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RENORMALIZED ENTROPY SOLUTIONS FOR DEGENERATE
NONLINEAR EVOLUTION PROBLEMS

KAOUTHER AMMAR

ABSTRACT. We study the degenerate differential equation
b(v)¢ —diva(v,Vg))=f onQ:=(0,T) xQ

with the initial condition b(v(0, -)) = b(vo) on © and boundary condition v = u
on some part of the boundary ¥ := (0,7) x 0Q with g(u) = 0 a.e. on X.
The vector field a is assumed to satisfy the Leray-Lions conditions, and the
functions b, g to be continuous, locally Lipschitz, nondecreasing and to satisfy
the normalization condition b(0) = g(0) = 0 and the range condition R(b+g) =
R. We assume also that g has a flat region [A;, A2] with A1 < 0 < As.
Using Kruzhkov’s method of doubling variables, we prove an existence and
comparison result for renormalized entropy solutions.

1. INTRODUCTION

Let Q be a C! bounded open subset of RY with regular boundary if N > 1 and
let p > 1. We consider the initial-boundary value problem of parabolic-hyperbolic
type: (Problem P, 4(vo,u, f))

0b(v)
ot

—diva(v,Vgw))=f onQ:=(0,T) x Q
v=u on a part of ¥ :=(0,T) x 00 (1.1)
b(U)(O, ) =V = b(UO) on 2,

where b, g : R — R are nondecreasing, locally Lipschitz continuous such that b(0) =
9(0) =0 and R(b+ g) = R. We assume also that:

e The function g has a flat region around 0; i.e., there exists A; < 0 < As such
that g(x) = 0 for all x € [A1, As] and g is strictly increasing in | — oo, A3 [U] Az, +00].

e The data vg : @ — R and f : @ — R are measurable functions with b(vg) €
LY(Q) and f € LY(Q). Moreover the boundary data u : ¥ — R is assumed to be
continuous with g(u) =0 a.e. in X.

e The vector field a : R — R¥ is assumed to be continuous, to satisfy the growth
condition

la(r,&) —a(r,0)] < C(jr))|¢P~" for all (r,&) € R x R™ (1.2)
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with C' : RT — R* non-decreasing and the weak coerciveness condition
(a(r, &) —a(r,0)) - € > X(|r))|€|P for all r € R, € € RY (1.3)

where A : RT —]0,00[ is a continuous function satisfying for all k > 0, Ag :=
inf g jp(ry <k A(r) > 0.

e To prove the uniqueness of a solution, we assume that a satisfies the additional
condition

(a(r, &) —a(s,n)) - (€ —n) + (B(g(r) — B(g(s))) (1 + [£” + [n]”)
> F(?“, 8) : f + f\(r’ S) 1,

for all 7,5 € R, &,n € RY, for some continuous function B : R x R — R which
is locally Lipschitz continuous on R \ [A;, As] and some continuous fields T',T" :
R xR — RY. In particular, Hypothesis implies I'(r,r) = f(r, r) = 0 for every
reR.

The above formulation involves a large class of problems such as Stefan problems,
filtrations and flows through porous media, etc. Since b and g are not assumed to
be strictly increasing, the problem can behave differently: it is of elliptic-parabolic
type when g is not partially degenerate, purely hyperbolic when g = 0 and the three
aspects coexist when b and g degenerate partially on some regions of R. Remark
that the problem can not be totally degenerate thanks to the range condition on
b+ g. It is well known that in the elliptic-parabolic case, the boundary conditions
are satisfied in the Dirichlet sense; i.e. pointwise. Existence and uniqueness results
for this type problems are now well known (see [T}, 13| [6]). It is not the case for
the hyperbolic problems which can be over determined when we impose a condition
on “all the boundary”. A simple example which illustrates this ambiguity is the
Burger’s equation on an interval [a,b] C R. In [§], the authors have given a “right
formulation” of a solution for the Burger’s equation on a bounded domain, where
the boundary condition is read as an entropy condition on the boundary. However,
their formulation involves the trace of the entropy solution which means that it is
restricted to the BV-framework. This in turn implies some strong regularity on
the flux and the boundary data itself. An other integral formulation of the entropy
condition is given by Otto [28] and guarantees existence and uniqueness in the
more general case where the flux is Lipschitz continuous and the data are in L°°.
These results were extended to the L' setting and for merely continuous flux (see
among others [17], [10]). For hyperbolic problems with nonhomogeneous boundary
conditions on the boundary, we refer to [7, [, 20} Bl 5 B2], B3], B4], etc.

The boundary condition is not the unique difficulty when dealing with hyperbolic
problems. Indeed, even when the problem is posed on the whole space RY, the usual
variational formulation is ill-posed in the sense that a weak solution is usually not
unique. In order to have a good theory of existence and uniqueness, Kruzhkov has
introduced the first notion of entropy solution (see [22] [23]) which is obtained by
comparison with particular test functions and which coincides with the physical
solution obtained by regularization methods.

In the parabolic-hyperbolic case, the problem is more complicate because the two
behaviour parabolic and hyperbolic coexist. This means that the boundary condi-
tion is satisfied in the Dirichlet sense in the regions where g is strictly increasing
but has to be read as an entropy condition when g is degenerate.

Carrillo [I4] has given a formulation which conciliates between the two aspects
(hyperbolic and parabolic) for the problem (P, 4) : b(v);—Ag(v)+div ®(v) = f with

(1.4)
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homogeneous boundary conditions. The author has also studied the related Cauchy
problem from the point of view of semi-group theory. Under an extra condition
on the flux ®, known as the “structure condition”, he has proved existence and
uniqueness results for the stationary and the evolution problems.

In a recent work [26], the authors have studied the same problem (P, ,) with
nonhomogeneous conditions on the boundary in the particular case, where b = I.
They have proved the existence and uniqueness of a “weak entropy solution” and
consistency with viscosity approximations. The boundary condition is given by
means of a limit expressed by “boundary layer” and can be viewed as a generaliza-
tion of the condition proposed by Felix Otto in [28§].

In an earlier work [2], we have studied the problem P, j, with nonhomogeneous
boundary conditions and without assuming the structure condition on the flux ®.
Using monotonicity and strong penalization methods, we have proved existence of
a renormalized entropy solution and uniqueness results.

Here, using another method of approximation, we prove an existence and unique-
ness result for the problem with “g-homogeneous” boundary conditions. The plan
of the paper is as follows: In section 2, we introduce some notations and define
the renormalized entropy solution of in the general setting described in the
introduction, then we announce our main results. Section 3 is devoted to the proof
of the comparison principle and section 4 to the proof of the existence result.

2. DEFINITIONS, NOTATION AND MAIN RESULTS

e For any k,l € R, for a.e. (t,z) € X, let
wh((t,z),k,1) ;== max |(a(r,0) —a(s,0)) - ij(z)|,

k<r,s<IVk
w™ ((t,2),k,1) := |(a(r,0) —a(s,0)) - 7j(x)],

max
INk<r,s<k

where 7j(x) denotes the unit outer normal to 9 in z.
e For k£ > 0, T} is the truncation function at level k; i.e.,

T(r) r Ak := min(r, k) for r > 0,
)=
¥ rV (—k) := max(r,—k) for r <0.

e By T, 712 and T2, we denote the truncation functions defined successively
by

T'r)=rAA, TY(r)=AVrAdy, T*r)=rVA,.
e The operators Hs, 6 > 0 and Hy are defined by

st 1 ifs>0
H, = min(—, 1 H = ’
s(s) = min(, 1), Hols) {o if s < 0.
e By sign™, we denote the multivalued function
0 if r <0,

+
sign(r) = ¢ [0,1] ifr =0,

1 if r > 0.
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e The proof of the comparison result involves also sequences of mollifiers (p,,)n

which are defined as follows:
0

pn(t) = np(nt) where p € C°(—1,0) such that / p(t)dt = 1. (2.1)
-1
Definition 2.1. A measurable function v : Q — R is said to be a renormalized en-
tropy solution of if b(v) € L'(Q) and for all k > 0, g(Tyv) € LP(0,T, WHP(Q))
with g(Tkv) = 0 in the sense of traces in LP(0,T, W1P(€2)), and there exists some
families of non-negative bounded measures p; := j;(v) and v; = v;(v) on Q such
that
el il =0, as1— oo,

and the following entropy inequalities are satisfied:

For all k € R, for all £ € C§°([0, T)xRY) such that £ > 0 and (g(unl)—g(k)) ¢ =
0 a.e. on X, for all [ > k,

/ wh((t, ), k,u AN)E + / (b(v A1) —b(k))T & + / (b(vg A1) — b(k))T€(0,-)
b Q Q

- / Ntonisiy (@(w AL Vg(w A L) — ak, 0)) - VE + / Novisip f€
Q Q

> _<:U’la€>
(2.2)
and for all k € R, for all £ € C§°([0,T) x RY) such that ¢ > 0 and (g(k) — g(u V
[))T¢=0ae. on X, for I <k,

/ w((t,x), k,uVvDE+ / (b(k) —blv v ID)TE& + / (b(k) — b(vo V1)) T£(0, )
b Q

Q
- / Xirsoviy (a(k, 0) — a(v v 1, V(v A 1)) - VE — / Nirsovir JE}
Q Q

> —(w,§)-
(2.3)

Remark 2.2. (i) The notion of renormalized entropy solution in already intro-
duced in [I7] for the purely hyperbolic problem (¢ = 0 and b = Ig ). It allows
usually to prove existence and uniquenes results in the L'-setting. Here, due to the
degeneracy of b and g, the existence of a weak solution in L?(0,T, WO1 P(Q)) can
not be proved even in the case of L*°-data (see for example [6]).

(i) In the case where the function b is strictly increasing and the data vy €
L>(Q), f € L*>®(Q) and u € C(X), using integration by parts tools, it is easily
proved that the renormalized entropy solution corresponding to L°°-data is also in
L*°(Q). In this case, it can be equivalently characterized as follows: A function
v € L*(Q) is a weak entropy solution of if

g(v) € LP(0, 7, W'?(Q)) and g(v) = g(0)

in the sense of traces in LP(0, T, W1P(Q)), and for all k € R, for all £ € C§°([0,T) x
RY) such that £ > 0 and (—g(k))T¢ =0 ae. on %,

/ Wt (1), k) + / (b(v) — (k))& + / (b(vo) — b(k))*£(0, )
> @ ¢ (2.4)

- / Xtosy (@(v, Vg(v) — alk,0)) - VE + / Noory fE} = 0
Q Q
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and for all k € R, for all ¢ € C5°([0,T) x RY) such that £ > 0 and (g(k))*T¢ = 0;
a.e. on %,

/ o (8, 2), K, @) + / {(b(k) — b)) "€, + / (b(k) — b(v))H£(0, )

> @ ¢ (2.5)

- / Xiksoy (a(k, 0) — a(v, Vg(v)) - V€ — / ko) €} = 0.
Q Q

(iii) If we penalize the problem (|1.1)) by a suitable strong perturbation v, then
the renormalized entropy solution is also in this case in L*°(Q), hence a weak
entropy solution.

The main results of this paper are the following:

Theorem 2.3. For any (vo, f) € LY(Q) x LY(Q) with b(vg) € LY(), for any
u: X — [Ay, As] continuous, there exists a renormalized entropy solution of (L.1)).

Corollary 2.4. For any (vo, f) € L>(Q) x L>®(Q) with b(vg) € L>®(R2), for any
u: X — [A1, As] continuous, there exists a unique w € L*(Q) with w = b(v) a.e.
i Q and v is a weak entropy solution of .

Remark 2.5. e By approzimation, the existence result holds true also for a mea-
surable boundary data u : ¥ — [Ay, As] satisfying a(u,0) € LY(X) without any
additional assumption on the reqularity of u. Here, we define the function a :
R x 02 — R by

a(s,x) := sup{la(r,0) - n(z)|, r € [-s~,sT]}.

e The uniqueness result follows as a consequence of a comparison theorem (see

Theorem below).

3. PROOFS OF THE COMPARISON AND UNIQUENESS RESULTS

We first prove a comparison result in the L*°-setting.

Theorem 3.1. Let (vo;, fi) € L=°(Q) X L>(Q) and u; € L>®(X) such that g(u;) =0
a.e. on X, i =1,2 with u; € C(X). Let v; € L>®(Q) be a weak entropy solution
of Py 4(voi,us, fi). Then there exists k € L°°(Q) with k € sign™ (v1 — va) a.e. in Q
such that, for any & € D([0, T[xRY), £ >0,

— w ((t,x),ur,u)é < b(vy) — b(vo +t k(f1 — fo
/2 ((t,2) >§</Q<<> ())§+/Q(f f)é
- /Q X(oruay (@01, Vg(0r) — a(vs, Vg(vs)) - VE (3.1)

+ /Q(b(vm) — b(v02)) (0, ).

Remark 3.2. If v; € L°°(Q) satisfies the entropy inequalities and (2.3)
for the data f1, vp1, u; and for b,g and a vector field a, then —wv; satisfies the
same inequalities with data —f;, —vg1, —u1 and for —b(—.), —g(—.), —a(—.,—.).
Consequently under the assumptions of Theorem [3.1] one also has existence of
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i €signt (vy — v1) such that for all £ € D([0,T) x RV), £ >0

- / o™ (b 7). w1, )€ < /Q (b(v2) — b(wn)) e, + /Q R(fi — fo)e
/Q Xiwasor} (a(v2, Vg(v2) — a(vr, V(1)) - VE (3.2)
" /Q (b(vo2) — bvor)) (0. ).

Summing up (3.1)) and (3.2)), it follows that

/Q b(or) — b(en)|(2)
< / 1=+ [ benn) — blons) (33

t
+ max a(r,0) — a(s,0)) - 7j(x
/0 /('?Q {min(ui,u2)<r,s<max(ui,u2)} ‘( ( ) ( )) 77( )|

a.e. in [0, 7).

The result being already known in the purely hyperbolic and parabolic case
respectively, we will assume in the following that g has at least a flat region i.e.
Aj # As. In the proof, we need the following estimations:

Lemma 3.3. Let f € L™(Q), vo € L®(2), u € L™(X) such that g(u) =0 a.e. on
Y andv € L>®(Q) be a weak entropy solution of (1.1)). Then, there exists a positive
constant C' depending only on || f||z=(q) [[vllz=(q) and [[b(vo)| L) such that

/ Vg < 8C, (3.4)
QN{0<g(v)<d}

/ V() < 6C. (3.5)
QN{—d6<g(v)<0}

Proof. As v is a weak solution of (L.1)), using Ts(g(v))* € LP((0,T), Wy *(2)) as
test function, we get

/Q i(v, Vo)) - To(g(v))*
<||b<vo>||Loo<m+|/|f||Ta +|+|/ VTs(g(0))*].

Hence, by the usual chain rule argument (see for example [I] and [16]), applying the
Green-Gauss formula and the growth condition (|1.2)), we obtain (3.4). The second
estimation (3.5)) can be proved in a similar way. O
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Lemma 3.4. Let (vg,u, f) € L™(Q) x C(X) x L>(Q) and v be a weak solution of
Py g(vo,a, f) . Then

/ Xosiy (v, Vg(v)) — a(k,0)) - VE

Q

+ / Niooiy L(b(k) — b(0))& — €} drdt — / (b(vo) — b(k)) *edz  (3.6)
Q Q

=~ Jim | (000 Vg(0)) = a(0.0)) - Vole) Hy(a(v) — g(h)é d

for any (k,€) € R x DH([0,T) x RY) such that (—g(k))*¢ =0 a.e. on X.

Moreover,
/Q Xikso} (a(v, Vg(v)) = a(k, 0)) - V&
[ X (00 = b0))g - febdode+ [ 60 - b)) Peds  (37)
Q Q

= Jim | (a0, V(0)) = av,0) Vo) Hilo(h) — g(v))¢ e dr

for any (k,€) € R x DH([0,T) x RY) such that (g(k))* ¢ =0 on X.

The proof of the above lemma follows the same lines as in the proof of [I4]
Lemma 5].

Proof of Theorem Let (B;)i—o...m be a covering of Q satisfying ByNo§ = (),
and such that, for each i > 1, B, is a ball contained in some larger ball B; with
B; N 89 is part of the graph of a Lipschitz function. Let (Pi)i=o...m denote a
partition of unity subordinate to the covering (B;); and denote by £ an arbitrary
Function in D((0,T) x RY), £ > 0.

As usual, we use Kruzhkov’s technique of doubling variables in order to prove the
comparison result (see [22], [23], [I7], [3], etc): We choose two pairs of variables (¢, x)
and (s,x) and consider v; as a function of (s,x) and vy as a function of (¢,2) € Q.
Define the test function &/, ,, : (t,2,s,y) — Pi(2)E(t, 2)on(x — y)pm(t — s), where
(0n)n is a sequence of mollifiers in RY such that = — g,(z —y) € D(Q), for all
y € By, op(x) = fQ on(z — y)dy is an increasing sequence for all z € B;, and
on(z) =1 for all z € B; with d(z,RY \ Q) > ¢/N for some ¢ = ¢(i) depending on
B;. Then, for m,n sufficiently large,

(s,y) — {fn’n(tx, s,y) € D(]O,T[XRN), for any (¢,2) € Q,
(t,z) — §:’n,n(t7x,s7y) € D([0,T[xQ), for any (s,y) € Q
suppy(gfn’n(t,s,a:, .)) C By, for any (t,s,x) € [0,T)* x supp(P;).

For convenience, we sometimes omit the index i and simply set P = P;, B = B;

and ffn,n = gm,n-
The main idea of our proof is to compare locally two solutions on each suffi-

ciently small ball B((t,z),r) such that B((¢,z),r) N X # 0 and maxsnp((,z),r) U —
minyAg((,),r) U < €. To this end, for all n > 0, let

(B} := B((t,25),1))j=0,...p, be a finite covering of [0,T’) x Q (3.8)
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such that ([0,7) x Q) C U;B] =: O, and |[0,\([0,T) x Q)| < en, for a positive
constant ¢ independent of 7. Let
(¢])j=o0,....p, De a partition of unity subordinate to (B7); (3.9)
and define
G 2= G+ (8,2, 8,9) = & (t, 2, 5,9)0] (¢, ).

Obviously, ¢, satisfies the following properties: for m and n sufficiently large,

($,y) = Cmn(t,x,8,y) € D(]O,T[XRN), for any (¢,x) € Q,
(t,x) = Cmon(t, z,5,y) € D([0,T[xQNB]), for any (s,y) € Q
supp y(Cmon(t, s,2,.)) C B, for any (t,s,x) € [O,T)2 x supp(P).

Moreover, the function

Calt, 2) :z/Qé“m,n(t,x,s,y)d(&y)

T
= f(t,x)P(x)SO?(t,m) /R on(z — y)dy/o pm(t — s)ds (3.10)

— £t 0)P@))(t) [ onle— )y
R
= §(t7 ;C)’P(l‘)(p;](t, x)an(x)
satisfies ¢, € D([0, T[xQN Bj),0< (o <&, for all n € N. Let

Q1 :={(s,y) € Q/vi(s,y) € [A1,As]}, Q2:={(t,z) € Q/uva(t,x) € [A1, As]}.

Then, Vyg(v1) =0 a.ein @ and V,g(v2) = 0 a.e in Q2 . Moreover, Hy(vi —v2) =
Hy(g(v1) = g(v2)) aein (Q\ Q1) x QUEQ x (Q\ Q2).

First inequality: From now on, we denote by @ : R x RY — R the vector
field defined by:

&(Ta 5) - (1(7", 5) - (1(7", 0) (311)

Let ky ‘= maxygnay} U We first prove the following inequality
0< [ (b VED) = bloa V D) (€0
Q

- /QX{vlvk;’>mvk;’}(a(Ul \ k;]a Vg(Ul \ k;))
—a(v2 VkJ,Vg(vz VE])) - V(€] P)
(3.12)
+/Q/‘€1X{v1>k;'}(f1 = X{w>k71f2)€0]P
+ [ Oon V) = b v D) €0, 006 1, 2)P(t,)
Q
+ lim Ly (Ep]Payn),

where x; € L®(Q), k1 € signT (v) — vy V k;j") and L., o > 0 is a linear operator
which will be defined later (see (3.24])).
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As vy satisfies (2.4) and (3.6) (with v = vy, vg = vo1, f = f1 ), choosing k =
va(t, ) V k] and £(s,y) = Gmn(t,,5,y), integrating ([2.4) in (¢, x) over Q2 and
(3.6)), over @ \ @2, using the same arguments as in [3] and [14], we find

lim a(vi, Vyg(vi)) - Vyg(or)Hs(g(v1) — g(va V k7)) Cmon
=0 J{Q\Q1} x{Q\Q2}

= lim a(v1, Vyg(v1)) - Vyg(v1)Hg(g(v1) — g(v2 V k) Cmon
0=0JQx{Q\Q2}

< [ bon) = b2 VD) (G
@xQ (3.13)

[ Xy @ VEL0) = ale2 VELL0) - Vi
QxQ

— Ho(’Ul V k‘y — v V k;’)d(’l)l V ]{);7, Vyg(vl \% k‘;])) “VyCmn
QxQ

+ /Q X{vl >v2\/k;7}f1<m,n-

Now, since : (t,2) + (mn(t,2,s,9)Hs(g(v1 V k) — g(ve V k})) € D([0,T) x
Q) for a.e. (s,y) € Q, we have

/ a(v1Vk], Vyg(v1VE])) Vi (Hs(g(v1Vk]) = g(vaVE]))Cm,n) dzdt = 0. (3.14)
QxQ
Therefore, going to the limit on §, we get

lim a(vr V k], Vyg(o1 VE])) - Vag(va V E])

070 J{Q\Qi} x{Q\Q2}

x Hs(g(v1 V k) — g(v2 V k)G

n Ny n n (3.15)

= Ho(g(v1 V k) — g(v2 V E]))a(vr V k], Vyg(v1 VE])) - VaGmn
QxQ

= Ho(’Ul V k; — vy V k;?)d(vl, Vyg(vl V k‘?)) . VJJCer
QxQ

Arguing as in [I4], inequality (3.13)) can be written as follows
/QxQ{_&(vl \ k_yv Vyg(vl \ k?)) . Vm+yCm,nH0(U1 \Y k_;? — V2 V k‘;])

+ /QxQ{(a(Ul V k], 0) —a(v2 VE],0)) - VG
+ (b(v1 V k) = b(v2 VE])) (Cmn)s + frlmon Y Ho(v1 V k] — v V E]) (3.16)

> lim {a(v1 VK], Vyg(v1 VE]))) - Vyg(or V k])
=0 J1Q\Q1} x{Q\Q2}

—a(v1 V&, Vyg(v1 VE])) - Vig(ve V E])
X Hé(g(vl v k;) —g(va Vv k;))cm,n}

with Vi (-) := Va(-)+V,(-). Now, as v, is an entropy solution of Py 4(vo2, u2, f2),
choosing k = vi(s,y) V k;’, £t ) = Gnn(t, @, 5,y) in (2.5) and (3.7) (with v = vg,
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vo = Vo2, f = f2 ), integrating (2.5)) in (s,y) over @1 and (3.7]) over @\ Q2, we find

lim a(va, Veg(v2)) - Vag(va) Hs(g(v1 V k] ) — g(v2))Cmon
=0 J{Q\@i1xQ
= lim a(va, Vig(v2)) - Vag(v2) H(g(v1 V k) — g(v2))Cmon

020 J{Q\Q1 1 x{Q\Q2}
< / (b(o1 V &) = b(02))* (G )t
QxXQ

[ X sl [ (00 VED) = b002) G (0..5,1)
QxQ QxQ

+ / X{vl\/k:;’>v2}(a(vl N k?a 0) - CL(’UQ, ng(vg))) : vxcm,”
QxQ '

(3.17)
It is easily verified that
/ (02, Vg(02)) - Vg (02) H 90V K) — 9(02)) G
{Q\Q1} x{Q\Q2}
- [ {02 V KL, Vag(s v KY)) - Vag(on v )
{Q\Q1}x{Q\Q2} (3.18)
x Hi(g(v1 Vv k?) —g(v2 Vv k;]))cm,n .
+ / a(va A K, Vag(va AKY)) - Vig(vg AE])
{Q\Q1}x{Q\Q=}
x H(g(v1 V E]) — g(v2 A K])) G
Moreover, the right hand side of (3.17)) is equal to
/ (b(v1 V k) = b(vz v k?))Jr(Qm’n)t
QxXQ
- X{o1VE? >0 VET} X{va >k7 } f2Cm.n
XQ :
— Ho(’Ul \Y k;] — vV ky)d(m \Y k;], ng(vg V k;’)) . Vszyn
xQ
+ X{vlvk;’>mvk;}(ag(9(vl \ k;])7 O) - ag(g(v2 \ k;)a O)) : vwC’m,n
xQ (3.19)

+ (b(vl v k;) - b(v()? v k?))JrCm,n(Oa Z,s, y)

2

X

+

el il R S

00) = (02 G = [ Xy V0000 VD) G
xXQ QxQ

+ (b(k?) - b(v02))+<m,n(07xv57fy)a

+ X{k?>v2}(a(k}77 0) - CL(UQ, VIQ(UQ))) : Vr(m,rr

xQ
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Since (,9) = Cmn(t, 2, 8,9)Hs(g(v1 V k) — g(v2 V E]))) € D([0,T) x Q) for a.e.
(t,x) € Q, we have

/ a(ve V k], Veg(va VE])) - Vo (Hs(g(v1 V E]) — g(va V E]))Cmon) = 0. (3.20)
QxQ
Therefore,

— giﬂ% a(va V k], Vaog(va VE]))) - Vyg(or V E])Hg(g(v1 V E])
{Q\Q1}x{Q\Q2}
- 9(1)2 \ k_;]))gm,n

= Ho(g(v1 V E]) = g(va V E}))a(v2 V k], Vag(va V EJ))VyCnn
QxQ

The second term in the right hand side of (3.18) being nonnegative, inequality
(3.17) can be equivalently written as

/QXQ(b(Ul vV k;]) — b(UQ V k;’))+(Cm,n)t - /QXQ X{vl\/k;’>1)2\/k;7}X{1)22k;’}f2Cm,n

— H()(’Ul \Y k;? — V2 vV k;’)&(vg \Y ]{137, ng(vg V kj’l)) . (VyCm,n + chmm)
QxXQ

+ / (a(v V k;’,O) —a(vy V k?, 0)) - Vil Ho(v1 V k? —vy V k;7)
QxXQ

+ / (b(v1 V k) = b(voz V E])) T Cmn (0, 2, 5,y) + / (b(k])) = b(v2)) " (Cmyn )¢
QxQ QxQ

+/ X{k;’>v2}f2<m,n+/(b(k;,) _b(vOQ))+Cm,n(vavsvy)a
QxQ Q
] X (@0.0) = vz, Vag(12))) - VoG

QxQ

> lim a(va V k], Veg(va VE])) - (Vaeg(va V E]) = Vyg(vr V EY))
=0 J{Q\@1}x{Q\Q2}

x H(g(v1 V k}) — g(va V k7)) G-

Summing up inequalities (3.16) and (3.21)), we get

lim (a(vi V K], Vyg(vr VE]) —a(v2 V k], Vag(vz V EY)))
120 J(@\Q)* (Q\Q2)
< (Vyg(vr VE]) = Vag(va V E]) Hi(g(v1 V k) — g(v2V k)G

(3.21)

— lim (ag(g(v1 V E]),0) — a(g(v2 V k7)), 0))
=0 J(@\Q1)%(Q\Q2)
x (Vyg(v1 V E]) = Vig(va V k) Hg(g(v1 V E]) — g(v2 V E]))Gnn

< [ 0oV = boa VD) (€D Paapn
QxQ
+/Q X {1 vl >0 vk X {on >0 (1 = Xus >k f2)Cmon (3.22)
X

Q
+ /Q /Q (b(or V ) — vz V K1) G (0,2, 5,7)
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_ /Q (0001 VL T K)) — ales VK VgV D)
X

X (szryCm,n)HO('Ul V k;’ — vy V ]ﬂ?) + /Q Q(b(k;’) — b(vQ))+(Cm,n)t

_ \ ny _ +
/Q Nk o+ /Q [ 00D = b002) "G (0..5.9)

| Xt @(],0) — oo, Vag(12) - Vi
QxXQ

Denote the integrals on the right hand side of (3.22)) by I, .. ., I successively. Using
similar estimations as in [3] and [5], going to the limit with m and n respectively,
one gets

lim I = /Q (bor V K1) — b(us V K1) (EP),,

m,n— 00

limsup I < /C2I€1X{U1>k;'}(f1 - X{ngk;’}fZ)f(tvx)PSO;!(tv1')

for some

+
k1 € L™(Q) with k1 € sign(vy — vy V k;) a.e. in Q, (3.23)

limsup I3 < /(b(um VED) = b(k] V v2)) TE(0, 2)@] (L, )P,
Q

m,n— 400

limsup Iy = / Ho(v1 V k] — vz V E])(a(v1, Vg(v1 V k7))
Q

m,n——+00
— a(va, Vg(va V E}))) - V(§p]P).
Next, applying Fubini’s theorem and taking into account (3.10]), we find

Is+Ig+ 17+ Is = /Q(b(k;]) — b(v2))+(én)t — LX{k?>U2}f26”d(t’ x)

- /Q Nt (@(K,0) — (w2, Vi (9(02))) - Vi Co)

+ /Q (b(KT) = b(v02)) "¢ (0, ) da.

Following [14], we define the functional Ly on D([0, T[x£) by
£g(0) = [ (B0 =b02) "6~ Xpgouay 20
- /Q Vet (@K1, 0) — a2, Vag(v2)) - Val (3:24)

+ /Q (b(KT) — b(v2)) (0, 2)d.

As w9 is an entropy solution, we have Ek;(C) + Jyw (2,k],u2)¢ > 0 for all

¢ € D(0,T) x Q), ¢ >0, ae. Ek;] is the sum of the positive linear functional
¢ € D0, T) x RY) Ly (C) + Jsw™ (z, k], u2)¢ and the linear functional: ¢

Jsw (z, k], uz)C. Since (O = (€0n®])n C D([0,T) x Q) is an increasing sequence
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satisfying 0 < 0,9 P < Epl/P (Ekn (o) + Jsw™ x,k],uQ)én) is a bounded and
increasing sequence and thus converges and ( fz z, k/ ,ug)én converges also.
As a consequence, I5 + Ig + I7 + Is = Ekn (6730”%) converges as n — 00.

To estimate the terms in the left hand side of inequality -7 we use our
assumption on the diffusion function g: As a(r,0) = 0, for small § > 0, we have

/ (@(v1 V K, Vyg(o1 VED) — ava V K, Vag(vs V ET)))
(Q\Q1)x(Q\Q2)

x (Vyg(vr VE]) = Vag(va VED) Hi(g(v1 V k) = g(v2 V k)G

1 - .
=5 . (a(v1 V&7, V,9(T?(vy V k7)) —a(va V K7, V.g(T?(vy V )

X (Vyg(T?(v1 V E))

- va:g(TQ(UQ \4 k?)))X{vl\/k;’,vg\/k;’G]A2,+oo(,0<g(vlVk;’)—g(UQ\/ky)Sé}Cm,n

1 - .
+ 5 “ Q)(a(vl V k], Vy9(T?(vy v k7)) — a(T (v Vv k7), Veg(T  (vg v k7))
X

X (Vyg(T?(v1 V K]))

- vﬂ?g(Tl (UQ \% k;‘])))X{vl\/k?E]A2,+oo(,v2\/k;.7e]foo,Al(,0<g(v1Vk;’)79(1}2Vk§7)§5}4m,n
= 81 + 82.

We estimate Sy and split this term as follows:

Sy = 1
0 Jiaxq)
x Vyg(T?(vy V k?))X{0<g(v1Vk;’)—g(vzvk;’))gé}X{vz\/k;’6]—00,A1(}Cm,n
1
0 Jiax@
X Vag(T" (v V k)X (0<g(orvi?) —g(oavk?) <5} Smn
1

+ / a(T" (v2 V K1), Vag(T" (v2 V E1)))Cmin
(QxQ)

X vwg(Tl (02 \ k;))X{O<g(1)1\/k;.’)—g(vz\/k;’))Sé}X{vl\/k?E]Ag,+oo(}<m,n

1 .
=3 / a(T (v Vv k7), Veg(T (vy V k) Cmon
(@xQ)

x Vyg(T?(v1 V k]))X(0<g(or kD) —g(oavk?)) <5} Gmon
=8+ S5+ S5+ Sy

a(T?(vy V E}), Vyg(T?(v1 V k1))

a(T*(v1 V E]), Vyg(T? (01 V £])))Gmn

By the weak coerciveness condition (|1.3),

SE 5[ A VKDV T D)
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< 6C(|f1||L°°(Q)a|b(v01)||L°°(Q)a”alnL‘x’(Q)v|Ul”L""(Q))/QX{O<—g(v2)§6}-

In the above inequality we use (3.4) and (3.5). Hence, lims_oS: = 0 and S,
1 =2,3,4 can be estimated in the same way. Dealing with S;, we use the additional
hypothesis (1.4)) on the vector field a to get

S > _7/ X{vl\/k;','ug\/k;le]Ag,+oo(,0<g(v1Vk;’)fg(vg\/k;’)gzs}Cm,n
(@%Q)

x B(g(T?(vy V k) — g(T%(vy v k7))
X (L4 [Vyg(T* (01 VED)P + [Vag(T?(v2 V K]))P)
1

T3 /@XQ) L(T(vy VE]), T?(v2 V E])) - Vyg(T? (01 V E]))

X X{’Ul\/k;,’Ug\/kﬁ;’€]A2,+OO(,O<Q(’U1V]€;)79(’02Vk‘?)§6}<”ﬂ,n
1
0 Jigxe)
X X{'ul\/k;’,vzvk;E]Ag,+oo[,0<g(v1\/k;’)fg(vz\/k;)gﬁ}gm,n
1
0 Jioxe
2
X Vyg(T*(1 V E]))X {01 vk? vavET €] Aa,+ 00 ,0<g(0n VED) — g (02 vk <5} omon

x _% /QXQ)(CL(TQ(Ul VED),0) — a(T2(05 V k7),0))

+ D(T%(vy V kD), T? (v V KY)) - Vag(T?(v2 V kD))

(a(T?(vy Vv k7),0) — a(T?(vy vV k7),0))

X Vag(T?(va V K ))X (01 VI 02V €] Az 00l 0< g (01 VET) —g (02 vET) <6} Smin
=S+ 87+ S+ S+ S).
Applying the divergence theorem, we get

7(”1,’02)
Sil B / (/ (ag(g(TQ(UQ \Y/ k;’)) + o7, 0)
QxQ *Jo

(3.25)
— ay(g(T*(v2 V K)),0)) dr) ¥y,
and
5 y(v1,v2) )
si=-[ ([ lo@e .o
QxQ *Jo (3.26)
— ag(g(T*(v1 V k7)) = 67,0)) dr)Vszm
where a,(r, &) = a(g™!(r),€) and
y(v1,vs) == inf (g(T?(vy V k7)) — g(T?%(vy Vv k;’)))*/&, 1).
Due to the continuity of a4(r,§) in r €]As, +00], it follows that
Cod e ob
}%Sl = }13(1)81 =0. (3.27)

The terms S7 and S} can be estimated in a similar way, finally as B is locally
Lipschitz in g(]As, +00[),

. 1 .
lim 81 > clim X{v1VET wa VKT E]Ag,+oo[,0<g(vlVkT.’)fg(vQ\/kt’)Sé}Cmm
§—0 §—0 (Q%Q) J J J J
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x B(g(T*(v1 V k})) — g(T*(v2 V £)))
X (L+[Vyg(T (w1 VED)IP + [Vag(T?(v2 V k) P) = 0

for some constant ¢ depending on [|v1| (@), [va|lz (@) and [u|| = (x). Combining
all the estimates, we get

0< /Q (b(v1 v K) — blea v KD (€07 P

- /Q(a(vl V k], Vg VE])) —a(ve VE], Vg(va V E7)))

n n n
X vx(&@jP)X{vl\/kj >vaVEk]} (328)

+/QI€1X{U1>k;7}(f1 — X{u2k1} 2)§0] P

4 /Q (b(oon v K) — b(uon v K1) HE(0, 2)0 (1, 2)P(t, )
+ nlLH;o Ek;’ (fgﬁ?’PO’n)

Second inequality: We are going to prove the inequality

T
N
0 oQNB

< [ (o K - b)) (6P
Q
- /Q Xk} (@(01 A KD, Tag(o1 ARD) = alvz, Tag(v))) - Va(E07P)
+ / (b(vor A k7) — b(uig2)) HE(0, 2) " (1, 2)P
+/ KaX {wa<k?} (Xqu <k} f1 = f2)6@] P
Q

+ /Q(b(v(n AN k’y) - b(vog))+€(07l‘)¢;}(t,z)7}
(3.29)

for some iy € sign®(vy A kj —vz). Then, summing up (3.29) and (3.12)), we find
in the final step the desired comparison result. To this aim, we choose as a test
function

G = Gl + (8,255, 9) = Pi(y)E(s,y)on(y — ) pm(s — 1)@ (5, ).
Then, for m,n sufficiently large,
(5:9) = Crn(t, 2, 5,y) € D0, T[xQ), for any (t,2) € Q,
(t,z) — Cﬁ,’l{n(t,x,s,y) € D([0,T[xRY), for any (s,9) € Q
supp( f,iin(t,s,y, ) C By, for any (t,s,y) € [0,T)% x supp(P;).
As v1 = vi(s,y) satisﬁe and 7 choosing k = vy(t,x) Ak and § =

Cmn(t, x,-, ), integrating (2.4) in (¢, z) over Q2 and (3.6)) over Q\ Q2 (note that, due
to the new choice of the test function, this choice is admissible), for a.e. (¢,z) € @,
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we get

— lim ., a(vi, Vyg(vi)) - Vyg(or)Hs(g(v1) — g(va AK]))Cmon

< /Q (b(v1) = b(vz A KDY (G
[ (a(01,0) = a2 AKL0) - Vil
+/QX{U1>U2/\k;7}f1Cmm+/Q(b(1}01)_b(v2/\k;]))+cm7n(t’x’0ay)
/C;X{v1>v2/\k;'}a(vlvvyg(vl)'vy<m,n

- /Q (b(wn A KD) — bz A KD (G
- /Q (a0 AKY,0) = a(v2 A K1, 0)) - VyonnXfur k25 vpnk?)
+/QX{mAk;>v2Aky}X{vlgk;}f1Cm,n
+ /Q(b(v01 AKD) = b(vs AR G (t,,0, )
+ /Q (b(v1) = (D) G
- /Q Yooy L (@02, Yy g(01)) = a(k?.0)) - VG + FrGonn)

+ / (b(von) — B(ED))* G (£, 0, ),

where for the last equality we have used the fact that (r — s A k)T = (r Ak —
5 A k)Jr + (T - k)+7 X{r>sAk} = X{rak>snk}X{r<k} + X{r>k}> for all r,s,k € R.
Let 1 be sufficiently small so that for all (s,y), (t,x) € ¥ with d((s,y), (¢t,z)) < n,
ur(s,y) —ua(t, @)| < 5.

As vy = v(t, x) is an entropy solution, choosing k = vi(s,y) Ak}, £ = (mn n (this
choice is admissible because g(k}) = 0), integrating (2.5) over Q; and (3.7) over
Q \ Q1, we obtain

— lim (a(vz2, Vg(v2)) — a(v2,0)) - Vg(v2) Hi(g(v1 AK]) — g(v2)
TR\ Q2)xQ

_/Zw*((tw),m(s,y)/\k;],uz)cm,n
U1 m (%) + m,n)t
S/QU)( NI = b(02))* (G

+/QX{UIA1@;7>U2}{(G(”1 /\/f?ﬁ)—a(vz,vzg(vz))~szm,n—/szém,n}

for a.e. (s,y) in Q. The integral on the left is > — [, w™((¢, z), k;],uz)gm,n. More-

over, obviously, (rAk —s)™ = (r Ak —sA k)t for all r,s,k € R. Therefore,
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integrating the preceding inequalities in (¢,z) resp. (s,y) over @, summing up,

using the same type of arguments as above, passing to the limit with m,n — oo
successively, for some ko € L(Q) with kg € sign™ (v3 A k] — vz), we obtain

- [ @ (to) B ua)eP

b

< / (bon A KT) — b(va A KD EPig]
Q
—/QX{UIAkyzvak;}(a(vl/\k?’VQ(”l/\k;]))
s AR, Tglos AKD)) - Val€Pi)

+/in2><{v2<k;}(><{vlgkj}f1 — [2)¢Pi]

(3.30)

+ /Q (b(uor A k) — b(uog AKD)EO, 2)Pi(@)e] + lim £(60,Pucl)),
where
Fri= La(vn) : ¢ € D0, T[XRY) 1 / (b(vr) — b(k))*Cs
Q
+ [ Xusfa(on, Vo) = ak,0))- 9,6 + 26}
Q

+/Q(b(vo1) —b(k))*¢(0,y).

Using the same arguments as above, we can prove that ﬁk(fanﬂ-@;’)) converges (as
Ly (§0,Piw])) with n. Note also that (rVk—sVE)* +(rAk—sAk)t = (r—s)T, for
all 7, s,k € R. Moreover, if we define £ 1= K1X {4, 517} T K2X{v,<k?} X{v1 <k}, then

K= K1X{03>k7} X {01 >k7} T F2X{oa<k?} € sign™ (v; — vo). Therefore, summation of

and yields
- [tk wPie]
/ (b(er) — b(e2)) TPy
~ [ Xtz (aton, Taton) = alen, To(e) - . (€Pie) (331)

/ R)EP + /Q (b(vo1) — b(v2)) (0, 2)P;0()
n_{[;o L(glpz'(?j Gn) + nh_{go E({’Pﬁp?o‘n),
for any £ € D([0, T[xRY), £ >0, for all i € {1,...,p}, j € {1,...,py}.

Remark 3.5. For £ € D([0,T) x Q), the method of doubling variables allows to
prove the following local comparison result:
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There exists k € L>®(Q) with & € sign®(v; — v2) a.e. in Q such that, for any
CeD([0,T[x€), ¢ =0,

0< /Q (b(vr) — b(v2))*C + /Q K(f1 — f2)C
- /Q Xtorsoap (@(v1, V(1)) — a(vs, Vg(v2)) - V¢ (3.32)

+ [ 0m) - b)) 0,
Q
The proof in this case is easier as the global comparison result. Indeed, as £ = 0

on X, we can choose k = vy(t,x) (resp k = v1(s,2)) in (2.4) (resp in and we
have only to add the obtained inequalities, then to go to the limit on m,n in order

to get (3.32).

As¢=&(1—opm)+&om and Loy, € D([0, T[xN) for m sufficiently large, applying
the local comparison principle (3.32]) with ¢ = £o,,, the global estimate (3.31)) with
&(1 — o4,), we obtain

/Q(b(vl) — b(v2))TEPip] = X{vizva}(a(v1, Vg(v1)) — alva, Vg(v2))) - Va(EPigp))

; /Q (= £+ [ (om) = b)) PE(0.0)Pig] o)

[ Xz (aer, Vg(o0)) = alvs, Tg(02) - Vale(1 = o) Pi])
" /Q KU = )€ = 0 Peg+ [ (Blamn) = b)) €00.2)(1 = ) Pig] )
> = [ () )P = o) = Jim L1 = o))
= lim L(EPig](1 = om)om)
== [ () )P — lim P 0w = om)
~ lim LEPi (00 — Omon)).-
Note that Picp?crnom = Picp;?crm for n sufficiently large. Therefore,

lim lim L({Pip](0n — 0moy)) = lim  lim E(fpiwg(an — Om0n)) =0,

m—0o0 N—00 m—00 N—00

and thus, passing to the limit with m — oo in the preceding inequality yields

/Q(b(v1) = b(v2)) T (£0])iPi = X{vr 2023 (alv1, Vg(01)) — a(va, Vg(v2))) - Vi (EPip])
; /Q (= £+ [ (om) = b)) PE(0.0)Pig] o)

> / W ((t2), K, un)EPs
b}
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forall j=1,...,p,. Summing over j =0,...,p,, we find
/Q(b(v1) = b(v2)) &P = X (3051 (a(v1, Vg(v1)) = alv2, Vg(v2))) - Vi (EP;)

k(f1 = f2)EP; vor) = b(vo2)) £ (0, 2)Pi
+/Q (f f)gm/ga;(o) b(vo2)) €(0, 2)P

W (8, ), K, u2)EPs

9 ]7

M
—

v

j=17%

Pn N
_Z/ w((t, @), ur + 5, u2)éP;

j=1"% 2

Pn
_ )
:_Z/ w ((t"r)au1+77u2)§
j=1 YXNoOB; 2

By continuity of w , letting ¢ — 0, and after summation over i, we get (3.1]).

Remark 3.6. (i) In the proof of Theorem we have only used the fact that v;
verifies the following “local entropy inequalities”: For all ¢ € DF([0,T) x RY) and
all k € R with k£ > maxsnsupp(e) v1,

0< /Q (b(or) — b())*E, + /Q (b(vor) — b(k)) €0, )

(3.33)
+ [ oo (i€ = (afer, Tg(0) - alk,0)) - V€
Q
and for all k& € R with k < mingngupp(e) v1,
0< [ (b(k) = b(v1))"& + [ (b(k) — b(vor)) T£(0, )
k h o

- /Q Xiksory (1€ 4 (a(vr, Vg(or)) — a(k,0)) - VE.

4. EXISTENCE OF AN ENTROPY SOLUTION

Let Q denote some Lipschitz domain strictly larger than €2, Q =(0,T) x Q. We
define the trivial extension by 0 of the data ug, f on the larger domain

. ug on ~ f onQ@
Ug = ~ , f= ~
0 on Q\Q, 0 on Q\Q.

Let p,q € N (the penalization parameters) and define the penalization term
Bp.q(t,z, 1) = XQ\Q(p(T —a(t,z))t —q(alt,x) —r)T, Vr e R, ae. (t,2) € Q where
@i is some extension of u on Q \ Q with g(#) € LP(0,T, WP(Q)). Multiplying @ if
necessary by a smooth function x such that x = 0 on the boundary ¥ and x =1
on ¥ we can assume that 4 = 0 on X := (0,T) x 9. Note that 3, , is Lipschitz
continuous in r, uniformly in (¢,z). Moreover, for all p,p’,q,¢ € N with ¢ < ¢/,
p<p,

ﬂp,q (ta z, T) - /Gp,q/ (tv xz, 7") > 0, ﬁp,q (ta z, T') - 6p/,q(ta z, T) < 07
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for all 7 € R, a.e. (t,z) € Q, and

0 ifreR (t,z)eqQ
lim Byt z,r) =R ifr=a(tz),(t,z) € Q\Q
’ 0 otherwise.

The proof of the existence result consists of three steps: In the first step, we prove
existence of a bounded entropy solution of the doubly penalized problem with ho-
mogeneous boundary conditions and L*-data vy and f: (Problem Pp’q (vo, 0, f,v))

ba(v); — diva(v, Vg(v)) + 9 (v) + Bpq(v) = f on Q
“0=0" on some part of ¥,
ba(v(0,.)) = b(%p) in Q,

where b, (1) = b (r)+ar, ¥ : R — Ris increasing, Lipschitz continuous with ¢(0) =
0 and ¥(R) = R. This is done via approximation with the non-degenerate evolution
problems with homogeneous boundary conditions: (problem Pp;?gs (vo, 0, f, 1))

ba(v)t — diva(v, Vge(v)) + ¢(v) + Bpq(v) = f on @
v=0 on f),
ba(0)(0,.) = ba (o) in Q,

where g.(r) = g(r) + er. In the second step, we let p,q — oo and prove the
existence of an entropy solution of the degenerate problem Py 4(vo,u, f,1). Then
in a third step, we let @« — 0. Finally, in the last step we pass to the limit with the
perturbation term % to 0 and prove the existence result for L'-data. We only give
the details of the proof for the first and the second steps which are crucial. In the
last steps, we use similar arguments as in [6] and [3].

4.1. First step. In this step, we assume that v : ¥ — [A1, As] is continuous with
on %, i€ C(Q), 4 =wuon X and by (@), € L'(Q). The existence of a unique weak
solution v of Pl?a(,)gg (vo, 0, f, %) is rather a classical result. Indeed the problem can
be equivalently formulated as follows: (Problem (EP)(vo, f,4,¢))

((ba 0 9= ") (0))e — diva(g: " (v), Vo) + ¢(g- (v)) = f  in Q
v=0 onX

ba(v(0,.)) = ba(@o) in Q

As (r,€) = a(g-t(v),€), r € R, £ € RY satisfies the same hypothesis as the vector
field a thanks to the strict monotonicity of g, the classical theory of Leray-Lions
applies and one can prove as in [I4] that the weak solution satisfies the entropy
inequalities:

For all k € R, for all ¢ € C§°([0,T) x RY) such that £ > 0 and (—g.(k))T¢ =0
a.e. on X,

o</{ (v2) — ba(k)) e + /( (o) — ba(K))*£(0, )

(4.1)

+ / Xtooi (F = (02)) — (a(ve, Vg (v2)) — a(k,0)) - V¢
Q
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and for all k € R, for all £ € C5°([0,T) x RY) such that £ > 0 and (g.(k))*¢ =0
a.e. on X,

0< [ {(b o) e+ [ (balk) — b)) *E(0, )
J h »
- /Q ooy (F = $(0:)€ — (a(ve, Vgo(02) — a(k, 0)) - VE).

Now, we want to go the limit with & — 0. Let f € LOO(Q), Uy € LW(Q) and
v € L*°(Q) be the unique entropy solution of Pf;?gs (09,0, f,1). Due to the Lips-
chitz continuity of 3, 4, using Banach’s fixed point theorem, applying the compar-
ison result Theorem there exists a unique entropy solution v. of the penalized
problem (problem F;"? (vo,0, f, %))

Obe, (V)
ot

—diva(v, Vg.(v)) + ¥(v) =¢ on Q
v=0 onX
v(0,-) =v onQ
with right hand side ¢ = f — B, 4(v:) a.e. v, € L®(Q), ge(ve) € LP(0, T, W, *(Q))
and v, satisfies the following entropy inequalities:

For all k € R, for all £ € C§°([0,T) x RY) such that ¢ > 0 and (—g.(k))* ¢ =0
a.e. on X,

0</{ (ve) — ba(K) & + /( o (50) = ba(K)*€(0,)
(4.3)
" /Q Npouoiy ((F = $(02) = Bpg(02)) — (alve, Vg (v2)) — alk,0)) - VE

and for all k € R, for all { € C§°([0,T) x RY) such that £ > 0 and (g.(k))T¢ =0
a.e. on X,

0= [ {(ba ve)) "€+ | (ba(k) = ba(D0))TE(0, )
k h “
- /@X{k>vg}((f —P(ve) — ﬂp,q(ve))f — (a(ve, Vge(ve)) — a(k,0)) - V§).

By a particular choice of test functions, one can prove (see [6]) that (v.). and
(IVge(ve)|)e are uniformly bounded in L*°(Q) and LP(Q) respectively. Thanks
to the growth condition (1.2)) on a, it follows that (a(ve, Vge(ve)))e is bounded

in L (Q)N as well. Following classical arguments, extracting a subsequence if
necessary, we can prove that as ¢ — 0,

g=(v:) converges weakly to some w € L=(Q) N LP(0, T, W, *(Q)) (4.5)
in LP(0,T, Wy (Q)) and
a(ve, Vge(ve)) converges weakly in LPI(Q)N to some x € L¥ (Q)N. (4.6)

Now, we use the L* uniform bound on (v.) in order to deduce the weak-* conver-
gence of (ve) to a function v. Then, going to the limit in the approximate entropy
inequalities, we prove that v is an entropy process solution of Plf ;Jq(vo, 0, f,v) (see
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Definition [4.3] below). Finally using a “stronger” principle of uniqueness, we show
that ¥ is the entropy solution of P}’ ;(vo, 0, f,v) and that the convergence is strong.

Definition 4.1. Let © be an open subset of RY (N > 1), (u,) be a bounded
sequence of L>°(Q) and w € L*>(Q x (0,1)). The sequence (u,) converges towards
u in the “nonlinear weak-* sense” if

/qu(un(m) dm—>/ /(b u(z, ) (z)dedy, asn — oo, (4.7)

for all v € LY(Q), for all ¢ € C(R,R).

Lemma 4.2. Let Q be an open subset of RN (N > 1) and (u,) be a bounded
sequence of L™ (). Then (u,) admits a subsequence converging in the nonlinear
weak-x sense.

For a proof of the above lemma, see [2I] or [I§]). According to Lemma the
sequence (v.) is convergent in the nonlinear weak-* sense to some v € L™(Q X
(0,1)). We will prove that the weak-+ limit is a weak entropy process solution of
Py (2,0, f,) in the following sense.

Definition 4.3. Let vy € L>°(Q) and f € L®(Q). A function u € L=(Q x (0,1))
is a weak entropy process solution of Plf);(vo, £ if

g(u) € LP(0, T, W2 (), glult, 2, 1)) = g(ut, x)) ae. in G x (0, 1);
bullet for all k € R, for all £ € C§°([0,T) xRY) such that £ > 0 and (—g(k))T¢€ =
0 a.e. on X,

/ / {(bCw) = b0 60) di+ [ (o) = ()60,

+/ (/ X{usk} (f =¥ (u) = Bpq(u))§ — (a(u, Vg(u)) — a(k,0)) - V&) du
o JQ

(4.8)
and for all k € R, for all £ € C5°([0,T) x RY) such that £ > 0 and (g(k))*¢ =0
a.e. on X,

/ / {(b00k) = b)) ") di+ [ (6(k) — (o)) *E(0,)

Q
—/ (/ X{k>u} (f = ¥(w) = Byq(u))§ — (a(u, Vg(u)) — a(k,0)) - VE) dp).
v (4.9)

Obviously, the sequence a(ve,0): also converges in the weak, sense, to a(v,0).

To prove the strong compactness of g(v.) in L'(Q), we estimate fOTih Jo lg(ve) (t+
h,xz) — g(ve)(t, )| for all h small enough: Let L ;-1 > 0 be a Lipschitz constant

of gobs! on [~L, L] with L > ||’U€||Loo (@) for all € > 0. Then, for all 7,5 € [-L, L]

lg(r) = g(s)” < L [ba (1) = ba(s)llg(r) — g(s)I-

gobat
It follows that

T—h
[ [lawe ne) - o)
0 Q
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1/2

IN

QI ([ latwe) e+ ha) stk 0) )

N

1 -
< Lgob;'Q'l/?(/Q lg(ve)(t + hyz) — g(ve) (¢, @) ||ba (ve) (E + hy )

b (vt x)|) i

Now, as v. is a weak solution of P;"? (vo, f,v), taking g(ve)(t + h,.) — g(ve)(t,.) €

I/V1 P ( as test function, we get

/Ig ve)(t + h, ) — g(ve)(t, 2)[|ba (V) (t + h, 2) — ba(ve) (L, )]
T—h pt+h
S/O /t /Qa(vsavgs(vs))‘V(Q(UE)(t+h,’JJ)79(1)6)(@:17))

T—h pt+h ~
s [ [= 00 — Balea(we) e+ ) o000
0 t
< hM
for some M > 0 independent of . It follows that

T—h
/0 /fz lg(ve)(t + hyx) — g(ve) (¢, )| — 0 when h — 0, (4.10)

uniformly with respect to €.
Taking into account (4.5) and (4.10), as v. — v weak—sx, it follows that up to a
sequence

ge(ve) converges strongly and a.e. to g(v) € LY(Q) (4.11)
(VeX{g(v)£0}) converges strongly in LY(Q) and a.e. to UX{g(v)#0} (4.12)
g=(v.) converges weakly to g(v) € L=(Q) N LP(0,T, W, ?(Q)) (4.13)

in L?(0,T, W, ?(Q)). In particular, it follows that g(v) is independent of y. Now,
in view of the above estimates, it remains only to identify x with the weak limit of
a(ve, Vge(ve)) in LP(Q)N. Let us note first that

[ i V)
{velAr,42]}

- / a0, Ve (02)
{ve[A1,Az],v.€[A1,A2]}

alv 1) = 9\te " a(ve, Ve
+/{UG[A17A2]}| (00, VT (g2 (A1) — g(v2)) >>|+/{ 800, VT (o(0)

UE[Al,AQ]}

(e, VTsg. (v2)] + / l(ve, Ve (v2)].

)
{ve[A1,A2],9c (ve) <—3} {velA1,A2],9c (ve)>5}

The first term in the right hand side can be estimated as follows:

/ ja(ve, Vg (ve))]
{vE[A1,As]v.€[A1,A2]}

</ 800, V(T ny9(v) — Tong(2))|
{eA1<ge(ve)<eAq}
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(Al + \A2|)/ V(T2n,9(ve) = Teayg(ve) P~
{eA1<ge(ve)<ecAz}
As v, is a weak solution of Pg;’?g(ﬁo,o,f, ¥), taking Tea,(g(ve)) — Tea,(g(ve)) as
test function, we get

/@ IV (Te s (9(v2)) = Tea, (9(v)) P < el Az — Arle(If | e gy + 19(T0) [ < (6)-

Passing to the limit with € — 0 and § — 0 successively, the second and third term
can be estimated as in Lemma [3.3] The two last terms go also to 0 with ¢ — 0 for
fix 0 thanks to the a.e. convergence of g.(v:) to g(v). Combining all the estimates,
it follows that

x =0 a.e. on the set {Vg(v) = 0}. (4.14)
Now, we use the regularization method of Landes [24] in order to prove that xy =
a(v, Vg(v)). For v € N, we define the regularization in time of the function g(v(t, ))

by
t

@m»mw:/ /=g (v) (5, 7) ds

for a.e. (t,x) € Q and for s < 0, we extend v(t,x) by a function 94 (z) € L‘X’(Q) N
WP () with [|b(To) — b(38))|l1 < v~'. Observe that (g(v)), € LP(0,T; W, P(Q)) N
L>®(Q) and, moreover, is differentiable for a.e. t € (0,T) with 2(9(v)y = v(g(v)—
(9(v)y) € LP(0,T; Wy () N L¥(Q), (9(v)(0,2) = g(T)(z) ae. in Q, and
(9(v)), — g(v) in LP(0, T; Wy (Q)) as v — oco. Let o € DH([0,T)). The main
estimate is:

lim inf lim (b(ve)e, 0 (g(T2ve) — (9(T0)),)) 2 0,

V—00 e—

where (.,.) is the duality pairing between Lp/(O,T; W’l’p'(fl)). Indeed, by the
integration-by parts-formula, (see [3]),

(b(ve)e, o(g=(T?ve) = (9(T?v))0))

ot 9o (T?r)dby (1) — (0) K 9o (T?r) dby(r)
. ECIN

+4ww%mw%»+ém@@%—w@%mm@>

+ [ bali)a0)g(T%5)
Q
:le+12+13+14+15.

It is not difficult to pass to limit with ¢ — 0 in I;, ¢ = 1,2,3,5. Dealing with the
term Iy, we have

Iy = /QUV(Q(T2U) = (9(T?0))u) (bag ™" (9(T?ve))) = ba(g ™" ((9(T?v)),)))
+ = 9(T?v:)) (bag ™' (9(T?ve))) = balg™ (9(T?0))))
+

= (9(T*0))u)ba(g ™" ((9(T?v))0))

/@ ov(g(T)
/@ ov(g(T2)
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+ / o (g(T?02) — (9(T%0)),) (ba(2) — ba(T?02)))
Q

= I} + 17+ 13+ 1.

It is clear that I} > 0 and I} = 0. Moreover,
1= [ ovloT) = (o), bals ™ (9(T20),)
Q
a 2 —1 2
= [ o5 0T beg™ (0(T%0),)

g [T ),
x/a—/ (ba(ogfl)(r)dr
T2
/crt/ b og 1 (r) /
g(T U))u
Y Ry
Ao Q

Thus, as lim._.9,a—0 I3 =0,

lim inf hm(b vg)t, o(9(T?%v.) — (g(T?v)),))

v—oo e—0

/ o / 0~ [0 / " ) dbar)
-‘r/QUt /at/T ’

_ /Q a(0) /A T h be (r) dg(r) + /Q b (v0)a(0)g(T*)

Next, note that

lim sup lim sup/@(d)(vg) + ﬁnq(%))g(gg(TQst) - (Q(TQU))V) =0.

V—00 e—0

(9(T2v0 )
bo (1) dg(r) dr.

/ e " ba 0 g~ 1)(r) dr
0],

Therefore, using o (g(T%v.)—(g(T?v)),) as a test function in the differential equality,
we obtain

lim sup lim sup/@aa(vs, V. (T?v.)) - V(g(T?v.) — (9(T?v)),) < 0. (4.15)

As
timsuplimsup [ ga(v.,0)- V(g(T?0) - (9(1%0),) =0, (116)
Q

v—00 E—00

by the divergence theorem, it follows that

lim sup lim sup/~ oa(ve, Vg (T?0.)) - V(g(T?v:) — (9(T?v)),) < 0. (4.17)
V—00 E—0C Q
This in turn implies (by the same arguments as in the proof of (4.14)) that
iimsuplimsup | oa(o., Va.(02) - Vlger) = (g(0)) <O (418)
Q

V—00 E— 00
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By the pseudo-monotonicity argument, we deduce that

divx = diva(v, Vg(v)) in D'(Q) for all k > 0. (4.19)

Indeed, for £ € D(Q), £ > 0, o € R, we have

«@ /Q oxV§&

=lim | aca(ve, Vge(ve)) - VE
e—0 Q
> limsuplimsup/~ 0a(ve, Ve (ve)) - V(ge(ve) — (g(v))y + af)
Q

v—00 e—0

> limsuplimsup/ oa(ve, V((9(v))y — af)) - V(ge(v) = (9(v))y + af)

v—0oo  £—00 9

Q
> /Q aod(v, V(g(v) — af)) - VE.

Dividing by a > 0 resp. < 0, passing to the limit with & — 0, we obtain (4.19). As
a further consequence of (4.15),

lim lim o(a(ve, Vge(ve)) — a(ve, V(ge(ve))r)) - V(ge(ve) — (g(v)),) = 0.

v—00 e—0 o)

By the diagonal principle, there exists a sequence £(v) such that the (non-negative)
function

O'(G(Ug(,,), Vge(”s(b))) - a(va(u)’ V(g(v))l,)) ’ (VQE('Us(V)) - V(g(v))y) —0

strongly in L'(Q) as v — oo.
By standard arguments we first deduce that

(a(Ve(v); VIe(Ve())) - (Ve (vew)) = V(g(v))) = 0

weakly in L'(Q) and then, using (4.19)), that

/ o(a(vew), Ve (V) - Ve (Vey) — / oa(v,Vg(v)) - Vg(v)
Q Q

as v — oo for all o in L*(Q).

Combining all estimates, for some appropriately chosen subsequence (still de-
noted by v, for simplicity) we can pass to the limit in the entropy inequalities; i.e.,
using &€ € D(Q) as a test function in PP (o, 0, f,v), passing to the limit in
and , we get for all k € R, for all £ € C$°([0,T) x RY) such that ¢ > 0 and
(—g(k))T€=0a.e. on X,

1
v)— +t oz'U~ — VUx + [
os/o/Qwa() ba (k) §+/Q(b(0) ba(k))*£(0, ) .

1 ~
+ [ /Q Xty (F = 0(0) = B (0))€  (alv, Tg(v)) — a(k, 0)) - VE)



EJDE-2009/147 RENORMALIZED ENTROPY SOLUTIONS 27

and for all k € R, for all £ € C5°([0,T) x RY) such that &€ > 0 and (g(k))T¢ =0
a.e. on X,

0< / /Q (ba (k) — ba(0)) 6, + / (ba (k) — b (60)) *£(0, )

@ (4.21)

- / /Q Xy (F = (0) = Boa(0))€ — (a(v, Vg(v)) — alk, 0)) - VE).

Now, to prove that v is the week entropy solution of ngf(ﬁo, 0, f,z/;)7 we use the
following “reinforced” comparison principle.

Proposition 4.4. Let v} € L‘io(Q), fi € L®(Q) and u; € L=(Q x (0, 1) be a weak
entropy process of ngg(@g,o, fiy) i =1,2. Then, there exists k € L (Q x (0,1))
with k € sign™ (u; —ug) a.e. in Q x (0,1) such that, for any & € D([0,T]), £ >0,

1
0 [ [ (ustt,,0) = b)) et v
0 J@
1
Jr/ /Q/‘é(flfg)fdxdtdad,u
0

+ / (b(ud) — b(v2)) " €(0, ) d.

In particular, in the case where f; = fo and v} = v2, we have
ur(t,x, o) = ug(t,z,u) ae. (t,x,a,u) € Q x (0, 1) x (0,1).

Defining w(t,z) = fol u1(t, z, o) da, we have w(t, z) = u1(t, z, o) = ua(t, x,0) a.e.
(t,z,0,3) € Q x (0,1) x (0,1).

The proof of Proposition follows the same lines as those of Theorem [3.1
and is omitted here because it does not contain new ideas. The reader is referred
to [18], in order to verify the technical tools needed to deal with measure-valued
functions. By corollary 3.3 it follows that v is the unique weak entropy solution of
Pg;l(ﬁo, 0, f,1) and the first step of the proof is complete.

4.2. Second step. In the first step, we have proved the existence of an entropy
solution v, , corresponding to the problems ]55 o (90,0, f,v). By Theorem a a
comparison principle holds. In particular, entropy solutions for different penaliza-
tion parameters can be compared: for any p,pi,q € N with p < p/, there exists

Kk € L>®(Q) with x € sign™ (v, , — vp ) a.e. on Q such that, for a.e. t € (0,7),
[<b<vp/,q><t7 ) = blupg)(t, )T+ / (W (vprq) = (0p,q)*
Q Q
t ~ ~
S/O /Q’f((f_ﬁp’,q(”p’,q) = (f = Bpa(vpq)))
= /0 /Q"(ﬁp,q(vm) — Bpg(Vpr,q) — XQ\Q(p/ —p)(Vpr g — 12)+)

t
< [ f st <o

Consequently,

Up g SUpg ace (t,x) e Q.
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In the same way, one can prove that, for all p,q,¢' € N with n < n’,

Upg < Vpg ae (tz)€ Q.

This comparison result already ensures the a.e. convergence of the solutions v, 4
as, successively, p — oo and ¢ — 0.

To obtain an L°°-bound on the approximate solutions, we compare v, , with
C € R such that ¢(C) = [|fll =g + [[b(00)] 1 (a) +~||ﬂ||Lm(Q) + 1 as clafsical
solution of Py 4(C,C,¢(C) + Bp.4(C), %) (resp with C € R such that ¥(C) =
(£l @y +11P0ll oo (&) + l[ll e (3) + 1) Thanks to the strong perturbation ¢, we

prove that (vp4)p.q is uniformly bounded in L*°(Q). As a consequence, passing to
a subsequence if necessary and using the diagonal principle, there exists a sequence
Vg = Up(q),q Which converges in LY(Q) as ¢ — oo to some function v € L=(Q). In
order to prove that v is a weak entropy solution of P, 4(vy,u, f, 1), it is sufficient
to prove that v satisfies the family of entropy inequalities: for all £ € R, for all
¢ € C5e([0,T) x RY) such that £ >0 and (—g(k))T¢ =0 ae. on &

— [ wt((t,x U v) — &, vg) — T¢(0, -
/E (t,2), k)€ < /Q (b(v) — b(k)) € + / (b(vo) — b(k))*£(0, )

Q

4 / Yook (F = $(@)E = (a(v, Vg () — a(k,0)) - VE)
Q

(4.22)
and for all k € R, for all ¢ € C5°([0,T) x RY) such that ¢ > 0 and (g(k))T¢ =0
a.e. on X,

7/2(")7((@‘%)7]{7“)5
< /Q (o) =) 61 + [ (08) = a0, (4.23)

- /Q X{k>o} ((f = 9(0))§ = (alv, Vg(v)) — a(k,0)) - VE).

Let us remark first that @ is a weak entropy solution of ﬁ’f’;}(ﬂo,O,b(ﬂ)t —
diva(a, Vg(a)) + ¥(a),v). Then, by the comparison principle, there exists &, &
in L°°(Q) with x € sign™ (v, , — @), & € sign* (@ — v, 4) a.e. on Q such that for a.e.
te(0,7),

/Q ((tp.g) — (@) *E
< /Q (b(vp.g) — b(@) &, + / (b(vo) — b(din)) HE(0,z) /Q Xt ()€

4 / K(F — (@))€ — b(@)€ + div a(it, Vg(i))E)
Q
(4.24)
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and
Lt - vl e
< [ 0@ = b)) 6+ [ (bG0) =) €00+ [ X, 1Bnalonalé
a Q QA\Q
= [ R e b + div ol Vo))
(4.25)
This implies in particular that
/~ pvpg— @) <cand [ qla—uvpq) " <e,
Q\Q Q\Q
where ¢ := ¢(f, @) is independent of p,q. Hence, by Fatou’s Lemma,
/ (w—i)* <0, / (i — )" <0. (4.26)
Q\Q Q\Q
Thus
v=aaec onQ\Q. (4.27)

Arguing as in [2], we prove that
g(v) = g(@) =0 on X in the sense of traces in L?([0,T), W'*(Q)).

Next, applying as in the first step the regularization method of Landes, we can
prove that a(vy, 4, Vg(vp4)) converges weakly in (LP (Q))N to a(v, Vg(v)).

Now, we prove that v is an entropy solution of P, 4(7o, a, f,%): As @ is continuous,
for all € > 0, there exists § > 0 such that maxq, @ < k + 5, where Q5 := {(t,z) €
[0, T[xRN; dist((t,z),Q) < 6}. Let (t,z) € Q, 0 < r < 4, £ € D([0,T) x RN)*+
with supp(§) C B((t,z),7) N Qs. We apply the comparison principle Theorem
to v, 4 solution of Islf’gq(f)o, 0,f,%) and k > MaxsnpB((t,z),r) U + € as solution of

55(1@, E, (k) + By.q(k), 1) on Q to get for some ,, , € signt (v, , — k)

- / W (b @), u, K)E + / ((0pg) — D(R)) €
Q

b

< /Q (b(vp.q) — b(R))) &, + /Q iy f€ + /Q (b(vo) — b(k)) " €(0, 2)

X{vp,qzk}(a(vznq’ Vg(vp,q)) — a(vp,q,0)) - V€ — / o X{vp,q>k}ﬁp7q(vp,q)f

(4.28)
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As — meQé\Q X{vp.a>k}Op.a(Vpq)€ < 0, we can neglect the last term in the above
inequality. Using also (4.26)), it is clear that

tim S“p/~ X{opa 2} (@(Vp.gs Vg(0p.q)) —a(Vp.q, 0))-VE+(b(vp,q)—b(k))) FE, = 0.
P,q—o0 JQNQs\Q

Hence, passing to the limit with p, g — oo in (4.28)), we find

/ ((0) — (k) *E < / (b(vo) — b(k))T£(0, 2) + / (b(v) — b(k)))*E,
Q Q

Q

4 [ X2 €+ (@l Va(00) — alty:0)) - 78)
Q

(4.29)
for any k > maxsnp((t,2),r) u + €. As € is arbitrary, the above inequality holds for
any k > maxXsnp((¢,«),r) ¥- LThanks to Remark we can apply the comparison
principle for v as a function satisfying the “local property” and any £k € R
with (—g(k))T¢ = 0 as classical solution of P, 4(k,k,¢(k),v) in Q to get for all
¢ € DT([0,T) x RY with (—g(k))*¢ = 0 and for some x € sign* (v — k),

- / o (1) K)E + / ((v) — p(k))*e
= Q
< /Q (0) = b)) €+ [ (o) — b)) €00, )

Q
+/QX{v>k}(a(%V9(v))—a(k,O))-V£+/an§.

Choosing (k,), C R with k, | k as n — oo, passing to the limit in the above
inequality written with k replaced by k,, using the fact that, for any &,, € sign™ (v—
k) a.e. in @, lim,, o0 kn, € signg(v — k), we obtain . In the same way, we
prove (4.23).

Hence, the limit function v satisfies the first entropy inequality for any k£ € R
and any & € D([0,T) x RY) such that (—g(k))*¢ = 0 and with similar arguments
we prove that v verifies the second entropy inequality. The rest of the proof follows
the same lines as in [2].
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