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EXISTENCE OF POSITIVE SOLUTIONS FOR BOUNDARY
VALUE PROBLEMS OF SECOND-ORDER NONLINEAR

DIFFERENTIAL EQUATIONS ON THE HALF LINE

XINGQIU ZHANG

Abstract. In this article, we study the existence of positive solutions for

Sturm-Liouville boundary-value problems of a second-order nonlinear differ-
ential equation on the half line. Our approach is based on the fixed point

theorem and the monotone iterative technique. Without assuming the exis-
tence of lower and upper solution, we obtain the existence of positive solutions,

and establish iterative schemes for approximating the solutions.

1. Introduction

In this article, we prove the existence positive solutions, and establish a an iter-
ative scheme for their approximation, for the following Sturm-Liouville boundary
value problem of second-order differential equation on the half line

x′′(t) + q(t)f(t, x(t), x′(t)) = 0, t ∈ J+,

αx(0)− βx′(0) = 0, x′(∞) = x∞ ≥ 0,
(1.1)

where J = [0,+∞), J+ = (0,+∞), α > 0, β ≥ 0, x′(∞) = limt→+∞ x′(t) and
f(t, u, v) : J × J × J → J is continuous. Throughout this paper, we assume the
following conditions.

(H1) f(t, u, v) ∈ C(J ×J ×J, J), f(t, 0, 0) 6≡ 0 on any subinterval of J and, when
u, v are bounded, f(t, (1 + t)u, v) is bounded on J ;

(H2) q(t) is a nonnegative measurable function defined in J+ and q(t) does not
identically vanish on any subinterval of J+ and

0 <

∫ +∞

0

q(t)dt < +∞, 0 <

∫ +∞

0

tq(t)dt < +∞.

Boundary value problems on half-line arise quite naturally in the study of radially
symmetric solutions of nonlinear elliptic equations and models of gas pressure in
a semi-infinite porous medium; see for example [1, 6, 7, 11, 15]. In the past few
years, the existence and multiplicity of bounded or unbounded positive solutions to
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nonlinear differential equations on the half line have been studied by different type
of techniques, we refer the reader to [1, 3, 5, 6, 7, 8, 9, 11, 14, 15] and references
therein. Most of papers only considered the existence of positive solutions of various
boundary value problems. Seeing such a fact, we cannot but ask “How can we find
the solutions when they are known to exist?” More recently, Ma, Du and Ge [10],
Sun and Ge [12, 13] proved the existence of positive solutions for some second-order
p-Laplacian boundary value problems which are defined on finite intervals by virtue
of the iterative technique.

To the best of our knowledge, up to now, it seems that no results in the literature
are available for the computation of positive solutions for boundary value problems
on the half line. Motivated by above papers, the purpose of this paper is to fill this
gap. As we know, it is very important to check the compactness of the corresponding
operator when we use the monotone iterative technique and Ascoli-Arzela theorem
plays a very important role. However, Ascoli-Arzela theorem is not suitable for
operators on the half line. So, it is needed to list some new conditions to meet the
requirement of compactness.

2. Preliminaries

First, we give some definitions.

Definition 2.1. Let E be a real Banach space. A nonempty closed set P ⊂ E is
said to be a cone provided that

(1) au + bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0;
(2) u,−u ∈ P implies u = 0.

A map α : P → [0,+∞) is said to be concave on P , if

α(tu + (1− t)v) ≥ tα(u) + (1− t)α(v)

for all u, v ∈ P and t ∈ [0, 1].

We will use the following space to study (1.1)

E =
{
x ∈ C1[0,+∞) : sup

t∈J

|x(t)|
t + 1

< ∞, lim
t→+∞

x′(t) exists
}
.

Then E is a Banach space equipped with the norm ‖x‖ = max{‖x‖1, ‖x′‖∞}, where
‖x‖1 = supt∈J

|x(t)|
t+1 , ‖x′‖∞ = supt∈J |x′(t)|. Let E+ = {x ∈ E : x(t) ≥ 0}. Define

the cone P ⊂ E by

P =
{
x ∈ E : x(t) ≥ 0, t ∈ [0,+∞), x is concave on [0,+∞),

αx(0)− βx′(0) = 0, and lim
t→+∞

x′(t) exists
}
.

Remark 2.2. If x satisfies (1.1), then x′′(t) = −q(t)f(t, x(t), x′(t)) ≤ 0 on [0,+∞),
which implies that x is concave on [0,+∞). Moreover if x′(∞) = x∞ ≥ 0, then
x′(t) ≥ 0, t ∈ [0,+∞) and so x is monotone increasing on [0,+∞).

Lemma 2.3. Assume that (H1)-(H2) hold. Then x ∈ E+ ∩C2[J+, J ] is a solution
of (1.1) if and only if x ∈ C[J,E] is a solution of the integral equation

x(t) =
β

α

( ∫ +∞

0

q(s)f(s, x(s), x′(s))ds + x∞

)
+

∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds + tx∞.

(2.1)
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Proof. Suppose that x ∈ E+∩C2[J+, J ] is a solution of (1.1). For t ∈ J , integrating
(1.1) from t to +∞, we have

x′(t) = x∞ +
∫ +∞

t

f(s, x(s), x′(s))ds. (2.2)

Integrating from 0 to t,

x(t) = x(0) + tx∞ +
∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds. (2.3)

Thus, by (2.2) we obtain

x′(0) = x∞ +
∫ +∞

0

f(s, x(s), x′(s))ds,

which together with the boundary value condition implies

x(0) =
β

α

(
x∞ +

∫ +∞

0

f(s, x(s), x′(s))ds
)
. (2.4)

Substituting the above expression into (2.3), we have

x(t) =
β

α

( ∫ +∞

0

q(s)f(s, x(s), x′(s))ds + x∞

)
+

∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds + tx∞.

Next, we show that the integral
∫ t

0

∫ +∞
s

q(τ)f(τ, x(τ), x′(τ))dτds are convergent.
Since x ∈ E+, then there exists r0 such that ‖x‖ < r0. Set Br0 = sup{f(t, (1 +
t)u, v)|(t, u, v) ∈ J × [0, r0]× [0, r0]}, and we have by exchanging the integral order∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds ≤
∫ +∞

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds

≤
∫ +∞

0

sq(s)ds ·Br0 .

(2.5)

By (H2), we know that
∫ t

0

∫ +∞
s

q(τ)f(τ, x(τ), x′(τ))dτds is convergent. Thus, we
have proved that the right term in (2.1) is well defined. Conversely, if x is a solution
of integral equation, then direct differentiation gives the proof. �

Now, we define an operator A : P → C1[0,+∞) by

(Ax)(t) =
β

α

( ∫ +∞

0

q(s)f(s, x(s), x′(s))ds + x∞

)
+

∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds + tx∞.

(2.6)

To obtain the complete continuity of A, the following lemma is needed.

Lemma 2.4 ([2, 8]). Let W be a bounded subset of P . Then W is relatively compact
in E if {W (t)/(1+t)} and {W ′(t)} are both equicontinuous on any finite subinterval
of [0,+∞) and for any ε > 0, there exists N > 0 such that∣∣∣ x(t1)

1 + t1
− x(t2)

1 + t2

∣∣∣ < ε, |x′(t1)− x′(t2)| < ε, ∀ t1, t2 ≥ N,
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uniformly with respect to x ∈ W as t1, t2 ≥ N , where W (t) = {x(t)|x ∈ W},
W ′(t) = {x′(t)|x ∈ W}, t ∈ [0,+∞).

Lemma 2.5. Assume that (H1)-(H2) hold. Then A : P → P is completely contin-
uous.

Proof. It is clear that (Ax)(t) ≥ 0 for any x ∈ P , t ∈ J . By (2.6), we have

(Ax)′(t) =
∫ +∞

t

q(s)f(s, x(s), x′(s))ds + x∞ ≥ 0, (2.7)

(Ax)′′(t) = −q(t)f(t, x(t)) ≤ 0. (2.8)

These two inequalities imply that (TP ) ⊂ P . Now, we prove that A is continuous
and compact respectively. Let xn → x as n →∞ in P , then there exists r0 such that
supn∈N\{0} ‖xn‖ < r0. Let Br0 = sup{f(t, (1+ t)u, v)|(t, u, v) ∈ J× [0, r0]× [0, r0]}.
By (H2), we have∫ +∞

0

q(τ)|f(τ, xn(τ), x′n(τ))− f(τ, x(τ), x′(τ))|dτ ≤ 2Br0 ·
∫ +∞

0

q(s)ds < +∞,

(2.9)
and ∫ t

0

∫ +∞

s

q(τ)|f(τ, xn(τ), x′n(τ))− f(τ, x(τ), x′(τ))|dτds

≤
∫ +∞

0

∫ +∞

s

q(τ)|f(τ, xn(τ))− f(τ, x(τ), x′(τ))|dτds

≤ 2Br0

∫ +∞

0

sq(s)ds < +∞.

(2.10)

It follows from (2.6), (2.9), (2.10), and the Lebesgue dominated convergence theo-
rem that

‖Axn −Ax‖1 = sup
t∈J

{ 1
1 + t

∣∣∣β
α

( ∫ +∞

0

q(s)(f(s, xn(s), x′n(s))− f(s, x(s), x′(s)))ds
)

+
∫ t

0

∫ +∞

s

q(τ)(f(τ, xn(τ), x′n(τ))− f(τ, x(τ), x′(τ)))dτds
∣∣∣}

≤ sup
t∈J

{ 1
1 + t

β

α

( ∫ +∞

0

q(s)|f(s, xn(s), x′n(s))− f(s, x(s), x′(s))|ds
)}

+ sup
t∈J

{∫ t

0

∫ +∞

s

q(τ)|f(τ, xn(τ))− f(τ, x(τ), x′(τ))|dτds
}
→ 0,

as n →∞. Also

‖(Axn)′ − (Ax)′‖∞ = sup
t∈J

{∫ +∞

t

q(s)|f(s, xn(s), x′n(s))− f(s, x(s), x′(s))|ds
}

≤ 2Br0

∫ +∞

0

q(s)ds < +∞.

Therefore, A is continuous.
Let Ω be any bounded subset of P . Then, there exists r > 0 such that ‖x‖ ≤ r

for any x ∈ Ω. Therefore, we have

‖Ax‖1
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= sup
t∈J

{ 1
1 + t

∣∣∣β
α

( ∫ +∞

0

q(s)f(s, x(s), x′(s))ds + x∞

)
+

∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds + tx∞

∣∣∣}
≤ β

α

( ∫ +∞

0

q(s)ds ·Br + x∞

)
+ sup

t∈J

{ t

1 + t

∫ +∞

0

q(s)f(s, x(s), x′(s))ds
}

+ x∞

≤
(β

α
+ 1

)( ∫ +∞

0

q(s)ds ·Br + x∞

)
,

and

‖(Ax)′‖∞ = sup
t∈J

{∣∣∣ ∫ +∞

t

q(s)f(s, x(s), x′(s))ds + x∞

∣∣∣} ≤
∫ +∞

0

q(s)ds ·Br + x∞.

So, TΩ is bounded. Remembering that the integral
∫ +∞
0

∫ +∞
s

q(τ)dτds is conver-
gent, so for any T ∈ J+ and t1, t2 ∈ [0, T ], by the absolute continuity of the integral,
we have∣∣∣ (Ax)(t1)

1 + t1
− (Ax)(t2)

1 + t2

∣∣∣
≤ β

α

( ∫ +∞

0

q(s)f(s, x(s), x′(s))ds + x∞

)
·
∣∣∣ 1
1 + t1

− 1
1 + t2

∣∣∣
+

∣∣∣ 1
1 + t1

∫ t1

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds

− 1
1 + t2

∫ t2

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds
∣∣∣

+
∣∣∣ t1
1 + t1

− t1
1 + t1

∣∣∣x∞
≤ β

α

( ∫ +∞

0

q(s)ds ·Br + x∞

)∣∣∣ 1
1 + t1

− 1
1 + t2

∣∣∣ +
1

1 + t1

∣∣∣ ∫ t2

t1

∫ +∞

s

q(τ)dτds ·Br

∣∣∣
+

∫ t2

0

∫ +∞

s

q(τ)dτds ·Br

∣∣∣ 1
1 + t1

− 1
1 + t2

∣∣∣ +
∣∣∣ t1
1 + t1

− t1
1 + t1

∣∣∣x∞
which approaches zero, uniformly as t1 → t2. Also

|(Ax)′(t1)− (Ax)′(t2)| =
∣∣∣ ∫ t2

t1

q(s)f(s, x(s), x′(s))ds
∣∣∣ ≤ Br ·

∣∣∣ ∫ t2

t1

q(s)ds
∣∣∣

which approaches zero, uniformly as t1 → t2. Thus, we have proved that TΩ is
equicontinuous on any finite subinterval of [0,+∞).

Next, we prove that for any ε > 0, there exits sufficiently large N > 0 such that∣∣∣ (Ax)(t1)
1 + t1

− (Ax)(t2)
1 + t2

∣∣∣ < ε, |(Ax)′(t1)− (Ax)′(t2)| < ε, (2.11)

for all t1, t2 ≥ N and all x ∈ Ω. For any x ∈ Ω, we have

lim
t→∞

∣∣∣ (Ax)(t)
1 + t

∣∣∣ = lim
t→∞

1
1 + t

∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds + x∞. (2.12)
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Similar to (2.5), we get∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds ≤ Br

∫ +∞

0

τq(τ)dτ < +∞,

which shows that

lim
t→∞

1
1 + t

∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds = 0. (2.13)

On the other hand, we arrive at

lim
t→∞

|(Ax)′(t)| = lim
t→∞

∫ +∞

t

q(s)f(s, x(s), x′(s))ds + x∞

≤ Br · lim
t→∞

∫ +∞

t

q(s)ds + x∞ = x∞.

(2.14)

It follows from (2.12), (2.13), and (2.14) that
∣∣ (Ax)(t)

1+t

∣∣ and |(Ax)′(t)| tend to x∞
uniformly as t →∞. So, for any ε > 0, there exists N1 > 0 such that∣∣∣ (Ax)(t)

1 + t
− x∞

∣∣∣ <
ε

2
, ∀ t ≥ N1.

Consequently, for any t1, t2 ≥ N1, we have∣∣∣ (Ax)(t1)
1 + t1

− x∞

∣∣∣ <
ε

2
,

∣∣∣ (Ax)(t2)
1 + t2

− x∞

∣∣∣ <
ε

2
. (2.15)

Similarly, we can prove that there exists N2 > 0 such that∣∣∣(Ax)′(t1)− x∞

∣∣∣ <
ε

2
,

∣∣∣(Ax)′(t2)− x∞

∣∣∣ <
ε

2
, ∀ t1, t2 ≥ N2. (2.16)

Choose N = max{N1, N2}, then (2.11) can be easily seen by (2.15) and (2.16). By
Lemma 2.4, we know that A : P → P is completely continuous. �

3. Main results

For notational convenience, we denote

m =
(β

α
+ 1

)
x∞, n =

β

α

∫ +∞

0

q(τ)dτ + max
{∫ +∞

0

q(τ)dτ,

∫ +∞

0

τq(τ)dτ
}

.

We will prove the following existence results.

Theorem 3.1. Assume that (H1)-(H2) hold, and there exists a > 2m such that

(S1) f(t, x1, y1) ≤ f(t, x2, y2) for any 0 ≤ t < +∞, 0 ≤ x1 ≤ x2, 0 ≤ y1 ≤ y2;
(S2) f(t, (1 + t)u, v) ≤ a

2n , (t, u, v) ∈ [0,+∞)× [0, a]× [0, a].

Then the boundary value problem (1.1) has two positive nondecreasing on [0,+∞)
and concave solutions w∗ and v∗, such that 0 < ‖w∗‖ ≤ a, and limn→∞ wn =
limn→∞ Anw0 = w∗, where

w0(t) =
a

2
(t + 1) +

β

α
x∞ + tx∞, t ∈ J,

and 0 < ‖v∗‖ ≤ a, limn→∞ vn = limn→∞ Anv0 = v∗, where v0(t) = 0, t ∈ J .
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Proof. By Lemma 2.5, we know that A : P → P is completely continuous. For any
x1, x2 ∈ P with x1 ≤ x2, x′1 ≤ x′2, from the definition of A and (S1), we can easily
get that Ax1 ≤ Ax2. We denote

P a = {x ∈ P : ‖x‖ ≤ a}.
First, we prove that A : P a → P a. If x ∈ P a, then ‖x‖ ≤ a. By (2.1), (S1) and
(S2), we get

‖Ax‖1 = sup
t∈J

{ 1
1 + t

∣∣∣β
α

( ∫ +∞

0

q(s)f(s, x(s), x′(s))ds + x∞

)
+

∫ t

0

∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτds + tx∞

∣∣∣}
≤

(β

α
+ 1

)
x∞ +

(β

α
+ 1

) ∫ +∞

0

q(τ)dτ · a

2n

≤ m + n · a

2n
≤ a,

and

‖(Ax)′‖∞ = sup
t∈J

{∣∣∣ ∫ +∞

t

q(s)f(s, x(s), x′(s))ds + x∞

∣∣∣}
≤

∫ +∞

0

q(s)ds · a

2n
+ x∞ ≤ a.

Hence, we have proved that A : P a → P a. Let w0(t) = a
2 (t + 1) + β

αx∞ + tx∞, 0 ≤
t < +∞, then w0(t) ∈ P a. Let w1 = Aw0, w2 = A2w0, then by Lemma 2.5, we
have that w1 ∈ P a and w2 ∈ P a. We denote wn+1 = Awn = Anw0, n = 0, 1, 2, . . . .
Since A : P a → P a, we have wn ∈ A(P a) ⊂ P a, n = 1, 2, 3, . . . . It follows from the
complete continuity of A that {wn}∞n=1 is a sequentially compact set.

By (2.1) and (S2), we get

w1(t) =
β

α

( ∫ +∞

0

q(s)f(s, ω0(s), ω′0(s))ds + x∞

)
+

∫ t

0

∫ +∞

s

q(τ)f(τ, ω0(τ), ω′0(τ))dτds + tx∞

≤ β

α

∫ +∞

0

q(s)ds · a

2n
+

β

α
x∞ +

∫ +∞

0

τq(τ)dτ · a

2n
+ tx∞

≤ a

2
+

β

α
x∞ + tx∞ ≤ w0(t), 0 ≤ t < +∞,

(3.1)

and

ω′1(t) = (Aω0)′(t) =
∫ +∞

t

q(s)f(s, ω0(s), ω′0(s))ds + x∞

≤
∫ +∞

0

q(s)ds · a

2n
+ x∞

≤ a

2
+ x∞ = ω′0(t), 0 ≤ t < +∞.

(3.2)

So, by (3.1), (3.2) and (S1) we have

w2(t) = (Aw1)(t) ≤ (Aw0)(t) = w1(t), 0 ≤ t < +∞,

w′
2(t) = (Aw1)′(t) ≤ (Aw0)′(t) = (w1)′(t), 0 ≤ t < +∞.
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By induction, we get

wn+1(t) ≤ wn(t), w′
n+1(t) ≤ w′

n(t), 0 ≤ t < +∞, n = 0, 1, 2, . . . .

Thus, there exists w∗ ∈ P a such that wn → w∗ as n →∞. Applying the continuity
of A and wn+1 = Awn, we get that Aw∗ = w∗.

Let v0(t) = 0, 0 ≤ t < +∞, then v0(t) ∈ P a. Let v1 = Av0, v2 = A2v0, then by
Lemma 2.5, we have that v1 ∈ P a and v2 ∈ P a. We denote vn+1 = Avn = Anv0, n =
0, 1, 2, . . . . Since A : P a → P a, we have vn ∈ A(P a) ⊂ P a, n = 1, 2, 3, . . . . It follows
from the complete continuity of A that {vn}∞n=1 is a sequentially compact set.

Since v1 = Av0 ∈ P a, we have

v1(t) = (Av0)(t) = (A0)(t) ≥ 0, 0 ≤ t < +∞,

v′1(t) = (Av0)′(t) = (A0)′(t) = v′0(t) ≥ 0, 0 ≤ t < +∞.

So, that we have

v2(t) = (Av1)(t) ≥ (A0)(t) = v1(t), 0 ≤ t < +∞,

v′2(t) = (Av1)′(t) ≥ (A0)′(t) = v′1(t), 0 ≤ t < +∞.

By induction, we get

vn+1(t) ≥ vn(t), v′n+1(t) ≥ v′n(t), 0 ≤ t < +∞, n = 0, 1, 2, . . . .

Thus, there exists v∗ ∈ P a such that vn → v∗ as n →∞. Applying the continuity
of A and vn+1 = Avn, we get that Av∗ = v∗.

If f(t, 0, 0) 6≡ 0, 0 ≤ t < ∞, then the zero function is not the solution of (1.1).
Thus, v∗ is a positive solution of (1.1). It is well known that each fixed point of
A in P is a solution of (1.1). Hence, we assert that w∗ and v∗ are two positive,
nondecreasing on [0,+∞) and concave solutions of (1.1). �

Remark 3.2. The iterative schemes in Theorem 3.1 are w0(t) = a
2 (t+1)+ β

αx∞+
tx∞, wn+1 = Awn = Anw0, n = 0, 1, 2, . . . and v0(t) = 0, vn+1 = Avn = Anv0, n =
0, 1, 2, . . . . They start off with a known simple linear function and the zero function
respectively. It is convenient in application. We can easily get that w∗ and v∗ are
the maximal and minimal solutions of the boundary value problem (1.1). Of course
w∗ and v∗ may coincide and then the boundary value problem (1.1) has only one
solution in P .

The following theorem can be obtained directly from Theorem 3.1.

Theorem 3.3. Assume that (H1)-(H2) hold and there exists 2m < a1 < a2 < · · · <
an such that

(S1) f(t, x1, y1) ≤ f(t, x2, y2) for any 0 ≤ t < +∞, 0 ≤ x1 ≤ x2, 0 ≤ y1 ≤ y2;
(S2) f(t, (1 + t)u, v) ≤ ak

2n , (t, u, v) ∈ [0,+∞)× [0, ak]× [0, ak], k = 1, 2, . . . , n.
Then the boundary value problem (1.1) has 2n positive nondecreasing on [0,+∞)
and concave solutions w∗

k and v∗k, such that 0 < ‖w∗
k‖ ≤ ak, and limn→∞ wkn =

limn→∞ Anwk0 = w∗
k, where

wk0(t) =
ak

2
(t + 1) +

β

α
x∞ + tx∞, t ∈ J,

and 0 < ‖v∗k‖ ≤ ak, limn→∞ vkn = limn→∞ Anv0 = v∗k, where vk0(t) = 0, t ∈ J .
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4. Example

Consider the boundary-value problem

x′′(t) +
1√

t(1 + t)2
f(t, x(t), x′(t)) = 0, t ∈ J+,

2x(0)− 3x′(0) = 0, x′(∞) = 0,

(4.1)

where

f(t, u, v) =

10−2| cos(2t + 1)|+ 10−2
(

u
1+t

)4

+ 1
10

(
v

400

)
, u ≤ 3,

10−2| cos(2t + 1)|+ 10−2
(

3
1+t

)4

+ 1
10

(
v

400

)
, u ≥ 3.

Set q(t) = 1√
t(1+t)2

. It is clear that (H1) and (S2) hold. Let α = 2, β = 3, x∞ = 0.
By direct computation, we can obtain that∫ +∞

0

q(t)dt =
∫ +∞

0

1√
t(1 + t)2

dt <

∫ 1

0

1√
t
dt +

∫ +∞

1

1√
t · t2

dt =
8
3
, (4.2)∫ +∞

0

tq(t)dt =
∫ +∞

0

t√
t(1 + t)2

dt <

∫ 1

0

√
tdt +

∫ +∞

1

√
t

t2
dt =

8
3
. (4.3)

By (4.2) and (4.3), we have m = 0, n < 20
3 . Choose a = 300 and check check (S2).

Since nonlinear term f satisfies

f(t, (1 + t)u, v) ≤ 1
102

+
81
100

+
3
40

=
179
200

<
300

2 · 20
3

<
300
2n

,

for t ∈ [0,+∞), u, v ∈ [0, 300]; then all the conditions in Theorem 3.1 are satisfied.
Therefore, the conclusion of Theorem 3.1 holds.
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