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LATERAL ESTIMATES FOR ITERATED ELLIPTIC OPERATORS
AND ANALYTICITY

SHIGEO TARAMA

Abstract. Analyticity of functions satisfying the lateral estimates for iterated

elliptic operators is shown.

1. Introduction

Bernstein [1] showed that a function f(x) satisfying the inequalities

dk

dxk
f(x) ≤ 0 on (a, b) for any integer k ≥ 0

is real analytic on (a, b). According to [2], to obtain the analyticity, it is sufficient to
have the above inequalities only for an increasing sequence kj satisfying kj+1 ≤ Akj

with some A > 0.
Lelong [7] showed as an extension to a multidimensional case, that the inequali-

ties for the iterated Laplacian ∆k: for any k = 0, 1, 2, . . . ,

∆ku(x) ≤ 0 on a domain D in Rn

imply the analyticity of u(x) on D. Novickii [8] showed the above assertion is still
valid if the Laplacian ∆ is replaced by a second order strongly elliptic operator L
with real-valued and real analytic coefficients, as a corollary of his representation
theorem for L-superharmonic functions.

On the other hand, Kotake and Narasimhan [6] showed that the analyticity of
u(x) on D follows from the estimates: For any k = 0, 1, 2, . . .

‖P ku‖L2(D) ≤ C0C
mk(mk)!mk, (1.1)

for an ellipitc operator of order m with real analytic coefficients. Bolley, Camus
and Metivier [3] (see also [4]) showed the above assertion is still valid if we have
the estimates (1.1) for an increasing sequence of natural numbers kj satisfying
kj+1 ≤ Akj with some A > 0. We note that they showed in [3] that the conclusion
holds even if P is a principal type and hypoelliptic operator with real analytic
coefficients.

In this short note, we show that in the case where P is an elliptic operator with
real-valued and real analytic coefficients, the above assertion is still valid if the
estimates (1.1) are replaced by lateral estimates.
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Theorem 1.1. Let D be an open set in Rn. Let P be an elliptic operator of order
m with real valued and real analytic coefficients. Assume that the inequalities

P kj u(x) ≤ C0C
mkj (mkj)!mkj on D (1.2)

hold for an increasing sequence of natural numbers kj satisfying kj+1 ≤ Akj with
some A > 0. Then the function u(x) is real analytic on D.

2. Proof of Theorem

Proof. Indeed the theorem follows from simple integration by parts and Bolley-
Camus-Metivier’s theorem mentioned above.

Since the argument is local, we may consider the case where D is an open ball
with center at the origin, and it is sufficient to show that u(x) is real analytic near
the origin. Then we assume that D = B(r) where B(r) = {x ∈ Rn | |x| < r} with
r > 0. First of all, we remark that u(x) is C∞ even if the inequalities (1.2) are
satisfied in distribution sense. Indeed since (1.2) implies that P kj u is a measure
and P kj is a mkj-th order elliptic operator, we see that u(x) belongs to the Sobolev
space H

mkj−(n+1)/2
loc (D).

We use cut-off functions χk(x). Let χk(x) (k = 1, 2, 3, . . . ) be non-negative
smooth functions satisfying the following conditions:

(P-1) 1 ≥ χk(x) ≥ 0, χk(x) = 1 for |x| ≤ r/2 and χk(x) = 0 for |x| ≤ 2r/3
(P-2) For any α with |α| ≤ k, we have∣∣ dα

dxα
χk(x)

∣∣ ≤ C0C
|α|
1 k|α| on D. (2.1)

where the constants C0, C1 are independent of k and α. (See [5])

Then, noting that P kj u(x)− C0C
mkj

1 (mkj)!mkj ≤ 0 and (P-1), we have∫
D

χmkj
(x)

(
P kj u(x)− C0C

mkj

1 (mkj)!mkj

)
dx

≤
∫
|x|≤r/2

(
P kj u(x)− C0C

mkj

1 (mkj)!mkj

)
dx ≤ 0.

(2.2)

Through the integration by parts, we see that the left hand side is equal to∫
D

(
(tP )kj χmkj (x)

)
u(x) dx− CC0C

mkj

1 (mkj)!mkj

where tP is the transposed operator of P . Since the coefficients of P are real
analytic, it follows from (2.1) that∣∣(tP )kj χmkj

(x)
∣∣ ≤ K0K

mkj

1 (mkj)mkj ,

with some constants K0,K1, see for example [5, Lemma 8.6.3]. Then we see that
the absolute value of the left hand side of (2.2) is not greater than

K0K
mkj

1 (mkj)mkj |D|(‖u(x)‖L∞(D) + 1).

Here we replace the constants K0,K1 by larger constants, if necessary.
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While P kj u(x)− C0C
mkj

1 (mkj)!mkj ≤ 0 implies∫
|x|≤r/2

|P kj u(x)| dx

≤ (−1)
∫
|x|≤r/2

(
P kj u(x)− C0C

mkj

1 (mkj)!mkj

)
dx + CrC0C

mkj

1 (mkj)!mkj ,

where the first term of the right hand side is not greater than

K0K
mkj

1 (mkj)mkj |D|(‖u(x)‖L∞(D) + 1).

Hence we have∫
|x|≤r/2

|P kj u(x)| dx ≤ K0K
mkj

1 (mkj)mkj |D|(‖u(x)‖L∞(D) + 1).

with some positive constants K0,K1. From the above L1-estimates, we see that u(x)
is real analytic on a neighborhood of the origin thanks to Bolley-Camus-Metivier’s
theorem [3]. Indeed, according to [4, Theorem 1.2], we see that [3, Proposition 3.3]
is still valid using L1 estimates for Pnu. Then we have the desired conclusion. The
proof is complete. �
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