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MULTIPLE SOLUTIONS FOR NONLINEAR ELLIPTIC
EQUATIONS ON RIEMANNIAN MANIFOLDS

WENJING CHEN, JIANFU YANG

Abstract. Let (M, g) be a compact, connected, orientable, Riemannian n-

manifold of class C∞ with Riemannian metric g (n ≥ 3). We study the

existence of solutions to the equation

−ε2∆gu + V (x)u = K(x)|u|p−2u

on this Riemannian manifold. Here 2 < p < 2∗ = 2n/(n− 2), V (x) and K(x)
are continuous functions. We show that the shape of V (x) and K(x) affects

the number of solutions, and then prove the existence of multiple solutions.

1. Introduction

In this article, we consider the existence of solutions of the problem

−ε2∆gu+ V (x)u = K(x)|u|p−2u in M, (1.1)

where (M, g) is a compact, connected, orientable, Riemannian manifold of class
C∞ with Riemannian metric g, dimM = n ≥ 3, 2 < p < 2∗ = 2n

n−2 and ∆g is the
Laplace-Beltrami operator.

In the whole space Rn, problem (1.1) is the so-called Schrödinger equation. The
existence of solutions of Schrödinger problem (1.1) has been extensively investi-
gated, mainly in the semiclassical limit ε→ 0, see for instance [1], [2], [7], [8], [10],
[15], [17], [18]. In particular, it was found in [15] a mountain pass solution of prob-
lem (1.1) in the case K(x) = 1. Later on, it was shown in [17] that the maximum
point of the mountain pass solution concentrates at the minimum point of V as
ε → 0. In the case K(x) 6=const., Wang and Zeng found in [18] a ground state
solution for ε small. Furthermore, they studied the concentration behavior of such
a solution as ε → 0. In [8], it was shown that the number of solutions of problem
(1.1) is affected by the shape of functions V and K. In fact, in [8] the number of
solutions of problem (1.1) was related to the topology of the set of global minimum
points of certain function. On the other hand, for a bounded domain Ω in RN with
rich topology, Benci and Cerami proved that problem (1.1) with V = K = 1 has
at least cat Ω positive solutions. Such a result was recently generalized to compact
manifolds. In [3], the authors showed that problem (1.1) with V = K = 1 and
positive mass possesses at least cat(M) + 1 solutions, while for the zero mass case,
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similar results were obtained in [16]. Inspired by [3], [8] and [16], we consider in
this paper the effect of coefficients V,K on the existence of number of solutions.

Problem (1.1) is related to the problem

−∆u+ V (η)u = K(η)|u|p−2u in Rn (1.2)

for fixed η ∈M. It is well known that the problem

−∆u+ u = |u|p−2u in Rn u > 0, (1.3)

has a positive radial solution U ; see for instance [5]. The function U and its radial
derivatives satisfy the following decaying law

U(r) ∼ e−|r||r|−
n−1

2 , lim
r→∞

U ′(r)
U(r)

= 1, r = |x|.

By a result in [13], U is the unique positive solution of problem (1.3). We may
verify that w(z) :=

( V (η)
K(η)

)1/(p−2)
U
((
V (η)

)1/2
z
)

with K(η) > 0 is a ground state
solution of problem (1.2); that is, it is the minimizer of the variational problem

cη := inf
u∈Nη

Eη(u),

where

Eη(u) =
1
2

∫
Rn

(|∇u|2 + V (η)u2) dz − 1
p

∫
Rn

K(η)|u|p dz

is the associated energy functional of problem (1.2) and

Nη :=
{
u ∈ H1(Rn)\{0} :

∫
Rn

(|∇u|2 + V (η)u2) dz =
∫

Rn

K(η)|u|p dz
}

is the related Nehari manifold. In fact,

cη = Eη(w) =
(1
2
− 1
p

)V p
p−2−

n
2 (η)

K
2

p−2 (η)

∫
Rn

|U(z)|p dz.

Let
c0 = inf

η∈M
cη and Ω := {η ∈M : cη = c0}.

For δ > 0 let
Ωδ := {ξ ∈M : inf

η∈Ω
‖ξ − η‖g ≤ δ}.

We assume in this paper that V,K ∈ C(M,R) and there is a positive number ν > 0
such that V,K ≥ ν > 0. Denote by catX(A) the Ljusternik-Schirelmann category
of A in X. Let

Kmax = max
x∈M

K(x), Kmin = min
x∈M

K(x).

Our main result is the following.

Theorem 1.1. Problem (1.1) has at least catΩδ
(Ω) positive solutions for ε > 0

small.

Solutions of problem (1.1) will be found as critical points of the associated func-
tional

Iε(u) =
1
εn

(1
2

∫
M

(
ε2|∇gu(x)|2 + V (x)u2

)
dµg −

1
p

∫
M
K(x)|u+|p dµg

)
,
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in the Hilbert space

H1
g (M) :=

{
u : M→ R :

∫
M

(|∇gu|2 + u2) dµg <∞
}

with the norm

‖u‖g =
(∫

M
(|∇gu|2 + u2) dµg

)1/2

,

where dµg =
√

det gdz denotes the volume form on M associated with the metric
g. For σ > 0, let

Σε,σ := {u ∈ Nε : Iε(u) < c0 + σ}
be a subset of the Nehari manifold

Nε :=
{
u ∈ H1

g (M)\{0} :
∫
M

(ε2|∇gu(x)|2 + V (x)u2) dµg =
∫
M
K(x)|u+|p dµg

}
related to the functional Iε. To prove Theorem 1.1, we first show that problem
(1.1) has at least catΣε,σ Σε,σ solutions, then we need to relate catΣε,σ Σε,σ with
catΩδ

Ω. By a result in [11], we know that M can be isometrically embedded in a
Euclidean space RN as a regular sub-manifold with N > 2n. For any set ω ⊂ M
and r > 0, we define

[ω]r := {z ∈ RN : dist(z, ω) ≤ r}
a subset of RN , where dist(z, ω) denotes the distance between z and ω with respect
to the Euclidian metric in RN . Let r = r(Ωδ) be the radius of topological invariance
of Ωδ, which is defined by

r(Ωδ) := sup{l > 0 : cat([Ωδ]l) = cat(Ωδ)}.
We choose r > 0 so small that the metric projection

Π : [Ωδ]r ⊂ RN → Ωδ

is well defined. We will construct a function φε : Ω → Σε,σ and a function β :
Σε,σ → [Ωδ]r such that

Ω
φε−→ Σε,σ

β−→ [Ωδ]r
Π−→ Ωδ,

and Π ◦ β ◦ φε is homotopic to the identity on Ωδ. It implies that catΣε,σ Σε,σ ≥
catΩδ

Ω.
In section 2, we outline our frame of work. The mappings φε and β are con-

structed in section 3 and section 4 respectively.

2. The framework and preliminary results

Let M be a compact Riemannian manifolds of class C∞. On the tangent bundle
of M we define the exponential map exp : TM → M which has the following
properties: (i) exp is of class C∞; (ii) there exists a constant R > 0 such that
expx

∣∣
B(0,R)

: B(0, R) → Bg(x,R) is a diffeomorphism for all x ∈ M. Fix such an
R in this paper and denote by B(0, R) the ball in Rn centered at 0 with radius R
and Bg(x,R) the ball in M centered at x with radius R with respect to the distance
induced by the metric g. Let C be the atlas on M whose charts are given by the
exponential map and P = {ψC}C∈C be a partition of unity subordinate to the atlas
C. For u ∈ H1

g (M), we have∫
M
|∇gu|2 dµg =

∑
C∈C

∫
C

ψC(x)|∇gu|2 dµg.
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Moreover, if u has support inside one chart C = Bg(η,R), then∫
M
|∇gu|2 dµg

=
∫

B(0,R)

ψC(expx0
(z))gij

x0
(z)

∂u(expx0
(z))

∂zi

∂u(expx0
(z))

∂zj
|gx0(z)|1/2 dz,

where gx0 denotes the Riemannian metric reading in B(0, R) through the normal
coordinates defined by the exponential map expx0

. In particular, gx0(0) = Id. We
let |gx0(z)| := det(gx0(z)) and (gij

x0
)(z) is the inverse matrix of gx0(z). Since M is

compact, there are two strictly positive constants h and H such that

∀x ∈M, ∀υ ∈ TxM, h‖υ‖2 ≤ gx(υ, υ) ≤ H‖υ‖2.
Hence, we have

∀x ∈M, hn ≤ |gx| ≤ Hn.

Theorem 1.1 will follow from the following result in [14].

Proposition 2.1. Let N be a C1,1 complete Riemannian manifold modeled on a
Hilbert space and J be a C1 functional on N bounded from below. If there exists b >
infN J such that J satisfies the Palais-Smale condition on the sublevel J−1(−∞, b),
then for any noncritical level a, with a < b, there exist at least catJa(Ja) critical
points of J in Ja, where Ja := {u ∈ N|J(u) ≤ a}.

We need also the following Lemma.

Lemma 2.2. Let X and Y be topological spaces, Z ⊂ Y be a closed set and h1 ∈
C(Z,X), h2 ∈ C(X,Y ) with h2 being a closed mapping. Suppose that h2 ◦h1 : Z →
Y is homotopic to the identity mapping Id in Y , then catX(X) ≥ catY (Z).

Proof. Let k = catX(X), there exist closed sets V1, V2, · · · , Vk such that X =⋃
1≤i≤k Vi and each Vi is contractible in X. Since h2 ∈ C(X,Y ) and h2 being a

closed mapping, each h2(Vi) is closed and contractible in Y , then

catX(X) ≥ catY (h2(X)). (2.1)

Since h2 ◦ h1(Z) ⊂ h2(X), we have

catY (h2(X)) ≥ catY (h2 ◦ h1(Z)). (2.2)

On the other hand, h2 ◦ h1 : Z → Y is homotopic to the identity mapping Id in Y ,
thus

catY (h2 ◦ h1(Z)) ≥ catY (Z). (2.3)
By (2.1)-(2.3), catX(X) ≥ catY (Z). �

3. The function φε

We know that Nε is a C1,1 manifold. If u ∈ Nε, we have ‖u‖g ≥ C > 0,
C is independent of u. For u ∈ H1

g (M), there exists a unique tε(u) > 0, tε :
H1

g (M)\{0} → R+, such that tε(u)u ∈ Nε and

Iε(tε(u)u) = max
t≥0

Iε(tu).

More precisely,

tp−2
ε (u) =

∫
M
(
ε2|∇gu(x)|2 + V (x)u2

)
dµg∫

MK(x)|u+|p dµg
. (3.1)
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The function tε(u) is C1. Let us define a smooth real function χR on R+ such that

χR(t) :=

{
1 if 0 ≤ t ≤ R

2 ;
0 if t ≥ R .

(3.2)

and |χ′R(t)| ≤ 2
R . Fixing η ∈ Ω and ε > 0, we define

Wη,ε(x) :=

{
wε(exp−1

η (x))χR(| exp−1
η (x)|) if x ∈ Bg(η,R);

0 otherwise,
(3.3)

where w(z) is the ground state solution of problem (1.2) and wε(z) = w( z
ε ). We

define φε : Ω → Nε by

φε(η) = tε(Wη,ε(x))Wη,ε(x). (3.4)

Lemma 3.1. With the above notation, we have
1
εn

∫
M
ε2|∇gWη,ε(x)|2 dµg →

∫
Rn

|∇w|2dz as ε→ 0. (3.5)

1
εn

∫
M
V (x)|Wη,ε(x)|2 dµg →

∫
Rn

V (η)w2(z)dz as ε→ 0, (3.6)

1
εn

∫
M
K(x)|Wη,ε(x)|p µg →

∫
Rn

K(η)wp(z)dz as ε→ 0. (3.7)

Proof. We have∣∣∣ 1
εn

∫
M
ε2|∇gWη,ε(x)|2 dµg −

∫
Rn

|∇w|2dz
∣∣∣

=
∣∣∣ 1
εn

∫
Bg(η,R)

ε2
∣∣∇g

(
wε(exp−1

η (x))χR(| exp−1
η (x)|)

) ∣∣2 dµg −
∫

Rn

|∇w|2dz
∣∣∣

=
∣∣∣ 1
εn

∫
B(0,R)

ε2
∣∣∇ (wε(z)χR(|z|))

∣∣2
g
|gη(z)|1/2 dz −

∫
Rn

|∇w|2dz
∣∣∣

=
∣∣∣ ∫

B(0, R
ε )

∣∣∣∇(w(z)χR
ε
(|z|)

)∣∣∣2
g
|gη(εz)|1/2

dz −
∫

Rn

|∇w|2dz
∣∣∣

≤
∫

Rn

∣∣∣ n∑
i,j=1

∂w(z)
∂zi

∂w(z)
∂zj

∣∣∣χ2
R
ε
(|z|)gij

η (εz)|gη(εz)|1/2 − δij

∣∣∣ ∣∣∣ dz
+
∫

Rn

∣∣∣ n∑
i,j=1

gij
η (εz)χR

ε
(|z|)w(z)

(
∂w

∂zi

∂χR
ε
(|z|)

∂zj
+
∂w

∂zj

∂χR
ε
(|z|)

∂zi

)∣∣∣|gη(εz)|1/2 dz

+
∫

Rn

∣∣∣ n∑
i,j=1

gij
η (εz)w2(z)

∂χR
ε
(|z|)

∂zi

∂χR
ε
(|z|)

∂zj

∣∣∣|gη(εz)|1/2 dz := I1 + I2 + I3.

By the compactness of the manifold M and regularity of the exponential map of
the Riemannian metric g, we have

lim
ε→0

∣∣χ2
R
ε
(|z|)gij

η (εz)|gη(εz)|1/2 − δij
∣∣ = 0

uniformly with respect to η ∈ Ω, so I1 → 0 as ε→ 0. By the definition of χR(t),

I2 ≤
Hn/2

h

∫
Rn

∣∣∣ n∑
i,j=1

w(z)
(∂w
∂zi

∂χR
ε
(|z|)

∂zj
+
∂w

∂zj

∂χR
ε
(|z|)

∂zi

)∣∣∣ dz
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≤ 4Hn/2ε

Rh

∫
Rn

|w(z)| |∇w(z)| dz

=
4Hn/2ε

Rh

(
V (η)
K(η)

)2/(p−2)

V (η)−n/2

∫
Rn

|U(z)| |∇U(z)| dz

≤ 2Hn/2ε

Rh

V
2

p−2−
n
2 (η)

K
2

p−2 (η)

∫
Rn

(|∇U(z)|2 + |U(z)|2) dz.

Similarly,

I3 ≤
Hn/2

h

4ε2

R2

V
2

p−2−
n
2 (η)

K
2

p−2 (η)

∫
Rn

U(z)2 dz.

Hence, I2 + I3 → 0 uniformly with respect to η ∈ Ω as ε→ 0 and (3.5) follows.
Next, we prove (3.6). We have∣∣∣ 1
εn

∫
M
V (x)|Wη,ε(x)|2 dµg −

∫
Rn

V (η)w2(z)dz
∣∣∣

=
∣∣∣ 1
εn

∫
Bg(η,R)

V (x)|wε(exp−1
η (x))χR(| exp−1

η (x)|)|2 dµg −
∫

Rn

V (η)w2(z)dz
∣∣∣

=
∣∣∣ 1
εn

∫
B(0,R)

V (expη(z))|wε(z)χR(|z|)|2|gη(z)|1/2 dz −
∫

Rn

V (η)w2(z)dz
∣∣∣

=
∣∣∣ ∫

B(0, R
ε )

V (expη(εz))|w(z)χR(|εz|)|2|gη(εz)|1/2 dz −
∫

Rn

V (η)w2(z) dz
∣∣∣

≤
∣∣∣ ∫

Rn

[
V (expη(εz))|χR(|εz|)|2|gη(εz)|1/2 − V (η)

]
w2(z)dz

∣∣∣
+
∣∣∣ ∫

Rn\B(0, R
ε )

[
V (expη(εz))|χR(|εz|)|2|gη(εz)|1/2 − V (η)

]
w2(z)dz

∣∣∣
:= I4 + I5.

We note that expη(εz) → η and gη(εz) → δij as ε → 0, by the continuity of V ,
I4 → 0. Obviously, I5 → 0. So (3.6) holds. (3.7) can be proved in the same
way. �

Proposition 3.2. For ε > 0, the map φε : Ω → Nε is continuous; and for any
σ > 0, there exists ε0 > 0 such that if ε < ε0 φε(η) ∈ Σε,σ for all η ∈ Ω.

Proof. The continuity of φε can be proved as [3, Proposition 4.2], so we omit the
details. Now, we show φε(η) ∈ Σε,σ for ∀η ∈ Ω. By Lemma 3.1,

tp−2
ε (Wη,ε(x)) =

1
εn

∫
M ε2|∇gWη,ε(x)(x)|2dµg + 1

εn

∫
M V (x) (Wη,ε(x))

2
dµg

1
εn

∫
MK(x)|W+

η,ε(x)|p dµg

→
∫

Rn |∇w(z)|2 dz +
∫

Rn V (η)w2(z) dz∫
Rn K(η)wp(z) dz

= 1.

Consequently,

Iε(φε(η)) = Iε(tε(Wη,ε(x))Wη,ε(x))

=
1
2

∫
Rn

(|∇w(z)|2 + V (η)w2(z)) dz − 1
p

∫
Rn

K(η)wp(z) dz + o(1)

= cη + o(1) = c0 + o(1)
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uniformly with respect to η ∈ Ω and the proof is completed. �

4. The function β

Let us define the center of mass β(u) ∈ RN for u ∈ Nε by

β(u) :=

∫
M x|u+(x)|p dµg∫
M |u+(x)|p dµg

.

The function β is well defined on u ∈ Nε since u+ 6≡ 0 if u ∈ Nε. Let

mε := inf
u∈Nε

Iε(u), (4.1)

which is achieved as M is compact. Since K(x), V (x) are bounded, we may show
the following result as in [3, Lemma 5.1].

Lemma 4.1. There exists a number α > 0 such that for any ε > 0, mε ≥ α.

For a given ε > 0, let Pε = {P ε
j }j∈Λε

be a finite good partition of the manifoldM
introduced in [3]: if for any j ∈ Λε the set partition P ε

j is closed; P ε
j ∩P ε

i ⊆ ∂P ε
j ∩∂P ε

i

for any i 6= j; there exist r1(ε) ≥ r2(ε) > 0 such that there are points qε
j ∈ P ε

j for
any j, satisfying Bg(qε

j , ε) ⊂ P ε
j ⊂ Bg(qε

j , r2(ε)) ⊂ Bg(qε
j , r1(ε)) and any point

x ∈M is contained in at most NM balls Bg(qε
j , r1(ε)), where NM does not depend

on ε. This last condition can be satisfied for ε small enough by the compactness of
M, and r1(ε), r2(ε) can be chosen so that r1(ε) ≥ r2(ε) ≥ (1+ 1

Θ )ε with a constant
Θ independent on ε. We may assume that the value ε0 of Proposition 3.2 is small
enough for the manifold M to have good partitions.

Lemma 4.2. There exists a constant γ > 0 such that for any fixed σ > 0, ε ∈ (0, ε0)
and function u ∈ Σε,σ, there exists a set P̃ ε

σ ∈ Pε such that

1
εn

∫
P̃ ε

σ

K(x)|u+|p dµg ≥ γ.

Proof. Fixed σ > 0 and 0 < ε < ε0. Then for any u ∈ Nε and any good partition
Pε = {P ε

j }j∈Λε
, let u+

j = u+ on the set P ε
j . Then

1
εn

∫
M

(ε2|∇gu(x)|2 + V (x)u2) dµg

=
1
εn

∫
M
K(x)|u+|p dµg

=
1
εn

∑
j∈Λε

∫
P ε

j

K(x)|u+|p dµg

≤ max
j

( 1
εn

∫
P ε

j

K(x)|u+
j |

p dµg

) p−2
p
∑
j∈Λε

( 1
εn

∫
P ε

j

K(x)|u+
j |

p dµg

)2/p

.

(4.2)

Let

χε(t) :=

{
1 if t ≤ r2(ε);
0 if t > r1(ε)

be a smooth cutoff function, where r1(ε), r2(ε) are defined above for good partitions,
and assume that |χ′ε| ≤ Θ

ε uniformly. Let

ũj(x) = u+(x)χε(|x− qε
j |).
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We know that ũj(x) ∈ H1
g (M), and supt(ũj(x)) = Bg(qε

j , r1(ε)). By the definition
of u+

j , we have u+
j = u+ on the set P ε

j ⊂ Bg(qε
j , r2(ε)) ⊂ Bg(qε

j , r1(ε)). By the
Sobolev inequality there exists a positive constant C such that for any j,( 1

εn

∫
P ε

j

K(x)|u+
j |

p dµg

)2/p

=
( 1
εn

∫
P ε

j

K(x)|u+|p dµg

)2/p

≤
( 1
εn

∫
Bg(qε

j ,r2(ε))

K(x)|u+χε(|x− qε
j |)|p dµg

)2/p

≤
( 1
εn

∫
Bg(qε

j ,r1(ε))

K(x)|u+χε(|x− qε
j |)|p dµg

)2/p

=
( 1
εn

∫
M
K(x)|ũj |p dµg

)2/p

≤ K2/p
max

( 1
εn

∫
M
|ũj |p dµg

)2/p

≤ K2/p
maxC

1
εn

∫
M

(
ε2|∇gũj |2 + |ũj |2

)
dµg

= K2/p
maxC

1
εn

∫
P ε

j

(
ε2|∇gũj |2 + |ũj |2

)
dµg

+K2/p
maxC

1
εn

∫
Bg(qε

j ,r1(ε))\P ε
j

(
ε2|∇gũj |2 + |ũj |2

)
dµg

≤ K2/p
maxC

1
εn

∫
M

(
ε2|∇gu

+
j |

2 + |u+
j |

2
)
dµg

+K2/p
maxC

1
εn

∫
Bg(qε

j ,r1(ε))\P ε
j

(
ε2|∇gũj |2 + |ũj |2

)
dµg.

(4.3)

Moveover ∫
Bg(qε

j ,r1(ε))\P ε
j

|ũj |2dµg ≤
∫

Bg(qε
j ,r1(ε))\P ε

j

|u+|2dµg, (4.4)

and∫
Bg(qε

j ,r1(ε))\P ε
j

ε2|∇gũj |2dµg

=
∫

Bg(qε
j ,r1(ε))\P ε

j

ε2
∣∣∇g

(
u+(x)χε(|x− qε

j |)
)∣∣2 dµg

≤ 2
∫

Bg(qε
j ,r1(ε))\P ε

j

ε2
(
|∇gu

+|2χ2
ε(|x− qε

j |) +
(
χ′ε(|x− qε

j |)
)2 |u+|2

)
dµg

≤ 2
∫

Bg(qε
j ,r1(ε))\P ε

j

(
ε2|∇gu

+|2 + Θ2|u+|2
)
dµg.

(4.5)

Substituting (4.4) and (4.5) into (4.3), we get(
(

1
εn

∫
P ε

j

K(x)|u+
j |

p dµg

)2/p

≤ K2/p
maxC

1
εn

∫
M

(
ε2|∇gu

+
j |

2 + |u+
j |

2
)
dµg
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+K2/p
maxCC

′ 1
εn

∫
M

(
ε2|∇gu

+|2 + |u+|2
)
dµg,

where C ′ = max{2, 2Θ2 + 1}. Hence,∑
j∈Λε

( 1
εn

∫
P ε

j

K(x)|u+
j |

p dµg

)2/p

≤ K2/p
maxC

∑
j∈Λε

1
εn

∫
M

(
ε2|∇gu

+
j |

2 + |u+
j |

2
)
dµg

+K2/p
maxCC

′NM
1
εn

∫
M

(
ε2|∇gu

+|2 + |u+|2
)
dµg

≤ K2/p
maxC(C ′ + 1)NM

1
εn

∫
M

(
ε2|∇gu

+|2 + |u+|2
)
dµg

≤ K2/p
maxC(C ′ + 1)NMmax

{
1,

1
ν

}
1
εn

∫
M

(
ε2|∇gu|2 + V (x)|u|2

)
dµg

(4.6)

From (4.2) and (4.6) we have

max
j

{( 1
εn

∫
P ε

j

K(x)|u+|p dµg

) p−2
p
}
≥

1
εn

∫
M(ε2|∇gu(x)|2 + V (x)u2) dµg∑

j∈Λε

(
1

εn

∫
P ε

j
K(x)|u+

j |p dµg

)2/p

≥ 1

K
2/p
maxC(C ′ + 1)NMmax{1, 1

ν }
.

Thus, the proof is completed. �

Lemma 4.3. Let σ and ε be fixed, and Imε+2σ
ε := {u ∈ Nε|Iε(u) < mε + 2σ},

where mε is defined in (4.1). For any u ∈ Σε,σ ∩ Imε+2σ
ε there exists uσ ∈ Nε such

that
Iε(uσ) < Iε(u), ‖|uσ − u|‖ε < 4

√
σ, (4.7)

where ‖|u|‖2ε = 1
εn

∫
M(ε2|∇gu|2 + u2) dµg, and∣∣∇|NεIε(uσ)

∣∣ < √
σ‖|ξ|‖ε. (4.8)

The above result follows by the Ekeland principle, also by the proof in [3, Lemma
5.4].

Let uk ∈ Σεk,σk
∩ I

mεk
+2σk

εk , where εk, σk → 0 as k → ∞. For all k, the
map expηk

: Tηk
M → M is a diffeomorphism on the ball Bg(ηk, R). Let {ψc}

be a partition of unity induced on M by the cover of balls of radius R. By the
compactness of M, we can assume that there exists ρ > 0 such that for all k

min
{
ψBg(ηk,R)(x)|x ∈ Bg(ηk,

R

ρ
)
}
≥ ψ0 > 0. (4.9)

Let

ϕk : Bg

(
ηk,

R

ρ

)
→ B

(
0,

R

εkρ

)
⊂ Rn, ϕk :=

exp−1
ηk

εk

and define wk : Rn → R by

wk(z) := χk(z)uk(ϕ−1
k (z)) = χR (εk|z|ρ)uk(expηk

(εkz)) = χR
ρ
(| exp−1

ηk
(x)|)uk(x),

where x = expηk
(εkz) ∈ Ω and χk(z) := χ R

εkρ
(|z|). Then, wk ∈ H1

0

(
B
(
0, R

εkρ

))
⊂

H1(Rn).
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Lemma 4.4. There exists w̃ ∈ H1(Rn) such that, up to a subsequence, wk tends
to w̃ weakly in H1(Rn) and strongly in Lp

loc(Rn). The limit function w̃ is a ground
state solution of the problem

−∆u+ V (η)u = K(η)|u|p−2u, on Rn. (4.10)

Proof. We first show that wk is bounded in H1(Rn). There holds

Iεk
(uk) =

(1
2
− 1
p

) 1
εn
k

∫
M

(
ε2|uk|2 + V (x)u2

k

)
dµg < c0 + σk,

which, together with the boundedness of V (x), yield
1
εn

k

∫
M
|uk|2 dµg ≤

C

εn
k

∫
M
V (x)|uk|2 dµg

≤ C

εn
k

∫
M

(
ε2|∇guk|2 + V (x)u2

k

)
dµg

≤ C (c0 + σ)

and
1
εn

k

∫
M
|uk(x)|2 dµg ≥

1
εn

k

∫
Bg(ηk, R

ρ )

χ2
k(ϕk(x))|uk(x)|2 dµg

=
1
εn

k

∫
B(0, R

ρ )

χ2
k(ϕk(expηk

(z)))|uk(expηk
(z))|2 |gηk

(z)|1/2 dz

=
∫

B(0, R
εkρ )

χ2
k(z)|uk(ϕ−1

k (z))|2 |gηk
(εkz)|1/2 dz ≥ hn/2

∫
Rn

|wk|2 dz.

Moreover,∫
Rn

|∇wk|2 dz

=
∫

B(0, R
εkρ )

∑
i,j

∂
(
χk(z)uk(ϕ−1

k (z))
)

∂zi

∂
(
χk(z)uk(ϕ−1

k (z))
)

∂zj
dz

=
∫

B(0, R
εkρ )

∑
i,j

χ2
k(z)

∂
(
uk(ϕ−1

k (z))
)

∂zi

∂
(
uk(ϕ−1

k (z))
)

∂zj
dz

+
∫

B(0, R
εkρ )

∑
i,j

uk(ϕ−1
k (z))χk(z)

(∂ (uk(ϕ−1
k (z))

)
∂zi

∂
(
χk(z)

)
∂zj

+
∂
(
uk(ϕ−1

k (z))
)

∂zj

∂
(
χk(z)

)
∂zi

)
dz

+
∫

B(0, R
εkρ )

∑
i,j

u2
k(ϕ−1

k (z))
∂
(
χk(z)

)
∂zi

∂
(
χk(z)

)
∂zj

dz := I6 + I7 + I8.

By the hypotheses on uk, ψ(x) denotes the functions of the partition of unity
associated to Bg(ηk, R), using (4.9), we obtain

ε2k
εn

k

∫
M
|∇guk(x)|2 dµg

≥ ε2k
εn

k

∫
Bg(ηk, R

ρ )

ψ(x)|∇guk(x)|2 dµg
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≥ ψ0

∫
B(0, R

εkρ )

∑
i,j

gij
ηk

(εkz)
∂
(
uk(ϕ−1

k (z))
)

∂zi

∂
(
uk(ϕ−1

k (z))
)

∂zj

 |gηk
(εkz)|1/2 dz

≥ C(M)ψ0I6

for a positive constant C(M) depending only on the manifold. By the Minkowski
and Hölder inequalities,

|I7|

≤
∣∣∣2∫

B(0, R
εkρ )

∑
i,j

uk(ϕ−1
k (z))

∂
(
uk(ϕ−1

k (z))
)

∂zi

∂
(
χk(z)

)
∂zj

dz
∣∣∣

≤ 2
∑
i,j

(∫
B(0, R

εkρ )

|uk(ϕ−1
k (z))|2 dz

)1/2(∫
B(0, R

εkρ )

2εkρ

R

∣∣∣∂ (uk(ϕ−1
k (z))

)
∂zi

∣∣∣2 dz)1/2

and

|I8| ≤
4nε2kρ

2

R2

∫
B(0, R

εkρ )

∣∣uk(ϕ−1
k (z))

∣∣2 dz.
Hence, wk is uniformly bounded in H1(Rn) since Iεk

(uk) ≤ 2c0 for all k.
Suppose now that wk ⇀ w̃ inH1(Rn). We show w̃ is a solution of problem (4.10).

Let ωεk
:= {y ∈ RN |εky ∈ [Ω]r} and denote by ẽxp the exponential map associated

to ωεk
. We set v(y) := u(εky) for u ∈ H1

g (M), y ∈ ωεk
and let Jεk

(v(y)) :=
Iεk

(u(εky)). For each ηk ∈ Ω, we define

ϕk,εk
: Bgεk

(
ηk

εk
,
R

εkρ

)
→ B

(
0,

R

εkρ

)
, ϕk,εk

:=
(
ẽxp ηk

εk

|
B

“
0, R

εkρ

”)−1

. (4.11)

For any ξ ∈ C∞0 (Rn), supp ξ ⊂ {χk(z) = 1} for k large enough. Hence, wk(z) =
uk(ϕ−1

k,εk
(z)) for z ∈ supp ξ ⊂ B(0, R

εkρ ) and k large enough. So we have

J ′εk
(wk(ϕk,εk

(y))) [ξ(ϕk,εk
(y))] = J ′εk

(
uk

(
ϕ−1

k (ϕk,εk
(y))

))
[ξ(ϕk,εk

(y))]

= I ′εk
(uk(x))

[
ξ

(
ϕk,εk

( x
εk

))]
where if y ∈ ωεk

then y ∈ x
εk

for a x ∈ Ω. By the Ekeland principle,∣∣J ′εk
(wk(ϕk,εk

(y))) [ξ(ϕk,εk
(y))]

∣∣ < √
σk|‖ξ

(
ϕk,εk

( x
εk

))
|‖εk

,

while

‖‖ξ
(
ϕk,εk

( x
εk

))
‖‖εk

→
[ ∫

Rn

(|∇ξ|2 + |ξ|2) dz
]1/2

as k →∞. Therefore,

J ′εk
(wk(ϕk,εk

(y))) [ξ(ϕk,εk
(y))] → 0 (4.12)

for ξ ∈ C∞0 (Rn). Moreover,

|J ′εk
(wk(ϕk,εk

(y))) [ξ(ϕk,εk
(y))]− J ′(w̃)[ξ]|

≤
∣∣∣ ∫

B(0, R
εk

)∩supp ξ

∑
i,j

gij
ηk

(εkz)
∂wk(z)
∂zi

∂ξ(z)
∂zj

|gηk
(εkz)|1/2 dz

−
∫

Rn

∇w̃(z)∇ξ(z) dz
∣∣∣
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+
∣∣∣ ∫

B(0, R
εk

)∩supp ξ

V (expηk
(εkz))wk(z)ξ(z)|gηk

(εkz)|1/2 dz

−
∫

Rn

V (η)w̃(z)ξ(z) dz
∣∣∣

+
∣∣∣ ∫

B(0, R
εk

)∩supp ξ

K(expηk
(εkz))|wk(z)|p−1ξ(z)|gηk

(εkz)|1/2 dz

−
∫

Rn

K(η)|w̃|p−1(z)ξ(z) dz
∣∣∣

≤
∫

Rn

∑
i,j

∣∣∣gij
ηk

(εkz)ζB(0, R
εk

)(z)
∂wk(z)
∂zi

∂ξ(z)
∂zj

|gηk
(εkz)|1/2 − δij

∂w̃(z)
∂zi

∂ξ(z)
∂zj

∣∣∣ dz
+
∫

Rn

∣∣∣ξ(z)(V (expηk
(εkz))ζB(0, R

εk
)(z)wk(z)|gηk

(εkz)|1/2 − V (η)w̃(z)
) ∣∣∣ dz

+
∫

Rn

∣∣∣ξ(z)(ζB(0, R
εk

)(z)|gηk
(εkz)|1/2K(expηk

(εkz))|wk(z)|p−1

−K(η)|w̃(z)|p−1
)∣∣∣ dz

:= I9 + I10 + I11

where ζB(0, R
εk

)(z) denotes the characteristic function of the set B(0, R
εk

) ⊂ Rn. We
see that I9, I10 and I11 tend to zero as k →∞. By the fact that

lim
k→∞

|gij
ηk

(εkz)ζB(0, R
εk

)(z)|gηk
(εkz)|1/2 − δij | = 0

and expηk
(εkz)− ηk → 0 as k →∞, we obtain

J ′εk
(wk(ϕk,εk

(y))) [ξ(ϕk,εk
(y))] → J ′(w̃)[ξ] for ∀ξ ∈ C∞0 (Rn). (4.13)

Equations (4.12) and (4.13) imply w̃ is a solution of (4.10).
Finally, we show w̃ is a ground state solution of (4.10). For uk ∈ Σεk,σk

we have

(c0 + σk) ≥ Iεk
(uk) =

(1
2
− 1
p

) 1
εn

k

∫
M
K(x)|u+

k |
p dµg

≥
(1
2
− 1
p

) 1
εn

k

∫
Bg(ηk, R

ρ )

K(x)|u+
k |

p dµg

=
(1
2
− 1
p

) ∫
B(0, R

εkρ )

K(expηk
(εkz))|u+

k (ϕ−1
k (z))|p|gηk

(εkz)|1/2 dz .

The sequence of functions

Fk(z) :=
(
K(expηk

(εkz))
)1/p

u+
k (ϕ−1

k (z))g1/(2p)
ηk

(εkz)ζB(0, R
εkρ )(z) ∈ Lp(Rn),

is bounded in Lp(Rn), so there exists F ∈ Lp(Rn) which is the Lp− weak limit of
the sequence Fk. However, for ξ ∈ C∞0 (Rn), as wk tends to w̃ weakly in H1(Rn)
and strongly in Lp

loc(Rn), we get∫
Rn

Fk(z)ξ(z) dz =
∫

Rn

(
K(expηk

(εkz))
)1/p

w+
k (z)g1/(2p)

ηk
(εkz)ξ(z) dz

→
∫

Rn

K(η)1/pw̃+(z)ξ(z) dz as k →∞ .
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Hence, F ≡ K
1
p (η)w̃+ ≡ K

1
p (η)w̃ and for any k,(1

2
− 1
p

) ∫
Rn

K(η)|w̃|p dz ≤ lim inf
k→∞

(1
2
− 1
p

) ∫
Rn

|Fk(z)|p dz ≤ c0 + σk,

namely, ∫
Rn

K(η)|w̃|p dz ≤ 2p
p− 2

(c0 + σk). (4.14)

Hence, w̃ ∈ Nη ∪ {0} and J(w̃) ≤ c0. If w̃ 6≡ 0, w̃ is a ground state solution.
Now we show that w̃ 6≡ 0. Given T > 0, we can choose ηk ∈ M such that for k

big enough ηk ∈ P̃ εk
σ ⊂ Bg(ηk, εkT ), εk <

R
ρ . By Lemma 4.2,

‖w+
k ‖

p
Lp(B(0,T )) =

∫
B(0,T )

χp
k(z)

∣∣u+
k (ϕ−1

k (z))
∣∣p dz

=
1
εn

k

∫
B(0,εkT )

∣∣∣u+
k

(
ϕ−1

k (
z

εk
)
)∣∣∣p dz

≥ 1
Hn/2

1
εn

k

∫
B(0,εkT )

∣∣∣u+
k

(
ϕ−1

k (
z

εk
)
)∣∣∣p|gηk

(εkz)|1/2 dz

≥ 1
KmaxHn/2

1
εn

k

∫
Bg(ηk,εkT )

K(x)
∣∣u+

k (x)
∣∣p dµg

≥ 1
KmaxHn/2

1
εn

k

∫
P̃

εk
σ

K(x)
∣∣u+

k (x)
∣∣p dµg

≥ γ

KmaxHn/2

This implies w̃ 6≡ 0 because wk converges strongly to w̃ in Lp(B(0, T )). The asser-
tion then follows. �

Proposition 4.5. For θ ∈ (0, 1) there exists σ0 < c0 such that for σ ∈ (0, σ0),
ε ∈ (0, ε0) and u = uε,σ ∈ Σε,σ we can find η = η(u) ∈ Ω such that

1
εn

∫
Bg(η, R

2 )

K(x)|u+|p dµg >
2p(1− θ)
p− 2

c0.

Proof. First, we show that the result holds for u ∈ Σε,σ ∩ Imε+2σ
ε . Suppose by

contradiction that there exists θ ∈ (0, 1) such that we can find sequences εk and
σk, which are positive and tending to zero as k → ∞, and a sequence {uk} ⊂
Σεk,σk

∩ Imεk
+2σk

εk such that for any η ∈ Ω there holds

1
εn

∫
Bg(η, R

2 )

K(x)|u+
k |

p dµg ≤
2p(1− θ)
p− 2

c0. (4.15)

By Lemma 4.3, we may assume that∣∣∣∇|Nεk
Iεk

(uk)
∣∣∣ < √

σk‖|ξ|‖εk
∀ξ ∈ H1

g (M). (4.16)

Lemma 4.2 implies that there exists a set Pk of the partition Pε such that

1
εn

k

∫
Pk

K(x)|u+
k |

p dµg > γ,

and we may choose ηk ∈ Pk. By the compactness of M, we may assume that
ηk → η ∈M as k →∞.
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By the hypothesis on K, Kmin > 0. We claim that for any T > 0 and τ ∈ (0, 1)
it holds

|w+
k |

p
Lp(B(0,T )) ≤

1
Kmin

1
1− τ

(1− θ)
2p
p− 2

c0

for k large enough. Indeed, we note |gηk
(εkz)| → |gη(0)| = 1 for all z ∈ B(0, R)

and fixed τ ∈ (0, 1). For k large enough, |gηk
(z)| > (1 − τ) if z ∈ B(0, εkT ). By

this fact and (4.15) we have

|w+
k |

p
Lp(B(0,T )) =

∫
B(0,T )

χp
k(z)

∣∣u+
k (ϕ−1

k (z))
∣∣p dz

=
1
εn

k

∫
B(0,εkT )

χp
R
ρ

(z)
∣∣u+

k (expηk
(z))

∣∣p dz
≤ 1
εn

k

∫
B(0,εkT )

|gηk
(z)|1/2

1− τ

∣∣u+
k (expηk

(z))
∣∣p dz

=
1

1− τ

1
εn

k

∫
Bg(ηk,εkT )

|u+
k |

p dµg

≤ 1
(1− τ)εn

kKmin

∫
Bg(ηk, R

2 )

K(x)|u+
k |

p dµg

≤ 1
Kmin

1− θ

1− τ

2p
p− 2

c0.

(4.17)

We know from Lemma 4.4 that w̃ is a ground state solution of problem (4.10); that
is,

Eη(w̃) =
(1
2
− 1
p

) ∫
Rn

K(η)|w̃+|p dz = c0.

By Lemma 4.4, there exists T > 0 such that for k large enough

2p
p− 2

c0 =
∫

Rn

K(η)|w̃+|p dz ≤
∫

B(0,T )

K(η)|w+
k |

p dz ≤ Kmax

∫
B(0,T )

|w+
k |

p dz.

Choosing µ > Kmax/Kmin and τ such that 1−θ
1−τ <

1−θ
1−τ µ < 1, we obtain

1
Kmin

1− θ

1− τ

2p
p− 2

c0 <
µ

Kmax

1− θ

1− τ

2p
p− 2

c0 <

∫
B(0,T )

|w+
k |

p dz (4.18)

a contradiction to (4.17).
Next, we show that Σε,σ∩Imε+2σ

ε = Σε,σ. In fact, for u ∈ Σε,σ∩Imε+2σ
ε , we have

Iε(u) < c0 + σ and Iε(u) < mε + 2σ, which yield mε ≥ (1− θ)c0 for any θ ∈ (0, 1).
By Proposition 3.2, lim supε→0mε ≤ c0, and then limε→0mε = c0, which implies
Σε,σ ⊂ Imε+2σ

ε for σ, ε small enough. The proof is completed. �

Proposition 4.6. There exists σ0 ∈ (0, c0) such that for σ ∈ (0, σ0), ε ∈ (0, ε0)
and u ∈ Σε,σ there holds β(u) ∈ [Ωδ]r.

Proof. By Proposition 4.5, for θ ∈ (0, 1) and u ∈ Σε,σ with ε and σ suitably small,
there exists η ∈ Ω such that

(1− θ)
2p
p− 2

c0 <
1
εn

∫
Bg(η, R

2 )

K(x)|u+|p dµg. (4.19)
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On the other hand, for u ∈ Σε,σ, we have

Iε(u) =
1
εn

p− 2
2p

∫
M
K(x)|u+|p dµg < c0 + σ,

therefore,

1
εn

∫
M
|u+|p dµg ≤

1
Kmin

1
εn

∫
M
K(x)|u+|p dµg <

1
Kmin

2p
p− 2

(c0 + σ) . (4.20)

Let

f (u(x)) :=
|u+(x)|p∫

M |u+(x)|p dµg
.

By (4.19) and (4.20),∫
Bg(η, R

2 )

f (u(x)) dµg ≥
1

Kmax

1
εn

∫
Bg(η, R

2 )
K(x)|u+(x)|p dµg

1
εn

∫
M |u+(x)|p dµg

>
Kmin(1− θ)c0
Kmax(c0 + σ)

.

Therefore,

|β(u)− η| ≤
∣∣∣ ∫

Bg(η, R
2 )

(x− η)f (u(x)) dµg

∣∣∣+ ∣∣∣ ∫
M\Bg(η, R

2 )

(x− η)f (u(x)) dµg

∣∣∣
≤ r(Ωδ)

2
+D

(
1− Kmin(1− θ)c0

Kmax(c0 + σ)

)
,

where D is the diameter of Ωδ as a subset of M. The assertion follows by choosing
θ and σ suitably small. �

Proof of Theorem 1.1. We know that Iε ∈ C1 and Nε is a C1,1 complete Riemann-
ian manifold. Also Iε is bounded from below onNε and satisfies the (PS) condition.
By Proposition 2.1, Iε has at least catΣε,σ (Σε,σ) critical points.

By Propositions 3.2 and 4.5, β ◦ φε : Ω → [Ωδ]r is well defined and β ◦ φε(η) ∈
[Ωδ]r ⊂ RN for η ∈ Ω. Now we show that Π ◦ β ◦ φε is homotopic to the identity
on Ωδ. Indeed,

Π ◦ β ◦ φε(η)− η =
∫
M

(x− η)f (φε(η)) dµg

=
∫
M

(x− η)f
(
tε(wε(exp−1

η (x))χR(| exp−1
η (x)|))

× wε(exp−1
η (x))χR(| exp−1

η (x)|)
)
dµg

=

∫
M(x− η)wp

ε(exp−1
η (x))χp

R(| exp−1
η (x)|) dµg∫

M wp
ε(exp−1

η (x))χp
R(| exp−1

η (x)|) dµg

=

∫
Bg(η,R)

(x− η)wp
ε(exp−1

η (x))χp
R(| exp−1

η (x)|) dµg∫
Bg(η,R)

wp
ε(exp−1

η (x))χp
R(| exp−1

η (x)|) dµg

=

∫
B(0,R)

zwp
ε(z)χp

R(|z|)|gη(z)|1/2 dz∫
B(0,R)

wp
ε(z)χp

R(|z|)|gη(z)|1/2 dz

=
ε
∫

B(0, R
ε )
zwp(z)χp

R(|εz|)|gη(εz)|1/2 dz∫
B(0, R

ε )
wp(z)χp

R(|εz|)|gη(εz)|1/2 dz
.
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Hence, |Π ◦ β ◦ φε(η)− η| ≤ εC → 0, where C > 0 does not depend on η. Applying
Lemma 2.2 with X = Σε,σ, Y = Ωδ, Z = Ω and h1 = φε, h2 = Π ◦ β, we obtain
catΣε,σ (Σε,σ) ≥ catΩδ

(Ω). The proof is complete. �
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