29) with Q1 and Q2 given by (5.9), (5.10).

Notice that the reducibility map (5.8) can be also derived from the Floquet
theory. Let Fs,ϕ : R2 → R2 be the standard Floquet-Lyapunov transformation
[14],

Fs,ϕ = exp
( ϕ

ω1(s)
K(s)

)
◦ F−1(s, ϕ).

Here K(s) =
[
ω1(s)/2π

]
lnM(s) and a real branch of the logarithm of M(s) exists

because of the stability assumption. Then, one can show that T = S ◦ F , where
S : M→N is a symplectic map uniquely determined by K(s).

We remark that for time-dependent harmonic oscillators, invariants like (5.7)
were studied in [16].
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