Electronic Journal of Differential Equations, Vol. 2009(2009), No. 134, pp. 1-7.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A
SEMILINEAR ELLIPTIC SYSTEM

ZU-CHI CHEN, YING CUI

ABSTRACT. In this article, we show the existence and uniqueness of smooth
solutions for boundary-value problems of semilinear elliptic systems.

1. INTRODUCTION AND MAIN RESULTS

We study the solvability for the semilinear elliptic system with homogeneous
Dirichlet boundary value condition

Liu = f(x,u,v, Du, Dv), z€Q
Lov = g(z,u,v, Du,Dv), x€Q (1.1)
u=v=0, x€odf

where 2 C RN (N > 2) denotes a bounded domain with smooth boundary, and

f9: QxR xR — R, L; and Ly are the uniformly elliptic operators of second
order:

N
Lyu = Z Oz, (af,j(x)u), k=1,2,
ij=1

with its first eigenvalue A\, > 0 for k = 1,2, and in the context, A =: min{A;, A2 }.
We suppose the following conditions:

(H1) f,9: QxR xR xRN x RY = R are Caratheodory functions which satisfy
|f($,8,t,£,77)| < hl(mvsvt) + kl|£|a1 + k2|n|a2’
lg(x,s,t,&,m)| < ha(x, s,t) + ks|€]** + ka|n|™,

where constant o, k; € R, i = 1,2,3,4; hy(x,s,t) and ho(z,s,t) are
Caratheodory functions that satisfy the following conditions:

(H2) for every r > 0, sup|s <, 1<, hi(+, 5,t) € LP(S), —]\Q,fl <p< N,
(H3) max{ay, az,a3,a4} =1 a < 1
(H4) a; > % ora; =0, fori=1,2,3 4.
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Theorem 1.1. Assume (H1)-(H4). If (1.1) has two pairs of subsolutions and
supersolutions (u, ), (v,v), then (1.1) has at least one solution (u,v) € [W2P(Q)N
W@,

For the next theorem we need the assumption

(H5) f,9: QxR xR xRN xRV - R are Lipschitz continuous, with Lipschitz
coefficients l; and I, and L := max{ly,l2} < ﬁ, where C = C(n,p, Q)
is the coefficient for the Poincaré inequality.

Theorem 1.2. Under Condition (H5), Problem (L.1)) has at most one weak solution

(u,0) € W2P(Q) N Wy P ()P, 235 <p < N.

2. THE PROOF OF THEOREM [L.1]

Proof. From (H2) and (H3), we know that [ap, p*) is not empty, where p* = NN—_’)p.

Fix qo € [ap,p*), let T : Whao(Q) — Wh(Q) N L>®(Q) be the cut-off function
about u,u,v,7; i.e.,

Next, we prove that Tu, Tv € W% (Q) N L>(2). Firstly, we notice that
|[Tu(x)| < max{|ul, [u|} =: M, a.e. x€Q,
|Tv(z)| < max{|v|,|[v]} =:m, a.e. xz€Q

for every u,v € Wh40(Q), then Tu, Tv € L>(). Since the embedding of W?2P(£2)
into W14 (Q) is compact and u,u,v,v € WH%(Q), then by [8 A.6], we know
lu —v| € Wheo(Q). Also, from

utu+2u—|u—al |u+u—2u—|u—71
Tu(s) = . . |

v+U+20—|v—T] |v+T—2u—|v—7
Tv(z) = 1 1

we know that Tu, Tv € W% (Q), hence Tu, Tv € W% (Q) N L ().
Let S : [0,1] x [Wh(Q)]? — [W19(Q))? be defined as S(t,u,v) = (wy,ws),
where (w1, ws) is the solution of the following boundary-value problem

Liywy = tf(z,Tu,Tv, D(Tu), D(Tv)),z € Q,

2.1

wy; = 0,z € 09, (2.1)

Lows = tg(x, Tu, Tv, D(Tu), D(Tv)),z € Q, 0o
wg = 0,z € IN. (2.2)

According to (H1)-(H4), for every u,v € W19 (Q), we have f,g € LP(Q2). Then,
based on [3, Theorem 6.4], (2.1) and (2.2) have a unique solution (wi,ws) €
[W2P(Q) N WyP(Q)]? which means that S is a well-defined operator. Obviously
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S(0,u,v) = (0,0), then by the Sobolev embedding theorem, W2P(Q) — W (Q),
we know that S is continuous.
Next we prove that (u,v) € [Wh9(Q)]?, and for a certain ¢ € [0,1], S(t,u,v) =
(u,v) and this (u,v) satisfies
l[ulltgo + l[0ll1,00 < C.
According to the Sobolev embedding theorem and (H1), we have
[ullrgo < Cllull2,p

«q 2 (2‘3)
< O (@, Tu, To)[lp + ka[[[D(Tw)|* | + ko [[D(T0)[** )

and
[vll1,00 < Cllvll2,p

< C(llhe(z, Tu, To)lp + ksl D(Tw)[**[lp + ka[[| D(T0)[** )
Then from the definition of Tu and T, and the condition (H2) we know that

hi(z, Tu, Tv)||, <C, i=1,2. (2.5)

(2.4)

Where C depends only on @, u,v,v and p. When i = 1,3, we have

[1Dulap]®s  w>7
ID(Tw)* [lp = [ID(TW)[laipl® =  [[Dulla;p]™, v<u<u (2.6)
lIPulla:pl®s v < u.
When i = 2,4, we have
[DV]a;p]*, v 270
ID(Tv)* p = [[D(T0)laip]® = § [I1DV]|ap]®s v<v <D (2.7)
I D2lla:p)* v <w
Then by [Il, Theorem 4.14] (Ehrling-Nirenberg-Gagliardo), we obtain
[1Dullap < Frellullz,amp + k2(€)[ullaip, u <u <, (2.8)

[DV]laip < kaellvll2,aip + kale)|[v]laip, v <v <.

Since u < u < u,v <wv < v, oy < 17 i = 1a2a3547 by a;p < qo0 and u,u,V,V €
W0 (), we obtain

[tllaip <C, Nvllaip <C, [ Dlla;p < C,
[1Dulla;p <C, [ DV]asp < C; [ Doy < C, (2.9)
lullzaip < Cllullz,p,  [0ll2,00p < Cllvll2p, i=1,2,3,4.
Without loss of generality, we assume that |[ull2, > 1,[[v[l2, > 1. By (2.5), ([2.6),
2.7, 2.8), 2.9), we know from and that

2p + [lvll2p < Cre(fJullzp + [lv]

elQ

[|u 2,p) +

Select € = we can write

L
2C 7

[ull2p + [v]l2p < C.
Then according to (2.3) and (2.4)),

[l + llvllg < C.
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From the Leray-Schauder fixed point theorem [7, Theorem 11.3], there exists a
solution (u,v) € W19 (Q))? satisfying S(1,u,v) = (u,v); i. e.,

Liu = f(z,Tu,Tv, D(Tw), D(Tv)), x €9,
Lyv = g(z,Tu,Tv, D(Tu), D(Tv)), =z €€, (2.10)
u=v=0, x€dN.
Then (u,v) € W% (Q)]? implies f,g € LP(Q) and (u,v) € [W2P(2) N Wy P (Q)]2.
Next we prove that (u,v) satisfies
u<u<uv<v<U

Firstly we prove u < . Let w = u — @, then w € W?2P(Q), define wt(z) =
max{0,w(z)}, then we need only to prove w™ = 0. Previously,

Lyu = f(x,Tu,Tv, D(Tu), D(Tw)),
Liu > f(z,u,Tv, Du, D(Tv)).
We obtain the inequality
Lyw < [f(z,Tu,Tv, D(Tu), D(Tv)) — f(z,u,Tv, Du, D(Tv))]. (2.11)
Multiply this inequality by w™, and integrate on . On the left-hand side, we have

/Llw wt / Z Diw - Jw /8 Zau Dijw-wt
Q

1,7=1

/z

1,j=1

Then we can rewrite as

[¥ a6

7,7=1

HOOA CL)+ X u v u v
Diw-D, §/Q[f( \Tu, Tv, D(Tu), D(Tv)) o1

— f(z, @, Tv, Du, D(Tv))jw™dz.

Let A ={z € Q:ulx) <ul)}and B ={z € Q: ulx) > w(x)}. Then
Q1 = AU B. Obviously on A, wt = 0. In B, Tu = w. Then the righthand side of
(2.12) is zero. That is,

/ Z Zw~Djw+:0.

1,j=1

On A, wt =0; on B, w =w™. We can write the previous equation as

/Q+ Z ZW+ ' Djw+ =

Then according to the deﬁmtlon of the uniform elliptic operator,
)\|Dw+| / Z zw'*' . DJUJ+ =
Qt ;o1

Consequently, wt = 0,z € Q. That is in Q, v < w. Similarly, we can prove that
u < wuand v < v <7. From the definition of T', we know T'u = v and Tv = v. Then
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by (2.10), we obtain that (u,v) € [WP(Q) N W, P(Q)]? is the solution of (T.1).
The proof is completed. [

An example. In this section, we illustrate Theorem

2\
L17.L:A1¢1($)+71U+U+>\1¢1|Du‘%, CUGQ,

A2 A 3 2.1
Lov = %)\gqﬁg(x)—kéu—k fv—l—g)é(bg(x)mvﬁ, z €, (2.13)

u=v=0, x€dIN.
Here Q is a regular domain in R (N > 2) with smooth boundary 99, and

%‘(x)
oi(z) = <
(@) = Spalei] + supa 1Dl

In addition, A; > 0, p;(x) > 0 are the first eigenvalue and the corresponding eigen-
function of operator L; in 2 with zero-Dirichlet boundary value condition. There-
fore,

Ligi(x) _ Aii()
supg |@il +supq [Dy;i|  supg |¢i| + supg [De;l

When 2 < p < N, we can verify that problem ([2.13)) satisfies condition (H1)—(H4).
Let

Ligi(z) =

= Xi¢i(z).

u=0; v=0; w=9¢; T=3\¢; ¢=max(¢i,p2).

It is not difficult to verify that (u, %), (v,?), based on this definition, is a pair of
super-solution and sub-solution for problem(2.13)). Hence according to Theorem
problem (2.13) has at least one solution (u,v) € [WP(Q) N W, *(Q)]2.

3. THE PROOF OF THEOREM [1.2]
Proof. Assume (uy,v1), (ug,v2) € [W>P(Q) N Wy P (Q)]? are solutions for problem
(1.1); therefore
Lyuy = f(z,u1,v1,Duy, Dvy), x €9,
Lavy = g(x,u1,v1, Duy, Dvy), € Q,
uy=v1 =0, x€N

and
Liug = f(x,ug,ve, Dus, Dvs), x € Q,
Lovy = g(x,u2,v2, Dug, Dvg), x €9,
Uy = vg =0, r € 0f.
Then

Ly(uy —ug) = f(x,u1,v1, Dui, Dvi) — f(x,ug,v2, Dug, Dvs),
Lo(vy — vg) = g(x,u1,v1, Duy, Dvy) — g(x, ug, va, Dug, Dvg),

—~
w e
[N
O

(u1 — u2) laa= (v1 — v2) |an=0.
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Multiply (3.1) by (u1 — ug) and (3.2)) by (v — v2), and then integrate them on 2
yield

/Q(ul —ug) - L1 (u1 — ug) / Z i(ur — u2) - Dj(ur — ug),

zgl

/(1}1 — UQ) LQ Ul — ’UQ / Z 1]1 — U2) Dj(’Ul - 1}2).
Q 1,7=1
By the uniformly elliptic condition, we get

N

/ Z al;(2)Di(uy — us) - Dj(uy — uz) > A||Duy — Duy|?,

/ Z Ul — ’Ug) Dj(’Ul — UQ) Z >\HDU1 — DU2||2.

7,7=1

Using the Lipschitz condition on f, g, it yields
/(f(x,ul,m,Dul,Dvl) — f(z,uz,va, Dug, Dvg))(u1 — ug)dx
Q
< L/ (lug — ug| + |v1 — va| + |Duy — Duz| + |Dvy — Duvsl) - |ug — uz|dx
Q

|DU1 — DU2|2 + |D’Ul — D’Ug‘2

Q
and
/(g(l‘,uhm,Dul,Dm) — g(z, uz, va, Dug, Dvg))(vy — vo)dx
Q
< L/(|u1 — ug| + |v1 — vo| + |Duy — Duy| + |Dvy — Dus|) - [v1 — vo|dx
Q
Duy — Du 2+ Dvy — Dv 2
SL/(|u1—u2|2+3|U1_U2‘2+\ | — Dus)| 2\ LDl
Q
Furthermore,
A|Duy — Duy|?
/Z a;;(2)Di(ur — ug) - Dj(uy — uz)
1,0=1
Duy — Dusl? + | Dvy — Dusl|?
SL/(3|U1_U2|2+|U1—02|2+‘ Uy Us| -2|-\ vy vg| e
Q
and
A|Dvy — Duy|)?
/Z Di(vy —v2) - Dj(vy — v2)
1,7=1

|Duy — DU2|2 + |Dv; — DU2‘2
2

gL/(\ul—u2\2+3|vl—v2|2+ )dz
Q



EJDE-2009/134 EXISTENCE AND UNIQUENESS 7

Summing these two formulas yields

A|Duy — Dugl||* + A| Dvy — Duy||?

2 2 2 2 (3.4)
<L | (4lug —uz|” + 4|v1 — v2|” + |Duy — Dusg|” + |Dvy — Dvs|”)dx.
Q

Using the Poincaré inequality,
[ullf2i) < ClIDulliaiy,  IlvlZz(q) < ClIDVII 2 ().
According to this formula and (3.4, we have

JL 1Pt 1D )Pl < LEE DG )+ (e 0P
Q Q

By condition (H5), LL)\+1 < 1, we get D(ug —uz) = 0,D(v; —v2) =0, x € Q.
Since u; = v; = 0 on 9N for ¢ = 1,2, it follows that u; = us and v; = vy, a.e.
x € 2. This completes the proof. ([

REFERENCES

[1] R. A. Adams; Sobolev Space. Academic Press, New York,1975.

[2] C. O. Alves, D. C. de Morais Filho and M. A. S. Souto. On systems of elliptic equations
involving subcritical or critical Sobolev exponents, Nonlinear Analysis. 42 (2000), 771-787.

[3] Y. Z. Chen and L. c. Wu; Elliptic partial differential equations of second order and elliptic
systems. Science Press, Beijing,1997.

[4] F. Correa; Positive Solutions of a asymptotic planar system of elliptic boundary Value Prob-
lems. Inter. J. Math. and Math.Sci. 21 (1998), 549-554.

[5] R. Dalmasso; Ezistence and Uniqueness of positive solutions of semilinear elliptic systems,
Nonlinear Analysis. 39 (2000) 559-568.

[6] M. Delgado and A. Suarez; Existence of Solutions for elliptic systems with holder continuous
nonlinearities, Differential and Integral Equations. 13 (2000), April-June, 453-477.

[7] D. Gilbarg and N. S. Trudinger; Elliptic partial differential Equations of second order.
Springer-Verlag, Berlin, 1983.

[8] D. Kinderlehrer, G. Stampacchia; An introduction to Variational Inequalities and their appli-
cations. Academic Press, New York 1980.

[9] D. H. Sattinger; Monotone Methods in nonlinear Elliptic and Parabolic boundary Value Prob-
lems, Indiana Univ. Math. J. 21 (1972), 979-1000.

Zu-CHl CHEN
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA7 HEFEI
230026, CHINA

E-mail address: chenzc@ustc.edu.cn

Ying Cul
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI
230026, CHINA

E-mail address: cuiy@mail.ustc.edu.cn



	1. Introduction and main results
	2. The proof of Theorem 1.1
	An example

	3. The proof of Theorem 1.2
	References

