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QUASILINEAR DIFFERENTIAL EQUATIONS IN EXTERIOR
DOMAINS WITH NONLINEAR BOUNDARY CONDITIONS AND

APPLICATION

DUMITRU MOTREANU, NICOLAE TARFULEA

Abstract. We investigate the existence of weak solutions to a class of quasi-

linear elliptic equations with nonlinear Neumann boundary conditions in ex-
terior domains. Problems of this kind arise in various areas of science and

technology. An important model case related to the initial data problem in

general relativity is presented. As an application of our main result, we deduce
the existence of the conformal factor for the Hamiltonian constraint in general

relativity in the presence of multiple black holes. We also give a proof for

uniqueness in this case.

1. Introduction

Let Ω ⊂ RN be an exterior domain with smooth compact boundary. In this
paper, we study the existence and uniqueness of solutions of the following elliptic
boundary-value problem

−div [A(x,∇u)] = F (x, u), x ∈ Ω, (1.1)

A(x,∇u) · n = f(x, u), x ∈ ∂Ω, (1.2)

where n stands for the unit exterior normal to ∂Ω. Here A : Ω × RN → RN is a
Carathéodory function satisfying the following conditions:

• There exist p > 1, a1(·) ∈ Lp′(Ω) (p′ is the conjugate of p, that is 1/p +
1/p′ = 1), and b1 > 0 such that |A(x, ξ)| ≤ a1(x) + b1|ξ|p−1, for a.e. x ∈ Ω
and all ξ ∈ RN .

• A(x, ξ) is strictly monotone in ξ, that is [A(x, ξ2)−A(x, ξ1)] · (ξ2− ξ1) > 0,
for a.e. x ∈ Ω and all ξ1, ξ2 ∈ RN with ξ1 6= ξ2.

• There exist a2 ∈ L1(Ω) and b2 > 0 such that the following coercivity
property holds A(x, ξ) · ξ ≥ b2|ξ|p − a2(x), for a.e. x ∈ Ω and all ξ ∈ RN .

Problems of this type arise in many and diverse contexts like differential geom-
etry (e.g., in the scalar curvature problem and the Yamabe problem), nonlinear
elasticity, non–Newtonian fluid mechanics, mathematical biology, general relativ-
ity, and elsewhere. In Section 3 we address one of these applications related to the
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initial data problem in general relativity (more precisely, the existence of conformal
factor to the Hamiltonian constraint equation in the case of multiple black holes).

Nonlinear boundary value problems related to (1.1)-(1.2) have been studied
for some time by numerous authors and in variuos frameworks. For example,
in [24] Pflüger considered the problem (1.1)-(1.2) for the p-Laplacian with poly-
nomial nonlinearities on the right hand side and in the boundary condition. In
this context, Pflüger showed the existence of a nontrivial, positive weak solution.
Due to the unbounded domain, the lack of compactness was overcome through
the use of weighted Sobolev spaces. For more recent work on this subject, see
[3, 4, 12, 17, 20, 21, 25, 28, 30], and references therein.

We denote by W 1,p(Ω) the weighted Sobolev space (the suitable weight function
in our case is (1 + |x|2)−1/2 for x ∈ Ω)

W 1,p(Ω) := {u ∈ Lp
loc(Ω) :

u

(1 + |x|2)1/2
∈ Lp(Ω) and ∇u ∈ Lp(Ω)}.

Notice that on each bounded part of the open set Ω, the space W 1,p(Ω) coincides
with the usual Sobolev space W 1,p

loc (Ω). Functions in these two spaces differ only by
their behaviour at infinity. For more on these spaces, see [22, 26], and references
therein.

A variational formulation for the exterior boundary-value problem (1.1) and (1.2)
is ∫

Ω

A(x,∇u) · ∇v dx−
∫

Ω

F (x, u)v dx−
∫

∂Ω

f(x, u)v dσ = 0, ∀v ∈W 1,p(Ω).

A function u (resp. u) in W 1,p(Ω) is called a (weak) subsolution (resp. supersolu-
tion) of (1.1) and (1.2) if∫

Ω

A(x,∇u) · ∇v dx−
∫

Ω

F (x, u)v dx−
∫

∂Ω

f(x, u)v dσ ≤ 0, (resp. ≥) (1.3)

for each v ∈W 1,p(Ω), v ≥ 0 a.e. in Ω.
Under the above conditions, our main result may be stated as follows.

Theorem 1.1. Assume there exist a pair of sub- and supersolution u and u of
(1.1)-(1.2) and that the functions F and f satisfy the following growth conditions:

• There exists a3 ∈ Lp′(Ω) such that |F (x, u)| ≤ a3(x)/(1 + |x|2)1/2, for a.e.
x ∈ Ω and all u ∈ [u(x), u(x)].

• There exist a4 ∈ Lp′(∂Ω) and b3 ∈ Lp(∂Ω) such that |f(x, u)| ≤ a4(x) +
b3(x)|u|p−1, for a.e. x ∈ ∂Ω and all u ∈ [u(x), u(x)].

Then, (1.1)-(1.2) has at least one (weak) solution u ∈W 1,p(Ω) such that u ≤ u ≤ u.

A proof of this theorem is given in Section 2. As an application of this result,
we will discuss the existence of the conformal factor for the Hamiltonian constraint
in general relativity in Section 3. We also provide a proof for the uniqueness of the
conformal factor in the case of multiple black holes in Subsection 3.2.
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2. Proof of Theorem 1.1

Let ρ := (1 + |x|2)1/2. For u ∈W 1,p(Ω), define

b(x, u) :=


[u(x)− u(x)]p−1/ρp if u(x) > u(x)
0 if u(x) ≤ u(x) ≤ u(x)
−[u(x)− u(x)]p−1/ρp if u(x) < u(x)

(Tu)(x) :=


u(x) if u(x) > u(x)
u(x) if u(x) ≤ u(x) ≤ u(x)
u(x) if u(x) < u(x)

Next, consider the operators A, B, F , and G : W 1,p(Ω) → (W 1,p(Ω))∗ defined by:

〈A(u), v〉 :=
∫

Ω

A(x,∇u) · ∇v dx, 〈B(u), v〉 :=
∫

Ω

b(x, u)v dx,

〈F(u), v〉 := −
∫

Ω

F (x, Tu)v dx, 〈G(u), v〉 := −
∫

∂Ω

f(x, Tu)v dσ,

Γ : W 1,p(Ω) → (W 1,p(Ω))∗, Γ(u) := A(u) + B(u) + F(u) + G(u).

The following lemma states that solving Γ(u) = 0 in (W 1,p(Ω))∗ produces a weak
solution u to problem (1.1)–(1.2), with u ≤ u ≤ u a.e. in Ω. Its proof relies on
arguments largely similar to the ones used in [15, 16] (see also [2]) in a different
context.

Lemma 2.1. Assume that u ∈ W 1,p(Ω) is a solution to Γ(u) = 0. Then u is also
a week solution to (1.1)–(1.2), with u(x) ≤ u(x) ≤ u(x) a.e. in Ω.

Proof. Since u and u are elements of W 1,p(Ω), it follows that (u− u)+ ∈W 1,p(Ω).
Then

〈Γu, (u− u)+〉 = 〈A(u) + B(u) + F(u) + G(u), (u− u)+〉 = 0, (2.1)

and so ∫
Ω

A(x,∇u) · ∇(u− u)+ dx+
∫

Ω

b(x, u)(u− u)+ dx

−
∫

Ω

F (x, Tu)(u− u)+ dx−
∫

∂Ω

f(x, Tu)(u− u)+ dσ = 0.
(2.2)

Since u is a subsolution to (1.1)–(1.2), we have∫
Ω

A(x,∇u) · ∇(u− u)+ dx−
∫

Ω

F (x, u)(u− u)+ dx−
∫

∂Ω

f(x, u)(u− u)+ dσ ≤ 0.

(2.3)
Subtracting (2.2) from (2.3) gives∫

Ω

[A(x,∇u)−A(x,∇u)] · ∇(u− u)+ dx−
∫

Ω

[F (x, u)− F (x, Tu)](u− u)+ dx

−
∫

∂Ω

[f(x, u)− f(x, Tu)](u− u)+ dσ

≤
∫

Ω

b(x, u)(u− u)+ dx.

(2.4)
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Observe that (from the hypotheses and Stampachia’s Theorem)∫
Ω

[A(x,∇u)−A(x,∇u)] · ∇(u− u)+ dx

=
∫
{u(x)>u(x)}

[A(x,∇u)−A(x,∇u)] · (∇u−∇u) dx ≥ 0.
(2.5)

Furthermore, from the definition of Tu, it follows that Tu(x) = u(x) on {u(x) >
u(x)}, and so ∫

Ω

[F (x, u)− F (x, Tu)](u− u)+ dx

=
∫
{u(x)>u(x)}

[F (x, u)− F (x, Tu)](u− u) dx = 0.
(2.6)

Also, ∫
∂Ω

[f(x, u)− f(x, Tu)](u− u)+ dσ

=
∫
{x∈∂Ω: u(x)>u(x)}

[f(x, u)− f(x, Tu)](u− u) dσ = 0.
(2.7)

By (2.4), (2.5), (2.6), and (2.7), we obtain

0 ≤
∫

Ω

b(x, u)(u− u)+ dx = −
∫
{u(x)>u(x)}

(u− u)p/ρp dx ≤ 0,

and thus u = u a.e. in {u(x) > u(x)}. That is, the set {u(x) > u(x)} has measure
0. This shows that u(x) ≤ u a.e. in Ω. For the inequality u(x) ≤ u a.e. in Ω, we
proceed similarly (by considering (u − u)+ this time). Since u(x) ≤ u(x) ≤ u(x)
a.e. in Ω, we have both b(x, u(x)) = 0 and Tu(x) = 0 a.e. in Ω. Thus, u is a weak
solution of (1.1)–(1.2). �

Lemma 2.2. The operator Γ is bounded.

Proof. Let M be a bounded subset of W 1,p(Ω), that is, there exists a constant
C1 ≥ 0 such that ‖u‖W 1,p(Ω) ≤ C1, for all u ∈ M . Our goal is to prove that there
is a constant C2 ≥ 0 such that ‖Γ(u)‖W 1,p(Ω)∗ ≤ C2, for all u ∈ M . Hereafter, the
symbol . between two terms means that the first term is bounded from above by
the second term up to a multiplicative positive constant that may depend on M
but not on the individual elements of M .

For u ∈M and v ∈W 1,p(Ω), we have

|〈Γ(u), v〉| ≤ |〈A(u), v〉|+ |〈B(u), v〉|+ |〈F(u), v〉|+ |〈G(u), v〉|. (2.8)

Let us place an upper bound on the terms on the right-hand side of inequality (2.8).

|〈A(u), v〉| ≤
∫

Ω

|A(x,∇u)| · |∇u|dx

≤
∫

Ω

(a1(x) + b1|∇u|p−1) · |∇v|dx

≤ ‖a1‖Lp′ (Ω)‖∇v‖Lp(Ω) + b1‖∇u‖p−1
Lp(Ω)‖∇v‖Lp(Ω)

≤ (‖a1‖Lp′ (Ω) + b1‖u‖p−1
W 1,p(Ω))‖v‖W 1,p(Ω)

. ‖v‖W 1,p(Ω)

(2.9)
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Next, observe that

|b(x, u)| ≤ ρ−p(|u(x)|+ |u(x)|+ |u(x)|)p−1

. ρ−p(|u(x)|p−1 + |u(x)|p−1 + |u(x)|p−1)

. ρ−1A1(x) + ρ−p|u(x)|p−1,

with A1(x) := |ρ−1u(x)|p−1 + |ρ−1u(x)|p−1 ∈ Lp′(Ω). Thus,

|〈B(u), v〉| ≤
∫

Ω

|b(x, u)| · |v|dx

.
∫

Ω

(A1(x) + |ρ−1u|p−1)|ρ−1v|dx

. (‖A1‖Lp′ (Ω) + ‖ρ−1u‖p−1
Lp(Ω))‖ρ

−1v‖Lp(Ω)

. ‖v‖W 1,p(Ω).

(2.10)

For the third term of the right-hand side of (2.8) we obtain the following upper
bound

|〈F(u), v〉| ≤
∫

Ω

|F (x, Tu)| · |v|dx

≤
∫

Ω

ρ−1a3(x)|v|dx

≤ ‖a3‖Lp′ (Ω)‖ρ
−1v‖Lp(Ω)

. ‖v‖W 1,p(Ω).

(2.11)

Finally, for the last term of the right-hand side of (2.8) we have

|〈G(u), v〉| ≤
∫

∂Ω

|f(x, Tu)| · |v|dσ

≤
∫

∂Ω

(a4(x) + b3(x)|Tu|p−1) · |v|dσ

≤
∫

∂Ω

[a4(x) + b3(x)(|u(x)|p−1 + |u(x)|p−1)] · |v|dσ

≤ ‖a4(x) + b3(x)(|u(x)|p−1 + |u(x)|p−1)‖Lp′ (∂Ω)‖v‖Lp(∂Ω)

. ‖v‖W 1,p(Ω),

(2.12)

where the last inequality is a consequence of the trace theorem. Returning to
inequality (2.8), and using (2.9), (2.10), (2.11), and (2.12), it follows that there
exists a positive constant C2 such that |〈Γ(u), v〉| ≤ C2‖v‖W 1,p(Ω), for all u ∈ M

and all v ∈W 1,p(Ω); that is, ‖Γ(u)‖W 1,p(Ω)∗ ≤ C2, for all u ∈M . �

Lemma 2.3. The operator Γ is coercive; that is,

lim
‖u‖W1,p(Ω)→∞

〈Γ(u), u〉
‖u‖W 1,p(Ω)

= ∞. (2.13)

Proof. First of all, observe that

〈A(u), u〉 ≥ b2‖∇u‖p
Lp(Ω) − ‖a2‖L1(Ω). (2.14)

It is easy to prove that, for a > b and p > 1, there are positive constants C1, C2,
C3, and C4 (independent of a, b) such that (a− b)p−1a ≥ C1|a|p − C2|b|p−1|a| and
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(a− b)p−1b ≤ C3|a|p−1|b| − C4|b|p. Then

〈B(u), u〉 =
∫
{u>u}

ρ−p(u− u)p−1u dx−
∫
{u<u}

ρ−p(u− u)p−1u dx

≥
∫
{u>u}

ρ−p(C1|u|p − C2|u|p−1|u|)dx

+
∫
{u<u}

ρ−p(C4|u|p − C3|u|p−1|u|)dx

≥ min {C1, C4}‖ρ−1u‖p
Lp(Ω) − C5‖ρ−1u‖Lp(Ω),

(2.15)

with C5 := C2‖ρ−1u‖p−1
Lp(Ω) + C3‖ρ−1u‖p−1

Lp(Ω). Also,

〈F(u), u〉 ≥ −‖a3‖Lp′ (Ω)‖ρ
−1u‖p

Lp(Ω) ≥ −‖a3‖Lp′ (Ω)‖u‖
p
W 1,p(Ω) (2.16)

and

〈G(u), u〉 ≥ −
∫

∂Ω

[|a4(x)|+ |b3(x)|(|u(x)|p−1 + |u(x)|p−1)]|u| dσ

≥ −‖|a4|+ |b3|(|u|p−1 + |u|p−1)‖Lp′ (∂Ω)‖u‖Lp(∂Ω)

≥ −C6‖|a4|+ |b3|(|u|p−1 + |u|p−1)‖Lp′ (∂Ω)‖u‖W 1,p(Ω),

(2.17)

where the last inequality follows from the trace theorem. Combining (2.14), (2.15),
(2.16), and (2.17), we get

〈Γ(u), u〉 ≥ C7‖u‖p
W 1,p(Ω) − C8‖u‖W 1,p(Ω) − C9, ∀u ∈W 1,p(Ω),

with C7, C8, C9 > 0. Because p > 1, this estimate implies (2.13). �

Fix an integer n0 > maxx∈∂Ω |x|. For any n ≥ n0, we set Ωn = {x ∈ Ω : |x| < n}
and introduce the space Wn := {u ∈ W 1,p(Ωn) : u = 0 on |x| = n}. Notice that
we can consider that Wn ⊂W 1,p(Ω) by setting, for all w ∈Wn, w(x) = 0 whenever
x ∈ Ω with |x| > n (which is possible since w = 0 on |x| = n). For each n ≥ n0, let
in : Wn → W 1,p(Ω) denote the inclusion map and i∗n : W 1,p(Ω)∗ → W ∗

n its adjoint
operator. Fix n ≥ n0 and introduce the nonlinear operator Γn : Wn →W ∗

n by

Γn := i∗nΓin = i∗nAin + i∗nBin + i∗nFin + i∗nGin.

Lemma 2.4. For every n ≥ n0, the equation Γn(u) = 0 has at least a solution (in
Wn).

Proof. The operator Γn : Wn →W ∗
n is pseudomonotone because it is the sum of the

strictly monotone operator i∗nAin and the completely continuous operators i∗nBin,
i∗nFin, i∗nGin (which is true because the domain Ωn is bounded). The operator
Γn is also bounded by Lemma 2.2 and the boundedness of the operators in and
i∗n. Moreover, from Lemma 2.3, we see that Γn is coercive. The application of the
abstract surjectivity result (see [34, Theorem 27.A]) completes the proof. �

2.1. Proof of Theorem 1.1. Lemma 2.4 ensures that there exists un ∈Wn such
that ∫

Ωn

A(x,∇un) · ∇v dx+
∫

Ωn

b(x, un)v dx

−
∫

Ωn

F (x, Tun)v dx−
∫

∂Ω

f(x, Tun)v dσ = 0
(2.18)
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for all v ∈ Wn. Setting v = un in (2.18) and using the coercivity of the operator
Γn lead to the conclusion that the sequence {un} is bounded in W 1,p(Ω).

Thus, up to a subsequence, we may suppose that un ⇀ u in W 1,p(Ω), un → u in
Lp

loc(Ω) and a.e. in Ω and ∇un → ∇u in Lp
loc(Ω,RN ), for some u ∈ W 1,p(Ω). Let

v ∈ C∞
0 (RN ) ∩W 1,p(Ω). We note that v ∈ Wn for n sufficiently large, so we can

make use of (2.18) which gives∫
supp(v)

A(x,∇un) · ∇v dx+
∫

supp(v)

b(x, un)v dx

−
∫

supp(v)

F (x, Tun)v dx−
∫

∂Ω

f(x, Tun)v dσ = 0.
(2.19)

We may pass to the limit in (2.19) as n→∞. Since C∞
0 (RN )∩W 1,p(Ω) is dense in

W 1,p(Ω), we arrive at Γu = 0. Now it suffices to invoke Lemma 2.1 for concluding
that u is a weak solution of problem (1.1)–(1.2) with u(x) ≤ u(x) ≤ u(x) a.e. in Ω.

Remark 2.5. One can show the uniqueness of the solution by assuming additional
conditions, such as F (x, ·) and f(x, ·) are nonincreasing on the interval [u(x), u(x)]
for a.e. x ∈ Ω. Let u1, u2 ∈W 1,p(Ω) be two weak solutions to (1.1)–(1.2) belonging
to the ordered interval [u, u]. Then we can write∫

Ω

(A(x,∇u1)−A(x,∇u2)) · ∇(u1 − u2)+ dx

=
∫

Ω

(F (x, u1)− F (x, u2)(u1 − u2)+ dx+
∫

∂Ω

(f(x, u1)− f(x, u2))(u1 − u2)+ dσ.

In view of our hypothesis and since the operator A(x, ·) is strictly monotone, we
derive that u1 ≤ u2 (and similarly that u2 ≤ u1) a.e. in Ω, and so u1 = u2 a.e. in
Ω.

3. Application to the Initial Data Problem in General Relativity

In this section, we indicate an example where we apply Theorem 1.1 to the
existence of the conformal factor in general relativity. We mention that this section
contains just an example of aplication of Theorem 1.1; it is in no way intended to
give a deep or extensive analysis of the complicated initial data problem in general
relativity. The interested reader can find important advances on various aspects of
this subject in [5, 7, 10, 11, 8, 9, 17, 18, 19, 27, 29], among many others.

In Subsection 3.1, we briefly review York-Lichnerowicz’s formalism for decompos-
ing the constraint equations. We then discuss the existence of the conformal factor
under certain assumptions. Finally, in Subsection 3.2, we present an elementary
proof for the uniqueness in the case of multiple black holes.

3.1. York-Lichnerowicz conformal decomposition method. In general rel-
ativity, spacetime is a 4-dimensional manifold of events endowed with a pseudo-
Riemannian metric gαβ . Einstein’s equations Gαβ = 8πTαβ connect the spacetime
curvature represented by the Einstein tensor Gαβ with the stress-energy tensor Tαβ .
In fact, these are equations for geometries, that is, their solutions are equivalent
classes under spacetime diffeomorphisms of metric tensors. To break this diffeo-
morphism invariance, Einstein’s equations must first be transformed into a system
having a well-posed Cauchy problem. That is, the spacetime is foliated and each
slice Σt is characterized by its intrinsic geometry γij and extrinsic curvature Kij ,
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which is essentially the “velocity” of γij in the unit normal direction to the slice.
Subsequent slices are connected via the lapse function N and shift vector βi cor-
responding to the Arnowitt–Deser–Misner (ADM) 3+1 formulation [1] of the line
element ds2 = −N2dt2+γij(dxi+βidt)(dxj +βjdt). This decomposition allows one
to express six of the ten components of Einstein’s equations in vacuum (Tαβ = 0)
as a constrained system of evolution equations for the metric γij and the extrinsic
curvature Kij (repeated subscript-superscript indices means summation):

γ̇ij = −2NKij + 2∇(iβj),

K̇ij = N(Rij +Kl
lKij − 2KilK

l
j) + βl∇lKij +Kil∇jβ

l +Klj∇iβ
l −∇i∇jN,

Ri
i + (Ki

i )
2 −KijK

ij = 0, (3.1)

∇jKij −∇iK
j
j = 0, (3.2)

where we use a dot to denote time differentiation and ∇j for the covariant derivative
associated to γij . The spatial Ricci tensorRij has components given by second order
spatial differential operators applied to the spatial metric components γij . Indices
are raised and traces taken with respect to the spatial metric γij , and parenthesized
indices are used to denote the symmetric part of a tensor (e.g., ∇(iβj) := (∇iβj +
∇jβi)/2).

To evolve Einstein’s equations in the standard ADM 3+1 formulation, one needs
to specify the 3-metric γij and the extrinsic curvature Kij on the initial time slice
Σ0. This is a difficult task, as these quantities must satisfy the constraint equations
(3.1) and (3.2). We outline here the conformal decomposition method of York-
Lichnerowicz (see [6, 29, 31, 32, 33]) for the vacuum constraint equations. The
base of the method consists of specifying the physical data only up to conformal
equivalence, under the assumption that the trace of Kij , Ki

i := γijKij , is given
and fixed. In essence, this means that we look for a metric γij conformally related
to a given metric γ̂ij by γij = ψ4γ̂ij , where the conformal factor ψ is a strictly
positive function to be determined. We will denote by γ̂ij , ∇̂j , and R̂ the inverse
metric, covariant derivative operator, and scalar curvature associated to the metric
γ̂ij . We now relate these to quantities based on the original metric γij . The inverse
metric γ̂ij and the covariant derivative ∇̂j of scalars are easy: γij = ψ−4γ̂ij and
∇jK = ∇̂jK and ∇jK = ψ−4∇̂jK for any scalar function K. For the covariant
derivative of tensors and for the scalar curvature, we need to relate the Christoffel
symbols Γ̂k

ij formed with respect to γ̂ij to the Christoffel symbols Γk
ij formed with

respect to γij . By direct calculation

Γi
jk =

1
2
γil(

∂γlj

∂xk
+
∂γlk

∂xj
− ∂γjk

∂xl
) = Γ̂i

jk + 2ψ−1(
∂ψ

∂xk
δi
j +

∂ψ

∂xj
δi
k −

∂ψ

∂xl
γ̂jkγ̂

il),

and so

Γj
jk = Γ̂j

jk + 6ψ−1 ∂ψ

∂xk
.

Now, let us relate the extrinsic curvature Kij corresponding to γij to a given sym-
metric (2, 0) tensor K̂ij by Kij = ψ−sK̂ij for some s. Then, by direct calculation,

∇jK
ij =

∂Kij

∂xj
+ Γj

jlK
il + Γi

jlK
lj

= ψ−s∇̂jK̂
ij − 2ψ−s−1 ∂ψ

∂xm
γ̂imK̂ + (10− s)ψ−s−1 ∂ψ

∂xl
K̂il,
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where K̂ = γ̂ijK̂
ij . This motivates the choice s = 10. Moreover, we choose the

tensor K̂ij to be trace-free, i.e., K̂ = 0. Then, the zero trace is preserved, i.e.,
Kij is trace-free, and ∇jK

ij = ψ−10∇̂jK̂
ij . The scalar curvatures R = γijR

ij and
R̂ = γ̂ijR̂

ij are related by R = ψ−4R̂ − 8ψ−5∆̂ψ, where ∆̂ψ := γ̂ij∇̂i∇̂jψ is the
Laplacian of ψ with respect to the metric γ̂ij .

If we choose γ̂ij to be the flat metric γ̂ij := δij , then the momentum constraints
(3.2) are linear, decoupled from the Hamiltonian constraint (3.1) (as a consequence
of the assumption K̂ = 0), and solutions K̂ij to them can be determined analyt-
ically (see [13, 14, 23, 29, 31, 32, 33], among others). Moreover, the Hamiltonian
constraint equation reduces to the relatively simple semilinear elliptic equation

−∆ψ = Ĥψ−7, (3.3)

where ∆ := δij∂
i∂j is the usual 3D Laplacian and Ĥ := 1

8K̂
ijK̂ij is a positive

function. It is also necessary to specify the domain on which this equation will be
solved, and the boundary conditions that will be applied. In the case of multiple
black holes, our goal is to solve equation (3.3) in the exterior domain Ω := {x ∈
R3 : |x − Oi| > Ri, i = 1, N}, where Oi, respectively Ri, i = 1, 2, . . . , N , are the
centers, respectively the radii, of the disjoint black holes. Because we are interested
in asymptotically flat spacetimes, we would like that the conformal factor approach
unity as the distance from any sources approaches infinity:

ψ(x) → 1, as |x| → ∞. (3.4)

Also, we invoke an inner boundary condition (see [6, 29, 31], and references therein)

∂ψ

∂n
+

1
2Ri

ψ = 0 on ∂B(Oi, Ri), i = 1, 2, . . . , N, (3.5)

where the normal n to ∂B(Oi, Ri) points into the domain Ω.
Let u := ψ−1. For ψ to be a solution of (3.3)–(3.5), u must satisfy the following

boundary value problem in the exterior domain Ω:

−∆u = Ĥ(1 + u)−7 in Ω, (3.6)

u(x) → 0 as |x| → ∞, (3.7)
∂u

∂n
= − 1

2Ri
(1 + u) on ∂B(Oi, Ri), i = 1, 2, . . . , N. (3.8)

Theorem 3.1. Suppose that ρĤ ∈ L2(Ω). Then there exists at least one (weak)
solution u ∈W 1,2(Ω) to (3.6)–(3.8).

Proof. Observe that one can now apply Theorem 1.1 to the boundary-value problem
(3.6)–(3.8) if a pair of sub- and supersolution u and u can be found. It is easy to see
that u :≡ 0 is a subsolution to (3.6)–(3.8). Furthermore, the solution u ∈ W 1,2(Ω)
of the following Dirichlet boundary-value problem (whose existence is guarateed by
[22, Theorem 2.5.14])

−∆u(x) = Ĥ(x) in Ω, u(x) = 0 on ∂Ω,

is a supersolution to (3.6)–(3.8). Moreover, by the maximum principle one obtains
u > 0 in Ω. Then, by Theorem 1.1 it follows that there exists a weak solution
u ∈ W 1,2(Ω), with (u ≡)0 ≤ u ≤ u, to the boundary-value problem (3.6)–(3.8). In
fact, by the maximum principle again, u is strictly positive in Ω. In addition, since
u ∈W 1,2(Ω), we also have that u(x) → 0, as |x| → ∞, a.e. in Ω. �
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3.2. The uniqueness in the general case of multiple black holes. In 1989
York [31] proved that the solution for the boundary value problem (3.3), (3.4),
and (3.5) is locally unique, that is, he proved that no other solutions lie in the
neighborhood of a given solution, but this does not preclude the existence of other
solutions which are “significantly different.” Here the normal n to ∂Ω points into
the domain Ω, and this interferes with an usual existence and uniqueness analysis
for the problem. That is, even though (3.5) looks like a Robin boundary condition,
it has the “wrong” sign between its two terms. Therefore, as observed in [31],
one cannot give a standard uniqueness argument for the problem (3.3), (3.4), and
(3.5). In what follows we give a simple proof for uniqueness in the case of multiple
black-holes; it has some points in common with the proof pointed out by York in
[31].

Theorem 3.2. There exists at most one solution to the elliptic exterior boundary-
value problem (3.3), (3.4), and (3.5).

Proof. Arguing by contradiction, suppose that we have two distinct solutions for
(3.3), (3.4), and (3.5). Denote by u and v these two solutions. For each i = 1, . . . , N ,
by passing to spheric coordinates with respect to Oi, we define a related function

ũi(r, θ, φ) =
Ri

r
u(r, θ, φ),

where r = R2
i /r, 0 < r ≤ Ri. Note that ũi(Ri, θ, φ) = u(Ri, θ, φ). Moreover,

the first derivatives of u and ũ agree at r = Ri (we need only check the radial
derivatives)

∂ũi

∂r
(r, θ, φ) = −Ri

r2
u(r, θ, φ)− R3

i

r3
∂u

∂r
(r, θ, φ),

and so
∂ũi

∂r
(Ri, θ, φ) = − 1

Ri
u(Ri, θ, φ)− ∂u

∂r
(Ri, θ, φ) =

∂u

∂r
(Ri, θ, φ), (3.9)

where the last equality in (3.9) follows from the boundary condition (3.5).
Likewise, one finds that the second derivatives of u and ũi also match at r = Ri.

∂2ũi

∂r2
(r, θ, φ) =

2Ri

r3
u(r, θ, φ) +

4R3
i

r4
∂u

∂r
(r, θ, φ) +

R5
i

r5
∂2u

∂r2
(r, θ, φ),

and so
∂2ũi

∂r2
(Ri, θ, φ) =

4
Ri

(∂u
∂r

(Ri, θ, φ) +
1

2Ri
u(Ri, θ, φ)

)
+
∂2u

∂r2
(Ri, θ, φ), (3.10)

where the first term of the right-hand side of (3.10) vanishes because of the bound-
ary condition (3.5).

Furthermore, simple computations show that

∆ũi(r, θ, φ) =
R5

i

r5
∆u(r, θ, φ). (3.11)

Hence we can extend u as follows

U(x) =

{
u(x) for x ∈ Ω
ũi(x) for x ∈ Ji(Ω) ⊂ B(Oi, Ri), i = 1, 2, . . . , N,

where

Ji(x) =
R2

i

|x−Oi|2
(x−Oi) +Oi,
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for all x 6= Oi, i = 1, N . Observe that U is in C2(Ω̃), Ω̃ := Ω ∪ J1(Ω) ∪ J2(Ω) . . . ∪
JN (Ω), and (as a consequence of (3.11)) it satisfies the following differential equa-
tion in the open set Ω̃

−∆U = H̃U−7,

where

H̃(x) =

{
Ĥ(x) for x ∈ Ω
R12

i |x−Oi|−12Ĥ(J−1
i (x)) for x ∈ Ji(Ω), i = 1, 2, . . . , N.

Doing the same for v, we get its extension V in Ω̃. Without restricting generality,
we can assume U(x) > V (x) in a nonzero measure subset of Ω̃. Let w(x) =
ln |U(x)/V (x)|. Since both u and v tend to 1 as |x| → ∞ and by the construction of
U and V , it follows that lim|x|→∞ |U(x)/V (x)| = 1 and limx→Oi |U(x)/V (x)| = 1,
i = 1, 2, . . . , N . Therefore, there exists x0 in the closure of the set Ω̃ such that
w(x0) = supx∈Ω̃ w(x). First, let us prove that x0 must belong to ∂Ω̃. Arguing by
contradiction, assume that x0 belongs to the interior of Ω̃. Then, from ∇w(x0) = 0,
it follows that

1
U(x0)

∇U(x0) =
1

V (x0)
∇V (x0),

and so
∆w(x0) =

1
U(x0)

∆U(x0)−
1

V (x0)
∆V (x0)

+
1

U(x0)2
|∇U(x0)|2 −

1
V (x0)2

|∇V (x0)|2

= −H̃(x0)
( 1
U(x0)8

− 1
V (x0)8

)
> 0,

(3.12)

which is impossible. This forces x0 to belong to ∂Ω̃.
Suppose that x0 ∈ Ji(∂B(Oj , Rj)) for some i and j, with i 6= j. Then, for

x̃0 := J−1
i (x0) ∈ ∂B(Oj , Rj) we have

w(x̃0) = ln |U(x̃0)/V (x̃0)| = ln |u(x̃0)/v(x̃0)| = ln |ũi(x0)/ṽi(x0)| = w(x0),

and so w(x̃0) = supx∈Ω̃ w(x). Since x̃0 is an interior point of Ω̃, we get the same
contradiction as in (3.12). �
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