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SOLVABILITY FOR SECOND-ORDER M-POINT
BOUNDARY VALUE PROBLEMS AT RESONANCE
ON THE HALF-LINE

YANG LIU, DONG LI, MING FANG

ABSTRACT. In this article, we investigate the existence of positive solutions for
second-order m-point boundary-value problems at resonance on the half-line

(q)z' ()" = f(t,x(t),2'(t)), ae. in (0,00),
m—2

2(0) = > aiz(&), Jimq(t)2' (1) = 0.
i=1

Some existence results are obtained by using the Mawhin’s coincidence theory.

1. INTRODUCTION

In this article, we study the existence of positive solutions for the second-order
m-point boundary-value problems at resonance on the half-line

(qt)z'(t)) = f(t,z(t),2'(t)), a-.e.in (0,00), (1.1)
m—2

2(0) = Y (&), lim q(t)a’(t) =0, (1.2)
i=1

where f : [0,00) x R? — R is a Carathéodory function, a; € R (1 < i < m — 2),
0<é <& < <&na<l1, g€ C0,00)NCLH0,00) with ¢ > 0 on [0,00) and
% S Ll[O, OO)

In recent years, many authors have studied the existence of positive solutions
for some boundary value problems on the half-line (see [6} [7, 12, 13| 14} I5]) or at
resonance (see [2, [3, [, B [, 10]). However, to the best of our knowledge, only one
paper [8] studied the existence and uniqueness positive solutions for second-order
three-point boundary value problems at resonance on the half-line. There is little
research concerning —, so it is worthwhile to investigate the problem.

Inspired by [2,[4,[5], the purpose of our paper is to discuss the existence of positive
solutions for the second-order m-point boundary value problem at resonance on the
half-line. Our method is based on the coincidence degree theory of Mawhin.
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The remaining part of this paper is organized as follows. In section 2, we present
some preliminaries and lemmas. Section 3 is devoted to proving the existence of

positive solutions for (1.1])-(1.2).
2. PRELIMINARIES AND LEMMAS

Now, we briefly recall some notation and an abstract existence result.

Let X, Z be normed spaces, L : domL C X — Z be a Fredholm operator
of index zero, and P : X — X, Q : Z — Z be continuous projectors such that
ImP =%kerL, kerQ =ImL and X =kerL@ker P, Z =ImL $ ImQ, It follows
that L|dom Lrker p : domL Nker P — Im L is invertible. We denote the inverse of
the mapping by Kp : Im . — domL Nker P. The generalized inverse of L denoted
by Kpg : Z — domL Nker P is defined by Kpg = K, (I — Q).

Definition 2.1. Let L : dom L C X — Z be a Fredholm mapping, F be a metric
space, and N : E — Z be a mapping. We say that N is L-compact on E if
QN :E — Z and KpgN : E — X are compact on F. In addition, we say that IV
is L-completely continuous if it is L-compact on every bounded E C X.

Definition 2.2. We say that the map f : [0,00) X R" — R, (t,z) — f(t,2) is
L0, 00)-Carathéodory, if the following conditions are satisfied
(i) for each z € R™, the mapping t — f(¢, z) is Lebesgue measurable;
(i) for a.e. t € [0,00), the mapping z — f(¢, z) is continuous on R";
(iii) for each r > 0, there exists ¢, € L1[0,00) such that, for a.e. ¢t € [0, 00) and
every z such that |z| < r, we have |f(t, 2)| < @.(1).

Lemma 2.3 ([I]). Let X be the space of all bounded continuous vector-value func-
tions on [0,00) and M C X. Then M is relatively compact in X if the following
conditions hold:

(i) M is bounded in X :

(i) the functions from M are equicontinuous on any compact interval of [0, 00);

(iii) the functions from M are equiconvergent, that is, given € > 0, there exists
aT =T(e) >0 such that |p(t) — $(c0)| < €, for allt > T and all $ € S.

Lemma 2.4 ([1I]). Let Q C X be open and bounded, L be a Fredholm mapping
of index zero and N be L-compact on Q. Assume that the following conditions are
satisfied:
(1) Lz # ANz for every (z,A) € [(dom L \ ker L) N 99] x (0,1);
(2) Nz & ImL for every x € ker L N 0);
(3) deg(JQN|oarkerr, 2 Nker L,0) # 0, with Q : Z — Z is a continuous
projection such that Im L = ker Q and J : Im Q — ker L is an isomorphism.

Then the equation Lx = Nx has at least one solution in dom L N Q.

Let ACI0, 00) denote the space of absolutely continuous functions on the interval
[0,00). In this paper, the following space X will be basic space to study (1.1])-(1.2),
which is denoted by

X ={reC'0,00),2,q2" € AC[O,oo)tlim x(t)
—00
and tlim o' (t)exist, (gz')" € L1[0,00)}

endowed with the norm |[z|| = max{||z||, [|[2'[oc }, Where ||z o = sup;c(o,00) [2(t)]-
Let Z = L1[0,00), and denote the norm in L1[0,00) by || - 1.
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Define L to be the linear operator from L C X to Z with
domL ={z e X :x(0)=»_ aqe(§), lim q(t)2' (1) = 0}

and Lx(t) = (q(t)2’(t))’, x € dom L, t € [0,00). We define N : X — Z by setting
Na(t) = f(t x(t),2'(t), t€0,00),
then (L.1)-(1.2]) can be written

Lx = Nx

Lemma 2.5. If X" 2oy =1 and Y72 057 Zs)ds # 0, then
(i) ker L={z € dom L : a:( ) =¢, ce R,t € [0,00)};

(i) ImL={yeZ:>" fo q(s) [ y(r)drds = 0};
(iii) L : domL C X — X is a Fredholm operator of index zero. Furthermore,
the linear continuous projector operator Q : Z — Z can be defined

(Qy Z / / (r)drds, te€ [0,00),

where

—t
h(t) =
m—2 &i e~
ZiLI i Jo q(s) dS
(iv) The generalized inverse Kp : Im L — dom L Nker P of L can be written by

Keu(t) = - | t =/ " y(r)drds.

(V) 1Kpyll < max{llg~"loo, llg~ 1} lyll1, for all y € ImL.

Proof. By direct calculations, we easily know that (i) and (ii) hold. (iii) For any
y € Z, take the prosector

(Qy Z / / (r)drds, t€[0,00).

Let y1 = y — Qy, by direct calculations, we have

Z/ (1/OO y1(7)drds

_ 21/0(](18)/ r)drds( az/& /OO (r)drds) = 0.

So y1 € Im L. Hence, Z = Im L + Im Q, since Im L N Im @ = {0}, we obtain
Z=ImL&ImQ.

Thus, dimker L = dimIm @ = 1.
Hence, L is a Fredholm operator of index zero.
(iv) Let P : Z — Z be defined by

Pz(t) = z(0), t€][0,00).

€ [0, 00).
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Then the generalized inverse Kp : Im L — dom L Nker P of L can be written as
t 1 [e’e]
Kpy(t) = —/ — / y(7)drds.
0 q(S) s
In fact, for any y € ImL, we have
LKpy(t) = (a(t)Kpy'(t))" = y(t).
and for x € dom L Nker P, one has

KpLa(t) = Kplq)a' (1)) = - / ﬁ / " gy (7)Y drds
t . , ,
- / 5 (Jim a(0)2'() ~ g()a(5)) ds

in view of 2(0) = 0 (since = € ker P), thus,
)

Hencev KP = (L|d0m LNker P)_l-
(v) From the definition of Kp, we have

t oo

1 _

IKpyllos = sup |Kpy| < sup /7/ ly(7)|drds < llg~ 1]y,
t€[0,00) t€[0,00) JO Q(S) s

and

1 o _
I(Epy)'llc = sup [(Kpy)'|< sup 7/ ly(s)lds < [lg™" loollyllr-
t€]0,00) tef0,00) 4(t) Ji
Hence,
1K pyll < max{llg™ I+, lla™ oo Hlwllr-
O

Lemma 2.6. If f is a Carathéodory function and ZZZ;Q |cvi] fo& ﬁds < 00, then

N is L-compact.

Proof. Let M C X be bounded with r = sup{||z|| : * € M} and consider
KpgoN(M). By f : [0,00) x R?> — R satisfies the Carathéodory conditions with
respect to L]0, 00), there exists a Lebesgue integrable function ¢, such that

INz(t)] = |f(t,2(t), 2" (t))] < ¢p(t) ae. in (0,00).
Then for all x € M, we have

[QNz|)1 < /OOO |QNxz(s)|ds
= /Ooo ’h(s) tlz_:jai /05" % /:O f(r,x(r),2'(7))drds|ds

< / °°|h<s>|§|ai| / : % / " o (r)drdsds
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m—2 57‘, 1
<l lierl S e / ELEPA
' ; "o als)

Thus,
1 KpoNz||oo
- t:‘[::m)/ ) (et
Z /0 e / fl¢,x d(dg)drds’
<t5’[8“;)/0 e >/ GRS
2 / / F(C2(0),x d(dg’drds
</OOO q(ls)/o (w )+ [h(r IZ Iall/ / )dCdg)des
< ||<Pr||1Hq_1||1(1+ IR Z |04i|/0 mdg < oo
and

= sup i/OO (f(s,m(S),:E/(S))

te[0,00) Q(t)
/ /f d7d§>ds‘
St;&qﬁa/o (5000 + s 'Z'%'/ A, e

<Nl lsolir I 1+||h||1 \az|/ fdg ) <.

It follows that KpoN(M) is umformly bounded in X.
Let x € M and ty, ty € [0,T] with T € (0, 00), we have

|[KpoNz(ts) — KpgoNxz(ty)]

- Wl) [ (strats e
i) S / / F(¢,2(0),x d{dc)dfds‘
S/: q(18) OO"( T+ AT IZI ’|/ (1< /0 )dcdg)deS
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s/ el (1+||h\|12|a1|/ s 0. asty - b
t

?(IEP,QN:C)/(@) — (KpoNz)'(t))|

=l [ (620260 100 mza [ o5 [ st atoarac)as
- qél) [ (165279
5 [y oo e

i=1

<) - i | / 7G5 2(5).2/(5))
e |Z|a7| "5 e e

n 1 / (|f(s,x(8)7$(5))|

q(t1) t1

+lits IZI%I "5 e )

< lla™ % a(er) — aCea)lllgrll (1 + 1] Z |az-|/ )

to
Hlla e [ (o) +IGs |Z|az|/ ogellerl)ds =0, as 1y~ to
t1

So KpoN(FE) is equicontinuous on every compact subset of [0, c0).
We introduce the following notation:

KRQN‘T(OO) = tli)n;) prQNx(t)

- "5 [ (o)
S a [ o5 [ resoionacas)aras

and
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Thus,

[KpqNu(t) — KpqNu(co)|

_‘/ S/ (Fr.ar). /(7))

-2

B [ 5 | €O @acds)ars

W; [ (o) 4 Inte |m22|az| / / o (Q)dCds ) drds
Sllels

t1
el (1 + 117l Z \ai\/ ﬁdT)ds — 0, uniformly as t — oo,
i=1 o 47T

L
q(s

—[
<]

t
d

arn

(KpoNz)'(t) — (KpqNx)'(c0)|

= ‘ﬁ /too (f(s,x(s) / / flra(r (T))drdg)ds‘
< [ (e g |az-|/0 I ﬁdcnml)ds ~0,

uniformly as ¢ — oo. Therefore, KpgN(M) is equiconvergent. It follows from
Lemma that KpoN (M) is relatively compact for each bounded M € X. The
continuity of Kp N (M) follows from the Lebesgue Dominated Theorem. We can
easily see that QN is continuous and QN (M) is relatively compact. Thus, by
Definition we have that the mapping N : X — Z is L-completely continuous.

O

3. MAIN RESULTS

Theorem 3.1. Let f : [0,00) x R? — R be a Carathéodory function, in addition,
assume that

(Ho) Y732 on = 1 S0 ol i o5 2oy [y gyds £ 0;

(H1) There exists a constant M > 0, such that for all v € domL \ ker L if
lz(t)| > M, te [0,00), then

/ / f(r,z(7),2'(7))drds # 0 (3.1)

(H2) There exist 3,7,0,p : [0,00) — [0,00), 8,7,0,p € L1[0,00), and constant

0 € [0,1), such that for all (z1,22) € R?, t € [0,00) satisfying one of the
following inequalities

|f(t a1, 22)] < B(t)]as| + v (B)]2'] + 6()|22|” + p(2), (3.2)
|f(t 1, 22)] < B(t)]aa| +v(B)]2' + 6(8) |21 | + p(2), (3-3)
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(H3) There exists a constant N* > 0, such that for all ¢ € R, if |¢c| > N*, then,

either
m=—2 i 1 o
c «; — f(r,¢,0)drds < 0, (3.4)
; /0 q(s) / .e:0)
or
S [ peo) (35)
c Q; — f(r,¢,0)drds > 0. 3.5
; /0 q(s) /

Then (1.1)-(1.2)) has at least one solution if
max{2[lq™ 1, g™l + llg™ oo 1Bl + Ivll1) < 1.

Proof. Set
O ={ze€domL\kerL:Lx=ANz,\e€[0,1]}.
For z € Qq, since Lr = ANz, thus, A # 0, Nz € Im L = ker ), hence,

m—2 &i
h(t) Z ai/ f(r,z(r),2'(7))drds = 0.
i=1 0
Thus, by (H1), there exists ¢y € [0,00), such that |z(t9)] < M. In view of

INM=MM—AOMWMSM+W%-

In addition,

1 o0 oo
() =~ [ @@ e)yas =~ [ Las)ds
(I(t) t t
which implies
1 > _ _
ol = sup |~ o [ La(s)ds] < o el Zals < flg™ eVt
telo,00) q(t) S
and
oo 1 oo B _
o= [ = o5 [ Le@dslar < oLl < o~ aVals.
0 Q(T) T
Thus,
2(O)] < M + g~ 1| Nl (3.6)

Again for all x € Qy, (I — P)x € dom L Nker P, LPx = 0, thus, from Lemma
we get

(I = P)z|| = | Kp(I = P)a|| < max{llg—"|l1, llg™ [l HIL(T = P)z]lx
= max{[lg™" 1, lg™" [loo } L2 (3.7)
< max{lg™ |1, g™ oo HI N1
Hence, we have from that
]| < [|Pxf| + [|(I — P)]|
<M+ [lg M1Vl + max{llg™" |1, [lg™ oo HI N2 (3.8)
< M +max{2]lg |1, a7l + llg™ oo HIN 21
Let A = max{2|l¢7 1, la 1 + [lg oo} If holds, then from (3.8), we get
lzll < M+ AINz|y < M+ABl12lloo + 1112 oo + 18111l 1% +lloll1)- (3.9)
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Thus, from [|z]| < [|z| and (3.9), we have
< M+ A(IBIL ||90||<>o + [l lloo + 9112”115 + llell)

| 0o 3.10
el 1 ATAI (310)
It follows from ||z’ < |||, (3.9) and (3:10) that
M
I#l1o0 < A8l el + A(||w\1||x’||oo 181 1 + ol + )
1—AlIBl: T=ABL" " 1= A8l
¥ e Allol + M
Pl +
2|0 < - l2']1% + : (3.11)
1 —A([IBll + [[7]11) A8l + [7111)
Since 6 € [0,1), by (3.11]), there exists M; > 0, such that
[[2"]| oo < M. (3.12)
Similar, by (3.10) and (3.12)), there exists My > 0, such that
[#]lco < Moa. (3.13)
Hence,

2]l = max{[|z[loc, |2"]|oc} < max{My, Ms}.

Then Q; is bounded.
If holds, similar to the above argument, we can prove that ; is bounded
too. Let
Qy={xrekerL: Nz €ImL}.

For x € Qg, then we have x = ¢ € R, thus,

Z / / f(r,¢,0)drds = 0. (3.14)

Then, we have by (H3) and (3-14) that
]l = fe] < N7,
which implies that €25 is bounded. We define the isomorphism J : Im @ — ker L by
J(ch(t)) =¢, c€eR,te]0,00).
If holds, set
Qs={zeckerL: —Az+ (1-\N)JQNz =0, X e [0,1]}.

For every ¢y € 3, we obtain

&i
Acp = (1 — aZ/ / f(r,¢c0,0)drds.

If A\=1, then ¢y = 0 and if |co| > N* in view of (3.4]), one has

m— &i
)\Cg =(1-N)co Z al/ / f(r,¢0,0)drds < 0,

which contradicts )\cg > 0. Thus, Q3 is bounded.
If (3.5) holds, then let

Qs ={xe€kerL: Az + (1 -AN)JQNz =0, X €[0,1]},
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similar to the above argument, we can show that (23 is bounded.

In the following, we shall prove that all conditions of Lemma [2.4] are satisfied.
Let  to be a bounded open subset of X such that U3_;Q; C Q. Then by the above
argument, we have
(1) Lz # ANz for every (z,\) € [(dom L \ ker L) N 99 x (0, 1);

(2) Nz ¢ Im L for every = € ker L N 99.
Lastly, we will prove that (3) of Lemma is satisfied. Define

H(zx,\) =+ x+ (1 - NQNz.

It is obvious that H(xz, \) # 0 for every x € 9Q Nker L. Thus,

deg(JQN |xer Lnoq, 2 Nker L, 0) = deg(H(-,0), 2 Nker L, 0)
=deg(H(-,1),2NkerL,0)
= deg(£I,Q2Nker L,0) # 0.

Then by Lemma Lz = Nz has at least one solution in dom L N €. In other
words, (1.1)-(1.2)) has at least one solution in C[0, ). O
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