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A REMARK ON THE REGULARITY FOR THE 3D
NAVIER-STOKES EQUATIONS IN TERMS OF THE TWO

COMPONENTS OF THE VELOCITY

SADEK GALA

Abstract. In this note, we study the regularity of Leray-Hopf weak solutions

to the Navier-Stokes equation, with the condition

∇(u1, u2, 0) ∈ L
2

1−r (0, T ;Ṁ2,3/r(R3),

where Ṁ2,3/r(R3) is the Morrey-Campanato space for 0 < r < 1. Since

L1/3(R3) ⊂ Ẋr(R3) ⊂ Ṁ2,3/r(R3),

the above regularity condition allows us to improve the results obtained by

Fan and Gao [6].

1. Introduction

Consider the Navier-Stokes equation, in R3,

∂tu + (u · ∇)u−∆u +∇p = 0, (x, t) ∈ R3 × (0, T ),

div u = 0, (x, t) ∈ R3 × (0, T ),

u(x, 0) = u0(x), x ∈ R3,

(1.1)

where u = u(x, t) is the velocity field, p = p(x, t) is the scalar pressure and u0(x)
with div u0 = 0 in the sense of distribution is the initial velocity field. For simplicity,
we assume that the external force has a scalar potential and is included in the
pressure gradient.

In their classical article, Leray [12] and Hopf [9] independently constructed a
weak solution u of (1.1) for arbitrary u0 ∈ L2(R3) with div u0 = 0. The solution is
called the Leray-Hopf weak solution. Regularity of such Leray-Hopf weak solutions
is one of the most significant open problems in mathematical fluid mechanics.

By a weak solution we mean a function u ∈ L∞(0, T ;L2(R3))∩L2(0, T ; Ḣ1(R3))
satisfying (1.1) in sense of distributions. See e.g. [17] for an exposition of the theory
of weak solutions.

Introducing the class Lα(0, T ;Lq(R3)), it is shown that if we have a Leray-
Hopf weak solution u belonging to Lα((0, T );Lq(R3)) with the exponents α and
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q satisfying 2
α + 3

q ≤ 1, 2 ≤ α < ∞, 3 < q ≤ ∞, then the solution u(x, t) ∈
C∞(R3× (0, T )) [16, 14, 15, 5, 7, 18, 19]. The limit case α = ∞, q = 3 was covered
much later Escauriaza, Seregin and Sverak in [4]. Bae and Choe [2] proved that
u is strong if ũ ∈ Lα(0, T ;Lq(R3)) with 2

α + 3
q = 1 and q > 3. Later, Chae-Choe

[3] obtained an improved regularity criterion of [1] imposing condition on only two
components of the velocity, namely if

∇ũ ∈ Lα(0, T ;Lq(R3)) with
2
α

+
3
q
≤ 2, 1 ≤ α < ∞,

ũ = (u1, u2, 0)

then the weak solution becomes smooth. See also [20, 21] for recent improvements
of these criteria, via one velocity component. Recently, Fan and Gao [6] improved
the regularity criterion in [3], under the condition

∇ũ ∈ L
2

2−r (0, T ; Ẋr(R3)) for some 0 < r < 1,

where Ẋr is the multiplier space (see definition below).
The purpose of this note is to imporve the results in [3] and [6], by proving

that if ∇ũ ∈ L
2

2−r (0, T ;Ṁ2,3/r(R3)) with 0 < r < 1, then the weak solution be-
comes smooth. Here Ṁ2,3/r(R3) is the Morrey-Campanato space, which is strictly
larger than L1/3(R3) and Ẋr(R3) (see the next section for the related embedding
relations).

2. Preliminaries and the main result

Now, we recall the definition and some properties of the spaces to be used later.
These spaces play an important role in studying the regularity of solutions to partial
differential equations; see e.g. [8] and the references therein.

Definition 2.1. For 0 ≤ r < 3/2, the space Ẋr(R3) is defined as the space of
functions f(x) ∈ L2

loc(R3) such that

‖f‖Ẋr
= sup
‖g‖Ḣr≤1

‖fg‖L2 < ∞.

where we denote by Ḣr(R3) the completion of the space C∞0 (R3) with respect to
the norm ‖u‖Ḣr = ‖(−∆)r/2u‖L2 .

We have the following homogeneity properties: For all x0 ∈ R3,

‖f(·+ x0)‖Ẋr
= ‖f‖Ẋr

‖f(λ·)‖Ẋr
=

1
λr
‖f‖Ẋr

, λ > 0.

Also we have the imbedding

L1/3(R3) ↪→ Ẋr(R3) for 0 ≤ r <
3
2

.

Now we recall the definition of the Morrey-Campanato spaces.

Definition 2.2. For 1 < p ≤ q ≤ +∞, the Morrey-Campanato space Ṁp,q(R3) is
defined by

Ṁp,q(R3) =
{
f ∈ Lp

loc(R
3) : ‖f‖Ṁp,q

= sup
x∈R3

sup
R>0

R3/q−3/p‖f‖Lp(B(x,R)) < ∞}

(2.1)
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It is easy to check the equality

‖f(λ·)‖Ṁp,q
=

1
λ3/q

‖f‖Ṁp,q
, λ > 0.

For 2 < p ≤ 3/r and 0 < r < 3/2 we have the following embeddings:

L1/3(R3) ↪→ L3/r,∞(R3) ↪→ Ṁp,3/r(R3) ↪→ Ẋr(R3) ↪→ Ṁ2,3/r(R3).

The relation
L3/r,∞(R3) ↪→ Ṁp,3/r(R3)

is shown as follows.

‖f‖Ṁ
p, 3

r

≤ sup
E
|E| r

3−
1
2

( ∫
E

|f(y)|pdy
)1/p

(f ∈ L3/r,∞(R3))

=
(

sup
E
|E|

pr
3 −1

∫
E

|f(y)|pdy
)1/p

∼=
(

sup
R>0

R|{x ∈ R3 : |f(y)|p > R}|pr/3
)1/p

= sup
R>0

R|{x ∈ Rp : |f(y)| > R}|r/3

∼= ‖f‖L3/r,∞ .

For 0 < r < 1, we use the fact that

L2 ∩ Ḣ1 ⊂ Ḃr
2,1 ⊂ Ḣr.

Thus we can replace the space Ẋr by the pointwise multipliers from Besov space
Ḃr

2,1 to L2. Then we have the following lemma given in [11].

Lemma 2.3. For 0 ≤ r < 3/2, the space Żr(R3) is defined as the space of functions
f(x) ∈ L2

loc(R3) such that

‖f‖Żr
= sup
‖g‖Ḃr

2,1
≤1

‖fg‖L2 < ∞.

Then f ∈ Ṁ2,3/r(R3) if and only if f ∈ Żr(R3) with equivalence of norms.

Additionally, for 2 < p ≤ 3
r and 0 ≤ r < 3

2 , we have the following inclusions
[10, 11]:

Ṁp,3/r(R3) ↪→ Ẋr(R3) ↪→ Ṁ2,3/r(R3) = Żr(R3).
The relation

Ẋr(R3) ↪→ Ṁ2,3/r(R3)

is shown as follows: Let f ∈ Ẋr(R3), 0 < R ≤ 1, x0 ∈ R3 and φ ∈ C∞0 (R3), φ ≡ 1
on B(x0

R , 1). We have

Rr− 3
2

( ∫
|x−x0|≤R

|f(x)|2dx
)1/2

= Rr
( ∫

|y− x0
R |≤1

|f(Ry)|2dy
)1/2

≤ Rr
( ∫

y∈R3
|f(Ry)φ(y)|2dy

)1/2

≤ Rr‖f(R.)‖Ẋr
‖φ‖Hr

≤ ‖f‖Ẋr
‖φ‖Hr

≤ C‖f‖Ẋr
.
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The following result well be used in the proof of Theorem 2.5.

Lemma 2.4. For 0 < r < 1, we have

‖f‖Ḃr
2,1
≤ C‖f‖1−r

L2 ‖∇f‖r
L2 .

Proof. The idea comes from [13] (see also [22]). According to the definition of Besov
spaces, one has

‖f‖Ḃr
2,1

=
∑
j∈Z

2jr‖∆jf‖L2

≤
∑
j≤k

2jr‖∆jf‖L2 +
∑
j>k

2j(r−1)2j‖∆jf‖L2

≤ (
∑
j≤k

22jr)1/2(
∑
j≤k

‖∆jf‖2L2)1/2 + (
∑
j>k

22j(r−1))
1
2 (

∑
j>k

22j‖∆jf‖2L2)1/2

≤ C
(
2rk‖f‖L2 + 2k(r−1)‖f‖Ḣ1

)
= C(2rkA−r + 2k(r−1)A1−r)‖f‖1−r

L2 ‖f‖r
Ḣ1 ,

where A = ‖f‖Ḣ1/‖f‖L2 .
Choose k such that 2rkA−r ≤ 1; that is, k ≤ [log Ar]. Then

‖f‖Ḃr
2,1
≤ C(1 + 2k(r−1)A1−r)‖f‖1−r

L2 ‖f‖r
Ḣ1

≤ C‖f‖1−r
L2 ‖∇f‖r

L2 ,

and so the proof is complete. �

Since L1/3(R3) ⊂ Ẋr(R3)⊂Ṁ2, 3
r
(R3), the above regularity criterion alloy us to

improve the results obtained by Fan and Gao [6]. Our main result on (1.1) reads
as follows.

Theorem 2.5. Let ũ = u1e1 + u2e2 be the first two components of a Leray-Hopf
weak solution of the Navier-Stokes equation corresponding to u0 ∈ H1(R3) with
div u0 = 0. Suppose that ∇ũ ∈ L

2
1−r (0, T,Ṁ2,3/r(R3)) with 0 < r < 1, then u

becomes the classical solution on (0, T ].

Proof. We follow the ideas of the proof in [6]. By differentiating the equations (1.1)
with respect to xk, we take the scalar product with ∂ku, and integrate over R3. A
suitable integration by parts yields

1
2

d

dt
‖∇u(t, .)‖2L2 + ‖∇2u(t, .)‖2L2 = −

∫
R3
∇[(u.∇)u].∇u dx

=
∑
i,j,k

∫
R3

∂kui.∂iuj .∂kujdx.
(2.2)

Following [6], we only need to deal with the case i = j = 3. Since ∂1u1 + ∂2u2 +
∂3u3 = 0, it follows that∫

R3
∂kui.∂iuj .∂kujdx = −

∫
R3

∂ku3.(∂1u1 + ∂2u2).∂ku3dx

≤
∫

R3
|∇ũ||∇u|2dx.
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Using Hölder’s inequality and Lemma 2.3, we have∫
R3
|∇ũ||∇u|2dx ≤ ‖∇u‖L2‖∇u · ∇ũ‖L2

≤ C‖∇ũ‖Ṁ2,3/r
‖∇u‖L2‖∇u‖Ḃr

2,1

≤ C‖∇ũ‖Ṁ2,3/r
‖∇u‖L2‖∇u‖1−r

L2 ‖∇2u‖r
L2

= C
(
‖∇ũ‖

2
2−r

Ṁ2,3/r
‖∇u‖2L2

) 2−r
2 ‖∇2u‖r

L2

≤ 1
2
‖∇2u‖2L2 + C‖∇ũ‖

2
2−r

Ṁ2,3/r
‖∇u‖2L2 .

This estimates combined with (2.2), yield
d

dt
‖∇u(t, .)‖2L2 + ‖∇2u(t, .)‖2L2 ≤ C‖∇ũ‖

2
2−r

Ṁ2,3/r
‖∇u‖2L2 .

By Gronwall’ s inequality we have

‖∇u(t, .)‖2L2 ≤ ‖∇u(0, .)‖2L2 exp
(
C

∫ T

0

‖∇ũ(·, τ)‖
2

2−r

Ṁ2, 3
r

dτ
)
.

This completes the proof. �
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