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UNIQUENESS OF A SYMMETRIC POSITIVE SOLUTION TO
AN ODE SYSTEM

ORLANDO LOPES

In memory of Jack K. Hale (1928–2009)

Abstract. In this article, we prove uniqueness of symmetric positive solutions

of the variational ODE system

−w′′ + aw − wv = 0

−v′′ + bv −
w2

2
= 0,

where a and b are positive constants.

1. Introduction and Statement of the Result

In this article, we prove uniqueness of symmetric positive solutions of the varia-
tional ODE system

−w′′ + aw − wv = 0

−v′′ + bv − w2

2
= 0

(1.1)

where a and b are positive constants. The solutions under consideration are defined
for all x ∈ R and have finite energy.

To show how (1.1) arises, we consider the so-called χ2 SHG equations

i
∂w

∂t
+ r

∂2w

∂x2
− θw + w∗v = 0

iσ
∂v

∂t
+ s

∂2v

∂x2
− αv +

w2

2
= 0

(1.2)

where r, s, σ, θ are positive real parameters and w(x) and v(x) are complex func-
tions. This system governs phenomena in nonlinear optics (see [5] for instance).

A solitary wave is a solution of (1.2) of the form

(w(x)eiγt, v(x)e2iγt).
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Hence, (w, v) satisfies

−rw′′ + (θ + γ)w − w∗v = 0

−sv′′ + (α + 2σγ)v − w2

2
= 0.

(1.3)

The solutions of (1.3) are critical points of E + γI where E and I are the following
conserved quantities for (1.2)

E(w, v) =
∫ +∞

−∞
(r|w′|2 + s|v′|2 + θ|w|2 + α|v|2 − Re(w2v∗)) dx, (1.4)

I(w, v) =
∫ +∞

−∞
(|w|2 + 2σ|v|2) dx. (1.5)

If w and v are real solutions of (1.3) then it solves

−rw′′ + (θ + γ)w − wv = 0

−sv′′ + (α + 2σγ)v − w2

2
= 0.

(1.6)

Replacing (w, v) by (k1w, k2v) in (1.6), with k2 = r and k2
1 = rs, we get

−w′′ +
(θ + γ)

r
w − wv = 0

−v′′ +
(α + 2σγ)

s
v − w2

2
= 0.

Therefore, we consider the real variational ODE system

−w′′ + aw − wv = 0 (1.7)

−v′′ + bv − w2

2
= 0 (1.8)

and we will be interested in solutions that have finite energy (or equivalently, tend
to zero as |x| tends to infinity). The existence of positive solutions of (1.7)-(1.8)
has been proved in [6]. Briefly the argument goes as follows. We define H =
H1(R)×H1(R) equipped with the norm∫ +∞

−∞
(w′2(x) + v′2(x) + aw2(x) + bv2(x)) dx.

We consider the functionals

E(w, v) =
∫ +∞

−∞
(w′2(x) + v′2(x)− w2(x)v(x)) dx,

I(w, v) =
∫ +∞

−∞
(aw2(x) + bv2(x)) dx.

Using the method of concentration-compactness ([3]), we minimize E(w, v) under
I(w, v) = 1 in the space H. If we replace (w(x), v(x)) by (|w(x)|, |v(x)|) then E
does not increase. Therefore, any minimizer is nonnegative and solves the Euler-
Lagrange system

−w′′ + µaw − wv = 0 (1.9)

−v′′ + µbv − w2

2
= 0 (1.10)
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with µ ≥ 0 (because (w, v) is a minimizer). On the other hand, it is easy to see
that any solution (w, v) ∈ H of (1.9)-(1.10) with µ = 0 is the solution identically
zero. Therefore, we must have µ > 0. Defining a new pair (k1w(k3x), k2v(k3x))
with k2

3 = 1/µ, k1 = k2 = 1/µ, we see that this new pair satisfies (1.7)-(1.8).
In [4] the symmetry of any positive solution of (1.7)-(1.8) has been proved using

a result of [1]. However, as pointed out in [1], their proof works for N ≥ 2. Since
we are in dimension one, we need the following modified version given in [2].

Theorem 1.1. Consider the system

w′′ + f(w, v) = 0

v′′ + g(w, v) = 0
(1.11)

where f(w, v) and g(w, v) are C1 functions satisfying the conditions:

f(0, 0) = 0 = g(0, 0),
∂f(w, v)

∂v
,
∂g(w, v)

∂w
≥ 0.

Suppose that there exist ε > 0 and δ > 0 such that w > 0, v > 0, w2 + v2 < ε imply

∂f(w, v)
∂w

,
∂g(w, v)

∂v
< −δ, 0 <

∂f(w, v)
∂v

,
∂g(w, v)

∂w
< δ.

Then, except for translations, any positive solution of (1.11) is even and decreasing.

We conclude that, except for translations, any positive solution of (1.7)-(1.8) is
symmetric and decreasing.

In [4] we have also proved the following result.

Theorem 1.2. The linearized operator of (1.7)-(1.8) at any positive symmetric
solution has zero as a simple eigenvalue with odd eigenfunctions (wx, vx) and it has
exactly one negative eigenvalue.

The fact that zero is a simple eigenvalue of the linearized operator is not a proof
of uniqueness of symmetric positive solution, but it may suggest it. Our main result
is that this is indeed the case.

Theorem 1.3. For a, b > 0, the positive symmetric decreasing solution of (1.7)-
(1.8) is unique.

Several interesting numerical experiments concerning system (1.7)-(1.8) are pre-
sented in [6]. They indicate uniqueness of positive solution (which is confirmed by
Theorem 1.3) and that (1.7)-(1.8) may have solutions that change sign.

2. Proof of main result

First we establish the following abstract uniqueness result.

Theorem 2.1. Let X be a Banach space and F : X × [0, 1] → X be a continuous
functions with continuous Frechet derivative with respect to the first variable. Also
assume that

(i) the set of the solutions (u, λ) of F (u, λ) = 0, u ∈ X, λ ∈ [0, 1] is precompact;
(ii) for any solution of F (u, λ) = 0, the derivative Fu(u, λ) is invertible;
(iii) the equation F (u, 0) = 0 has a unique solution.

Then the equation F (u, λ) = 0 has a unique solution for λ ∈ [0, 1].
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Proof. First we claim that there is a λ0 > 0 such that the solution of F (u, λ) = 0 is
unique for 0 ≤ λ < λ0. In fact, otherwise, there is a sequence 0 < λn → 0 such that
F (u, λn) = 0 has at least two distinct solution un and vn. In view of assumption
(i) and passing to a subsequence if necessary, we can assume that un converges to
u and vn converges to v. In view of (iii), we must have u = v. However, by (ii) and
the implicit function theorem, in a neighborhood of u, for small λ, the solution of
F (u, λ) = 0 is unique. This contradiction proves the claim. The same argument
shows that the set A of λ, 0 ≤ λ ≤ 1, for which the solution of F (u, µ) = 0 is
unique for 0 ≤ µ ≤ λ is open. Since by ii) A is clearly closed, A has to be the whole
interval [0, 1] and the theorem is proved. �

Remark. If we take u ∈ R and F (u, λ) = u(λu−1) = λu2−u, we have Fu(u, λ) =
2λ − 1. We see that, except for assumption i), all the others are satisfied but the
conclusion of the theorem does not hold. This is so because there is the branch
u = 1/λ of solutions bifurcating from infinity.

Theorem 1.3 will be a consequence of Theorem 2.1. To verify all its assumptions,
we start with the following result.

Lemma 2.2. The system

−w′′ + aw − wv = 0

−v′′ + av − w2

2
= 0

(2.1)

(a = b in (1.7)-(1.8)) has a unique positive solution with finite energy.

Proof. Defining z(x) = w(x)−
√

2v(x), multiplying the second equation by
√

2 and
subtracting we get

−z′′ + z +
w√
2
z = 0.

Multiplying this last equation by z and integrating we get∫ +∞

−∞
(z′2(x) + z2(x) +

w√
2
z(x)2) dx = 0

and this implies z ≡ 0 (because w is a positive). Therefore, each component of the
solution of (2.1) solves a single second order equation and this implies uniqueness
and the lemma is proved. �

To verify the other assumptions of Theorem 2.1, we establish a chain of estimates.
Since we wish to find estimates for solutions of (1.7)-(1.8) which remain uniform
for a and b in a certain interval, we fix two constants 0 < c1 < c2 and we assume

c1 ≤ a, b ≤ c2. (2.2)

In the sequel, di, 1 ≤ i ≤ will indicate constants depending on c1 and c2 only. Let
(w(x), v(x)) be as in Theorem 1.3. Since

T (w, v, w′, v′)=̂− w′2 − v′2 + aw2 + bv2 − w2v (2.3)

is a first integral for (1.7)-(1.8), we must have

−w′2(x)− v′2(x) + aw2(x) + bv2(x)− w2(x)v(x) = 0 (2.4)

for any x.
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Bound for v(0). Using the fact the (w(x), v(x)) is symmetric, if we set x = 0 in
(2.4) we get

w2(0) =
bv2(0)

v(0)− a
· (2.5)

In particular v(0) > a. Moreover, v′′(0) ≤ 0 (because v(x) has a maximum at
x = 0) and then the second equation (1.8) yields

bv(0) ≤ w2(0)
2

. (2.6)

This together with (2.5) implies

bv(0) ≤ 1
2

bv2(0)
(v(0)− a)

(2.7)

and finally v(0) ≤ 2a because v(0) > a.

Bound for v′(x). Multiplying the second equation (1.8) by v′(x), then for x ≥ 0
we get:

d

dx
(−v′(x)2 + bv2(x)) = w2(x)v′(x) ≤ 0.

Therefore −v′(x)2 + bv2(x) is decreasing and, since it vanishes at +∞, we get

−v′(x)2 + bv2(x) ≥ 0

and then
v′(x)2 ≤ bv2(x) ≤ bv2(0) ≤ 4a2b. (2.8)

Bound for w′(x). We know w′(x) ≤ 0 and that w′(x) reaches its minimum when
w′′(x) = 0. By the first equation (1.7), this occurs when v(x) = a and then, from
(2.4),

w′(x)2 + v′(x)2 = bv2(x) ≤ bv2(0) ≤ 4a2b.

We conclude
|w′(x)| = −w′(x) ≤ 2a

√
b. (2.9)

Bound for w(0). Suppose w(0) = M and w(x0) = M/2 for some x0 > 0. Since

w(0)− w(x0) = −
∫ x0

0

w′(s) ds,

then, in view of (2.9), we have M
2 ≤ 2a

√
bx0 and this implies

x0 ≥
M

4a
√

b
. (2.10)

Moreover, the solution of the linear equation

−v′′(x) + bv(x) = h(x) (2.11)

is given by

v(x) =
1

2
√

b

∫ +∞

−∞
e−

√
b|x−y|h(y) dy, (2.12)
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and then, the second equation (1.8) and (2.10) give

v(0) =
1

4
√

b

∫ +∞

−∞
e−

√
b|y|w2(y) dy

=
1

2
√

b

∫ +∞

0

e−
√

byw2(y) dy

≥ 1
2
√

b

∫ x0

0

e−
√

byw2(y) dy

≥ M2

8
√

b

∫ x0

0

e−
√

by dy

=
M2

8b
(1− e−

√
bx0)

≥ M2

8b
(1− e−

M
4a ).

Therefore,

2a ≥ v(0) ≥ M2

8b
(1− e−

M
4a )

and this gives that M = w(0) ≤ d1, for some constant d1. In view of (2.5), this
gives also that v(0) ≥ d2 > a, for some constant d2, and also gives a lower bound
for w(0) ≥ d3.

Bound for the length of the interval for which v(x) ≥ a. By the first equation
in (1.7) and the previous estimates for v(0) and w(0), we have w′′(0) ≤ −d4 < 0
and |w′′′(x)| ≤ d5. Defining X = −w′′(0)

2d5
then, for 0 ≤ x ≤ X we have

w′′(x)− w′′(0) =
∫ x

0

w′′′(s) ds ≤ d5X = −w′′(0)/2,

and then w′′(x) ≤ w′′(0)/2 ≤ −d4/2 for 0 ≤ x ≤ X. Moreover,

w′(X) = w′(0) +
∫ X

0

w′′(s) ds ≤
∫ X

0

w′′(0)
2

ds = X
w′′(0)

2
= −w′′(0)2

4d5
≤ −d6.

Since, by (1.7), w′′(x) ≤ 0 whenever v(x) ≥ a, we have w′(x) ≤ −d6 whenever
v(x) ≥ a and x ≥ X. Furthermore,

−w(0) ≤ −w(X) ≤ w(x)− w(X) =
∫ x

X

w′(s) ds ≤ −d6(x−X).

Therefore, defining X1 = w(0)/d6 + X, we see that we must have v(X1) ≤ a.

Estimate for the time v(x) stays close (and less) than a. Let x0 ≤ X1 be
such that v(x0) = a and let d7 > 0 and d8 < a be such that

(a− v)w2 + bv2 ≥ d2
7

whenever d8 ≤ v ≤ a,w ≤ d1. Then, if d8 ≤ v(x) ≤ a for x0 ≤ x ≤ x0 + X2, by
(2.4) we have −w′(x)− v′(x) ≥ d7 and then

w(x0) + v(x0) ≥ −w(x) + w(x0)− v(x) + v(x0) ≥ d7X2

and this gives a uniform upper bound for X2.
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Exponential decay for w(x) and for v(x). Since

d

dx
(−w′(x)2 + aw2(x)− w2(x)v(x)) = −w2(x)v′(x) ≥ 0

the function −w′(x)2 + (a − v(x))w2(x) is increasing and then −w′(x)2 + (a −
v(x))w2(x) ≤ 0 for all x ≥ 0 because it vanishes at infinity. Now, for x ≥
X3=̂X1 + X2 we have −w′(x)2 + d8w(x)2 ≤ 0 and then w′(x) + d9w(x) ≤ 0 and
then d

dxed9xw(x) ≤ 0 and finally, w(x) ≤ e−d9(x−X3)w(X3) for x ≥ X3 and this
implies

w(x) ≤ d10e
−d9x, x ≥ 0. (2.13)

From the second equation (1.8) we get

v(x) =
1

4
√

b

∫ +∞

−∞
e−

√
b|x−y|w2(y) dy

and this together with (2.13) and elementary calculation gives a similar exponential
decay

v(x) ≤ d11e
−d12x, x ≥ 0 (2.14)

for v(x).

Proof of Theorem 1.3. Using (2.12) to invert the linear operators −w′′ + aw and
−v′′ + bv, we see that system (1.7)-(1.8) can be written as

w(x) =
1

2
√

a

∫ +∞

−∞
e−

√
a|x−y|w(y)v(y) dy

v(x) =
1

4
√

b

∫ +∞

−∞
e−

√
b|x−y|w2(y) dy.

(2.15)

Defining u as the pair (w, v), system (2.15) can be viewed as the equation

F (u, λ) = 0 (2.16)

where λ, say, is b, with a kept fixed. We denote by H1
ev ⊂ H1(R) the subspace of

the even functions. If we take X = H1
ev ×H1

ev, then F : X → X is a well defined
very smooth function. In view of Theorem 1.2, assumption ii) of Theorem 2.1 is
satisfied because X consists of even functions. Uniqueness for λ = a is given by
Lemma 2.2. To verify assumption (i) of Theorem 2.1, we recall that a subset K of
X is precompact if and only if the following conditions are satisfied:

(1) for each n the restriction of the functions of K to the interval [−n, n] is
precompact;

(2) for every ε > 0, there is an x(ε) > 0 such that for all u ∈ K we have∫
|x|≥x(ε)

(|u′|2(x) + |u(x)|2) dx < ε.

To verify these conditions we first notice that we have obtained uniform bound for
the H1(R) norm of the solution (w, v) of (1.7)-(1.8). This implies uniform bound
for the H2 norm of such solutions and this verifies condition (1) for precompactness.
The uniform exponential decay (2.13) and (2.14) for w(x) and v(x) together with
(2.3) gives the uniform exponential decay also for the derivatives. This implies that
condition (2) for precompactness is satisfies; therefore, Theorem 1.3 is proved. �
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