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SOME PROPERTIES OF THE EXTREME VALUES OF
INFINITY-HARMONIC FUNCTIONS

TILAK BHATTACHARYA

Abstract. We study local behavior of infinity-harmonic functions, in particu-

lar, the extreme values of such functions on a ball. We show that the extreme
values obey certain relationships, and use this to derive an interior growth

estimate.

1. Introduction

In this work we study some properties of infinity-harmonic functions. The ques-
tions of local behavior and regularity form the main motivation for our present
work, and our hope is that the results in this work will provide some insight into
these matters.

We introduce notation for our discussion. We take Ω ⊂ Rn, n ≥ 2 to stand for a
domain. Our results, being local in nature, would apply even when Ω is unbounded.
We will often use x, y, z to denote points on Rn, and o will stand for the origin. We
will occasionally write a point as x = (x1, x2, . . . , xn). A ball of radius r and center
x will be denoted by Br(x).

We define u : Ω → R, to be infinity-harmonic in Ω if it satisfies, in the sense of
viscosity,

∆∞u =
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0 in Ω. (1.1)

For motivation and a detailed discussion of various properties of such solutions,
see [2, 5, 9, 10, 12, 17]. An important aspect of these functions is that they are
completely characterized by the “cone comparison property”, a fact first observed
in [12]. Like all other results, our work too exploits this property to achieve its
ends. We refer to [2, 10, 12] for a detailed discussion of this issue.

Our motivation for this work is related to the question of local regularity. Despite
great recent progress the matter of local regularity remains somewhat unresolved.
It is well-known that u is locally Lipschitz continuous [5, 10, 12, 15], and it has
been shown that u is C1,α when n = 2, see [14, 18]. However, differentiability is
still open when n ≥ 3. The work [14] proves deep results regarding this matter and
states a conjecture, whose proof would lead to C1,α regularity of such functions.
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Our goal in this work is to derive new properties of the extreme values of such
functions which we hope may lead to some additional insight into this problem.

In what follows, we will limit our discussion to a ball Br(x) in Ω. Let A denote
the closure of a set A. Define Mx(r) = supB̄r(x) u and mx(r) = infB̄r(x) u. We will
drop the subscript if x = o. It is well-known that u satisfies the strong maximum
principle, and these values are attained on the boundary of the ball Br(x) [8, 12].
It is also well-known that Mx(r)−u(x) and u(x)−mx(r) are both convex in r, and
the following limit exists:

lim
r↓0

Mx(r)− u(x)
r

= lim
r↓0

u(x)−mx(r)
r

:= Λ(x). (1.2)

Moreover, the limit Λ(x) would equal |Du(x)|, if u is differentiable at x, see [2,
5, 10, 11, 12]. In addition, it was shown in [11] that if ω ∈ Sn−1 is such that
u(x + rω) = Mx(r) and the set of ω’s has a unique limit point as r ↓ 0, then u is
differentiable at x. It is also known that if Br(x) ⊂⊂ Ω, then u is differentiable
at x+ rω [5]. Moreover, the limit Λ(x) is upper semi-continuous [2, 5, 10, 12] and
satisfies a maximum principle, [4, 12]. An important question in this context is
whether or not infinity-harmonic functions, defined on all of Rn with bounded Λ,
are affine. This was proven in n = 2 in [18], as a consequence of differentiability.
Some of the facts mentioned above will play a role in this work.

From hereon we assume that o ∈ Ω and work in a ball BR(o) ⊂ Ω. Additionally,
we always take u(o) = 0. To make our presentation clearer, we redefine m(r) =
− infB̄r(o) u, and unless otherwise mentioned, from hereon we will always take this
to be the definition of m(r). We now state the first of our main results.

Theorem 1.1. Let u be infinity-harmonic in BR(o). Suppose that u(o) = 0; define
for r ∈ [0, R), m(r) = − infB̄r(o) u and M(r) = supB̄r(o) u. The following two
inequalities then hold:

(a) m(r) ≥
(√

rM ′(r−)−
√
rM ′(r−)−M(r)

)2

for r ∈ [0, R);

(b) M(r) ≥
(√

rm′(r−)−
√
rm′(r−)−m(r)

)2

for r ∈ [0, R).

Moreover, if u is infinity-harmonic in Rn and equality holds in both the inequalities
for every r > 0, then u is affine.

A proof appears in Section 2. An easy consequence of Theorem 1.1 are the
inequalities,

m(r)M ′(r−) ≥ M(r)2

4r
and M(r)m′(r−) ≥ m(r)2

4r
,

see Remark 2.1. The inequalities in Theorem 1.1 place no restrictions on how small,
for instance, m(r) could be. As a matter of fact we construct an example in Lemma
2.2 in Section 2 which supports this observation. Using the inequalities in Theorem
1.1, we also prove the following growth rate in Theorem 1.2.

Theorem 1.2. Suppose that u is infinity-harmonic in B1(o) and u(o) = 0. Define
for r ∈ [0, 1) m(r) = − infB̄r(o) u and M(r) = infB̄1(o) u.
(i) Suppose that M(r) ≤ r for every r ∈ [0, 1). Then either m(r) ≤ r for every
r ∈ [0, 1), or there is an a ∈ (0, 1) such that m(a) > a and

m(r) ≥ r(1 + k log(r/a)), ∀ a < r < 1,

where k = (m(a)− a)2/4a2,
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(ii) Analogously, if m(r) ≤ r for every r ∈ [0, 1), then either M(r) ≤ r for every
r ∈ [0, 1), or M(a) > a for some a ∈ (0, 1) and

M(r) ≥ r(1 + k log(r/a)), ∀ a < r < 1,

where k = (M(a)− a)2/4a2.

We provide a proof in Section 2. It is to be noted that the hypothesis M(r) ≤ r,
or for that matter m(r) ≤ r, is not restrictive. One can scale u to obtain this
inequality, see Remark 2.3 for a general version.

We now bring up a related matter. If u is infinity-harmonic in B1(o), by convex-
ity, M ′(r+) and M ′(r−) exist everywhere and M ′(r) exists for almost every r. As
pointed out before (see [5]), if p ∈ ∂Br(o) for r < 1, is a point of maximum then u
is differentiable at p and

M ′(r−) ≤ |Du(p)| ≤M ′(r+).

Moreover, as Lemma 3.1 shows there are points p on ∂Br(o) where the values
M ′(r+) and M ′(r−) are attained by |Du(p)|. Our question is: does M ′(r) exist
at every r ∈ [0, 1), or equivalently, is M ′(r−) = M ′(r+) ? Clearly, this equality
holds at r = 0. We have been unable to settle the matter, however, the example
in Lemma 3.3 shows that these may disagree on the boundary ∂B1(o) in the event
u ∈ C(B̄1(o)). In particular, we show that M ′(r) exists for every r ∈ [0, 1) but there
are points p on ∂B1(o) such that u(p) = M(1), and the one sided gradient Λ(p) >
M ′(1−). As our calculations will show this difference can be made arbitrarily large.

We have divided our work as follows. Proofs of Theorems 1.1 and 1.2, and
Lemma 2.2 appear in Section 2. Section 3 contains proofs of Lemmas 3.1, 3.2 and
3.3. In this work, all sets are subsets of Rn, n ≥ 2, unless otherwise mentioned.

2. Proofs of Theorems 1.1 and 1.2

We first state a few properties of infinity-harmonic functions that could be
thought of as ”monotonicity” along radial segments, see [7, 10]. For complete-
ness, we provide short proofs of these, also see Exercise 16 in [10]. The proofs will
use the comparison principle [2, 3, 10, 13, 15].

Let v be a positive infinity-harmonic function in a domain Ω and Bρ(o) ⊂ Ω.
Take y ∈ Bρ(o) and let d > 0 be chosen to be any value that does not exceed
the distance of y from ∂Ω. By comparing v(x) to the infinity-harmonic function
v(y)(1− |x− y|/d), we see

v(x) ≥ v(y)
(
1− |x− y|

d

)
, for x ∈ Bd(y),

In this discussion, we refer to the above inequality as cone comparison in Bd(y).
Taking d = ρ− |y|, a rearrangement leads to the inequality

v(y)− v(x)
|x− y|

≤ v(x)
d− |x− y|

.

It is clear by using (1.2) that Λ(y) ≤ v(y)/d, for every y ∈ Bρ(o). Moreover, if
ω ∈ Sn−1, by selecting the points x and y on the radial ray, in Bρ(o) and along ω,
it is clear that v(θω)/(ρ− θ) is an increasing function of θ in [0, ρ).

Next we show that v(θω)(ρ − θ) is decreasing. To see this, take x = θω with
θ > 0, small, so that Bρ(x) ⊂ Ω (one may need the assumption B̄ρ(o) ⊂ Ω, but this
is not restrictive). Using cone comparison in Bρ(x), we have v(x)(ρ− |x|) ≤ v(o)ρ.
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Taking y = θ̄ω with θ̄ > θ and θ̄ close to θ, cone comparison in Bρ−|x|(y), leads
to v(x)(ρ − |x|) ≥ v(y)(ρ − |y|). Proceeding in this way we obtain our claim. An
alternative is to use the Harnack inequality [7]. Collecting our conclusions, for any
ω ∈ Sn−1 and θ ∈ [0, ρ),

(i) v(θω)/(ρ− θ) is increasing in θ,
(ii) v(θω)(ρ− θ) is decreasing in θ, and
(iii) Λ(y) ≤ v(y)/(ρ− |y|), for all y ∈ Bρ(o).

(2.1)

For applications, we will often use these properties with v = M − u or v = u − l,
where M and l are any numbers with M ≥ supB̄ρ(o) u and l ≤ infB̄ρ(o) u. We also
note another property. For r ≤ ρ, if γ, γ̄ ∈ Sn−1 are such that v(rγ) = supB̄r(o) v

and v(rγ̄) = infB̄r(o) v, then u is differentiable at rγ and rγ̄ and

Du(rγ) = αγ, Du(γ̄r) = βγ̄. (2.2)

for some M ′(r−) ≤ α ≤ M ′(r+) and m′(r−) ≤ β ≤ m′(r+). For a proof see [5],
also see Lemma 3.1 for a related statement.

We thank the referee for his/her suggestions that have simplified the following
proof.

Proof of Theorem 1.1. We prove inequality (a) of the theorem, as inequality (b)
follows by symmetry. First observe that (r − t)(M(t) +m(r)) is non-increasing in
t. This may be argued by using 3(ii) with v = u +m(r). Alternatively, one could
use [10, Lemma 4.6] or (2.1)(iii) to first derive the following differential inequality

M ′(t+) ≤ M(t) +m(r)
r − t

,

and then conclude the same. In any case, since u(o) = 0,

M(t) ≤
( t

r − t

)
m(r), 0 ≤ t < r.

Combining this with the convexity property M(t) ≥M(r)−(r−t)M ′(r−), we have(r − t

t

)(
M(r)− (r − t)M ′(r−)

)
≤ m(r), 0 < t ≤ r. (2.3)

Our idea is to select a value of t that optimizes the above inequality in 0 < t ≤ r.
To this end define

f(t) =
(r − t

t

)(
M(r)− (r − t)M ′(r−)

)
0 < t ≤ r,

and observe that f(r) = 0, f(t) ≥ 0, for t near r, and limt↓0 f(t) < 0 unless
M(r) = rM ′(r−). It is easy to show that f is optimized when

t0 =
(r[rM ′(r−)−M(r)]

M ′(r−)

)1/2

.

As rM ′(r−) ≥M(r) by convexity, we have 0 ≤ t0 ≤ r. Inserting the value of t0 in
(2.3) the first inequality of the theorem follows,

m(r) ≥
(√

rM ′(r−)−
√
rM ′(r−)−M(r)

)2

. (2.4)

We discuss briefly the cases when t0 = 0 and t0 = r. If t0 = 0 then rM ′(r−) =
M(r), and convexity leads to M(t) = tM(r)/r. If t0 = r, then M(r) = 0 leading
to u = 0 in Br(o). Also see [4, Lemma 3.1].
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Let us now assume that u is infinity-harmonic in Rn and equality holds every
where, in the two inequalities of the theorem. We use an equivalent form of (2.4),

M(r)2 ≤ m(r)
(√

rM ′(r−) +
√
rM ′(r−)−M(r)

)2

. (2.5)

With equality in place in (2.5) and replacing rM ′(r−) by the smaller quantity M(r)
and disregarding the second term on the right hand side, we deduce that M(r) ≥
m(r). Analogously, by exploiting inequality (b) of the theorem, m(r) ≥ M(r),
which leads to M(r) = m(r). Next, we use this in (2.4) and (2.5), with equality
in place, and compare the two right hand sides to conclude that rM ′(r−) = M(r).
This leads to M(r) = m(r) = kr, for some k > 0. Now applying the “tight on a
line” result in Section 7.2 in [10], it follows that u is affine. �

Remark 2.1. We discuss briefly the inequalities in Theorem 1.1. From (2.5),
it follows easily that m(r)M ′(r−) ≥ M(r)2/4r, and, similarly, M(r)m′(r−) ≥
m(r)2/4r. Next in (2.5), we set x = rM ′(r−) and y = M(r), and use an expansion
for

√
x− y. Working with

√
x− y ≤

√
x− y

2x1/2
− y2

8x3/2
− y3

16x5/2
, 0 < y ≤ x,

and, for instance, using the first two terms and convexity,

rM ′(r−) ≥ M(r)3/2

2m(r)1/2
+
M(r)

4
.

An analogue, from the second inequality in Theorem 1.1, can be easily worked out.

Next we construct an example to show that the inequalities of Theorem 1.1
place no restrictions on the lower bounds of m(r) and M(r). First we discuss some
preliminaries.

Our construction will involve the Aronsson singular example, and we recall be-
low some of its properties that will be used in Lemma 2.2. For a more detailed
discussion, see [1], [6, Lemmas 2.5, 2.6, 2.9], and (b) in part II of the appendix in
[7]. We use x = (x1, . . . , xn) = (x̄, xn) to denote a point in Rn. Let en be the unit
vector along the positive xn-axis and θ = cos−1(〈x, en〉/|x|), the angle made with
the xn-axis. The Aronsson example is given by v(x) = ψ(θ)/|x|1/3, where v(x) is
infinity-harmonic in Rn \ {o}. We list only what we need. For x 6= o,

(i) ψ(θ) > 0 if xn > 0, and ψ(±π/2) = v(x̄, 0) = 0;
(ii) sup∂Br(o) v = ψ(0)/r1/3;
(iii) ψ(θ) = ψ(−θ), and ψ(θ) is decreasing in [0, π/2].

(2.6)

Lemma 2.2. Let ε > 0 and B1(o) ⊂ Rn, n ≥ 2. There exists a function uε ∈
C(B̄1(o)), infinity-harmonic in B1(o) with uε(o) = 0 and supB̄1(o) uε = 1, such
that infB̄1(o) uε ≥ −ε.

Proof. To construct our example uε on B1(o), we employ a translate of the Aronsson
singular function v and use the properties stated in (2.6). Let δ > 0 and let
pδ = (0, 0, 0, . . . ,−(1 + δ)). Define

vδ(x) =
ψ(θ)

|x− pδ|1/3
=

ψ(θ)
|x+ (1 + δ)en|1/3

, θ = θ(x) =
〈x− pδ, en〉
|x− pδ|

.
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We scale ψ(0) = 1. By (2.6)(i) v > 0 on B1(o), and by (2.6)(ii) and (iii),
sup∂Bδ(pδ) vδ = supB1(o) v = 1/δ1/3. Next for x ∈ B1(o), define

wδ(x) =
δ1/3(1 + δ)1/3(vδ − v(o))

(1 + δ)1/3 − δ1/3

=
δ1/3(1 + δ)1/3

(1 + δ)1/3 − δ1/3

( ψ(θ)
|x+ (1 + δ)en|1/3

− 1
(1 + δ)1/3

)
.

Then wδ is infinity-harmonic in xn > −(1 + δ) and clearly so in B1(o). Also
supB1(o) wδ = 1, wδ(o) = 0 and wδ ∈ C(B̄1(o)). Noting that ψ(θ) > 0 when
x ∈ B1(o) (see (2.6)(i)), we see that

0 ≥ inf
B̄1(o)

wδ ≥
−δ1/3

(1 + δ)1/3 − δ1/3
.

Choosing δ small enough, we obtain our desired infinity-harmonic function uε. �

Next we present a proof of the growth estimate in Theorem 1.2. We utilize the
inequalities proven in Theorem 1.1.

Proof of Theorem 1.2. We will only prove part (i), part (ii) will follow analogously.
To achieve our goal we use inequality (b) of Theorem 1.1. Using the hypothesis,
we note (√

rm′(r−)−
√
rm′(r−)−m(r)

)2

≤ r, 0 ≤ r < 1. (2.7)

Let us assume that m(a) > a, for some 0 < a < 1. By the convexity of m(r),

m′(r−) ≥ m′(a−) > 1, m(r) > r, ∀ a < r < 1.

Observing that 2rm′(r−) ≥ r+m(r), squaring (2.7), rearranging terms and squar-
ing again we obtain for r > a,

m′(r−) ≥ (m(r) + r)2

4r2
. (2.8)

Setting w = m(r)/r in the second inequality in (2.8), we obtain the differential
inequality 4rw′ ≥ (w − 1)2. An integration from c to r, for any a ≤ c < 1 yields

c

m(c)− c
− r

m(r)− r
≥ log(r/c)

4
, c ≤ r < 1.

Noting that m(r)− r ≥ m(c)− c, a further rearrangement yields

m(r)
r

≥ m(c)
c

+
(m(c)− c

c

)2 log(r/c)
4

, c ≤ r < 1.

Selecting k = (m(a)− a)2/4a2 we have

m(r) ≥ r

a
m(a) + kr log(r/a) ≥ r + kr log(r/a), a ≤ r < 1.

The theorem follows. �

Remark 2.3. Firstly, we note that if M(1) = 1, by convexity M(r) ≤ r. We
now state Theorem 1.2 for the general case. If v is infinity-harmonic in BR(o) and
supBR(o) v <∞, then we scale v and define u(y) = (v(x)−v(o))/(supBR(o) v−v(o)),
where y = x/R. Then supB1(o) u = 1 and u satisfies the conditions of Theorem 1.2.
Thus either

inf
Br(o)

v ≥ v(o)− r

R
( sup
BR(o)

u− u(o)), ∀ r ∈ [0, R),
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or for some 0 < t < R,

inf
Br(o)

v ≤ v(o)− r

R

(
1 + k log

r

t

)
( sup
BR(o)

v − v(o)), ∀ r ∈ [t, R),

where

k =
R2

4t2
(v(o)− infBt(o) v − t

R (supBR(o) v − v(o))
supBR(o) v − v(o)

)2

.

3. Results about M ′(r)

Our effort in this section is to construct an example in connection with the
question raised, in Section 1, about M ′(r). To this end, we start with Lemma 3.1.
In this connection, recall the definition of Λ in (1.2) and the result in (2.2).

Lemma 3.1. Let u be infinity-harmonic in BR(o). For 0 < r < R, let p ∈ ∂Br(o)
be a point of maximum of u on Br(o), then u is differentiable at p and

Λ(o) ≤M ′(r−) ≤ |Du(p)| ≤M ′(r+).

Moreover, there are points p+ and p− on ∂Br(o) such that u(p+) = u(p−) = M(r),
with |Du(p+)| = M ′(r+) and |Du(p−)| = M ′(r−). A similar result holds for
m′(r−) and m′(r+).

Proof. For the inequality in the lemma, see [5, Remark 2]. Fix r < R and let
p+ ∈ ∂Br(o) denote a limit point of a sequence of points of maximum p ∈ ∂Bρ(o)
with ρ > r and ρ ↓ r. Clearly for each p ∈ ∂Bρ(o), |Du(p)| ≥ M ′(ρ−). Using the
convexity of M(r) and the upper semicontinuity of Λ [5, 12], we see that |Du(p+)| ≥
M ′(r+). Hence equality follows.

Now let p− be a limit point of a sequence of such points p ∈ ∂Bρ(o) with ρ < r
and ρ ↑ r. Applying (2.1)(i) to M(ρ)− u in Bρ(o), noting (2.2) and the inequality
in the lemma, we see that for a fixed 0 < t < 1,

M(ρ)− u(tp)
ρ(1− t)

≤ |Du(p)| ≤M ′(ρ+).

Letting ρ ↑ r and selecting a subsequence if needed,

M(r)− u(tp−)
r(1− t)

≤M ′(r−).

Letting t ↑ 1, using (2.2) and the inequality in this lemma, we obtain |Du(p−)| =
M ′(r−). �

We introduce additional notations before stating Lemma 3.2. For α ∈ (0, π), let
Cα ⊂ ∂B1(o) denote the spherical cap, of aperture 2α, centered on the negative
xn-axis. We state an estimate which is based on the Aronsson singular example
[17].

Lemma 3.2. Let u ∈ C(B̄1(o)) be infinity-harmonic and 0 ≤ u ≤ 1. Suppose that
0 < α < π, and u(x) = 1 on Cα. If π − α is small then

u(x) ≥ 1− c(π − α)1/3

|x− (1 + k(α))en|1/3
, x ∈ B1(o),

for some positive constants c, independent of n and α, and k(α), where k(α) → 0
as α→ π.
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For 0 < α < π, let Cα be the spherical cap as described above and Ĉα ⊂ ∂B1(o)
be the complementary spherical cap of aperture 2π − 2α. We write the point x as
x = (x̄, xn), and define |x̄| = (

∑n−1
i=1 x

2
i )

1/2. We will study functions u ∈ C(B̄1(o)),
infinity-harmonic in B1(o), with

u(o) = 0, u < 1 in B1(o) and u = φ on ∂B1(o), (3.1)

where φ(x) = φ(|x̄|, xn) is axially symmetric about xn axis, φ = 1 on Cα, and φ(x)
is decreasing in xn for x ∈ Ĉα. Such functions u are easily constructed. Our chief
interest is their behavior when α is near π. As we will see in Lemma 3.3, when
r ∈ [0, 1), M ′(r) exists for r < 1. However, this does not extend to the boundary
and the disparity between the one-sided gradients at points of maximum on r = 1
can be made quite large by making α close to π. Before we state Lemma 3.3, we
mention that if ω is such that u(rω) = M(r) then the limit

lim
t↑r

M(r)− u(tω)
r − t

= L(rω),

exists (may be unbounded) [5]. This will be referred to as the one sided gradient
at rω and equals |Du(rω)| if r < 1.

Lemma 3.3. For 0 < α < π, let Cα, Ĉα and L be as described above. Suppose
that u is an infinity-harmonic function that satisfies (3.1) and π − α is sufficiently
small. The following then hold.

(i) For r ∈ [0, 1], m(r) = −u(ren), and as α → π, m(1) and m′(1−) become
unbounded.

(ii) For every 0 ≤ r < 1, M(r) = u(−ren) ≥ 1 − (1 − r)| secα|, M ′(r) exists
and 1 ≤M ′(1−) ≤ | secα|.

Moreover, if p is any point on the boundary of Cα, relative to ∂B1(o), then the one
sided gradient L(p) →∞ as α→ π

Proof. Before proving parts (i) and (ii), we state some symmetry-related properties
of the the solution u, obtained by utilizing reflections and the comparison principle.
Since u satisfies (3.1), we note that m(1) is attained at x = en. Moreover, by
using reflection about any n− 1 plane, containing the xn axis, and the comparison
principle it follows that u is axially symmetric about xn-axis. For a set A, define
−A = {−x : x ∈ A}.

Let κ denote a unit vector with κn ≥ 0 and Pκ be the n − 1 dimensional plane
passing through o and having κ as its normal. Define the half-space P+

κ to be the
set of all points x ∈ Rn with 〈x, κ〉 ≥ 0. Define the half-space P−

κ = −P+
κ . We now

prove a monotonicity property of u to be used later. Now recall that u = 1 on Cα

and u < 1, and consider u in the half ball B1(o) ∩ P−
κ . Using its reflection about

Pκ and comparing with u, in B1(o) ∩ P+
κ , we claim

for all y ∈ Pκ ∩B1(o) and t > 0 with y ± tκ ∈ B1(o), u(y − tκ) ≥ u(y + tκ).
(3.2)

The assertion in (3.2) follows quite easily if the plane Pκ does not intersect Ĉα.
In case it does, we recall that φ is axially symmetric and decreasing in xn. These
properties allows us to compare boundary data after reflection and (3.2) follows.

Let S be a great semicircle, centered at o, with end points ren and −ren. Ap-
plying (3.2) with suitable planes Pκ one sees that for x ∈ S, u(x) decreasing in xn.
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Thus for every r ∈ (0, 1), u(ren) = −m(r) and M(r) = u(−ren). We have thus
proven the first parts of (i) and (ii) but for the estimates.

To prove the rest of part (i), we note that the function

v(x) =
u(x) +m(1)

1 +m(1)

satisfies the hypothesis of Lemma 3.1. For π − α small, v(o) ≥ 1 − c(π − α)1/3.
Since u(o) = 0, it is clear that for α close to π, m(1) ≥ ĉ(π−α)−1/3, for some ĉ > 0.
Next by taking x = ren and applying the inequality in Lemma 3.2 to v, we see

m(1)−m(r) ≥ (1 +m(1))
(
1− c(π − α)1/3

(1 + k(α)− r)1/3

)
.

Using the convexity of m the above yields, for any 0 < r < 1,

m′(1−) ≥ m(1)−m(r)
1− r

≥ 1
2

(1 +m(1)
1− r

)
,

as α→ π. The conclusion for m′(1−) follows.
Next we show that u ≥ 0 on a large portion of B1(o). For x ∈ B1(o), x 6= o,

let us denote by Π(x) the n− 1 dimensional plane passing through x with x/|x| as
its normal vector. By the set T , let us denote those points x ∈ B1(o) such that
x/|x| ∈ Cα−π/2. For such x’s Π(x) does not intersect Ĉα. Recall that u = 1 on
Cα−π/2. Let x ∈ T , using reflection about Π(x) and the comparison principle, one
notes that for t > 0, u(x + tx/|x|) is increasing in t. Since u(o) = 0, we have
u(x) ≥ 0 whenever x ∈ T .

We now prove the rest of the lemma. From the foregoing, B| cos α|(−en)∩B1(o) ⊂
T . If we set w(x) = (1 − |x + en|| secα|) then by comparison u(x) ≥ w(x), x ∈
B| cos α|(−en) ∩ B1(o), and M(r) = u(−ren) ≥ 1 − (1 − r)| secα|. Working with
1− u, applying (2.1) (i) and convexity, the one-sided gradient M ′(1−) exists and

1 ≤M ′(1−) = lim
r↑1

1− u(−ren)
1− r

≤ | secα| → 1 as α→ π.

This proves part (ii).
To show the last part, recall from (i) that m(r) = −u(ren). To estimate the

one-sided gradient L(p), we apply (2.1)(i) to 1 − u near p, (2.2) and the Harnack
inequality [2, 7, 16] to conclude

L(p) ≥ 1− u(p− εp)
ε

≥ 1 +m(1− ε)
ε

exp
(−(1− ε)(π − α)

ε

)
.

We may take π − α = ε and the conclusion now follows by taking ε→ 0. �
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