
Electronic Journal of Differential Equations, Vol. 2009(2009), No. 12, pp. 1–22.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

FULLY DISCRETE GALERKIN SCHEMES FOR THE
NONLINEAR AND NONLOCAL HARTREE EQUATION

WALTER H. ASCHBACHER

Abstract. We study the time dependent Hartree equation in the continuum,

the semidiscrete, and the fully discrete setting. We prove existence-uniqueness,

regularity, and approximation properties for the respective schemes, and set
the stage for a controlled numerical computation of delicate nonlinear and

nonlocal features of the Hartree dynamics in various physical applications.

1. Introduction

In this paper, we study the nonlinear and nonlocal Hartree initial-boundary value
problem for the (wave) function ψ(x, t) being defined by

i ψ̇ = (−∆ + v + λV ∗ |ψ|2)ψ, if (x, t) ∈ Ω× [0, T ),

ψ = 0, if (x, t) ∈ ∂Ω× [0, T ),

ψ = ψ0, if (x, t) ∈ Ω× {0},
(1.1)

where Ω is some domain in Rd with boundary ∂Ω, and T > 0 is the upper limit
of the time interval on which we want to study the time evolution of ψ (here, ψ̇
is the derivative of ψ with respect to the time variable t). Moreover, v stands for
an external potential, λ denotes the coupling strength, and V is the interaction
potential responsible for the nonlinear and nonlocal interaction generated by the
convolution term (to be made precise below). The system (1.1) has many physical
applications, in particular for the case Ω = Rd. As a first application, we mention
the appearance of (1.1) within the context of the quantum mechanical description
of large systems of nonrelativistic bosons in their so-called mean field limit. For the
case of a local nonlinearity, i.e. for V = δ, an important application of equation (1.1)
lies in the domain of Bose-Einstein condensation for repulsive interatomic forces
where it governs the condensate wave function and is called the Gross-Pitaevskii
equation. This dynamical equation, and its corresponding energy functional in the
stationary case, have been derived rigorously (see for example [19, 11] and [14],
respectively; moreover, the nonlocal Hartree equation has been derived for weakly
coupled fermions in [10]). In [4], minimizers of this nonlocal Hartree functional have
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been studied in the attractive case, and symmetry breaking has been established
for sufficiently large coupling. A large coupling phase segregation phenomenon has
also been rigorously derived for a system of two coupled Hartree equations which
are used to describe interacting Bose-Einstein condensates (see [8, 5] and references
therein). Such coupled systems also appear in the description of crossing sea states
of weakly nonlinear dispersive surface water waves in hydrodynamics (with local
nonlinearity, see for example [15, 18]), of electromagnetic waves in a Kerr medium
in nonlinear optics, and in nonlinear plasma physics. Furthermore, we would like
to mention that equation (1.1) with attractive interaction potential possesses a so-
called point particle limit. Consider the situation where the initial condition is
composed of several interacting Hartree minimizers sitting in an external potential
which varies slowly on the length scale defined by the extension of the minimizers.
It turns out that, in a time regime inversely related to this scale, the center of mass
of each minimizer follows a trajectory which is governed, up to a small friction term,
by Newton’s equation of motion for interacting point particles in the slowly varying
external potential. Hence, in this limit, the system can be interpreted as the motion
of interacting extended particles in a shallow external potential and weakly coupled
to a dispersive environment with which mass and energy can be exchanged through
the friction term. This allows to describe, and hence to numerically compute, some
type of structure formation in Newtonian gravity (see [12, 13, 2]).

The main content of the present paper consists in setting up the framework
for the numerical analysis on bounded Ω which will be used in [3] for the study
through numerical computation of such phenomena, like, for example, the dissipa-
tion through radiation for a Hartree minimizer oscillating in an external confining
potential (see also [2]).

In Section 2, we start off with a brief study of the Hartree initial-value boundary
problem (1.1) in the continuum setting and we discuss its existence-uniqueness and
regularity properties. In Section 3, the system (1.1) is discretized in space with
the help of Galerkin theory. We derive existence-uniqueness and a bound on the
L2-approximation error. In the main Section 4, we proceed to the full discretization
of (1.1), more precisely, we discretize the foregoing semidiscrete problem in time fo-
cusing on two time discretization schemes of Crank-Nicholson type. The first is the
so-called one-step one-stage Gauss-Legendre Runge-Kutta method which conserves
the mass of the discretized wave function under the discrete time evolution. The
second one is the so-called Delfour-Fortin-Payre scheme which, besides the mass,
also conserves the energy of the system. We prove existence-uniqueness using con-
traction methods suitable for implementation in [2, 3]. Moreover, we derive a time
quadratic accuracy estimate on the L2-error of these approximation schemes. In
the proofs of these assertions, we write down rather explicit expressions for the
bounds in order to have some qualitative idea how to achieve a good numerical
control of the fully discrete approximations of the Hartree initial-value boundary
problem (1.1) for the computation of delicate nonlinear and nonlocal features of
the various physical scenarios discussed above.

2. The continuum problem

As discussed in the Introduction, we start off by briefly studying the Hartree
initial-boundary value problem (1.1) in a suitable continuum setting. For this pur-
pose, we make the following assumptions concerning the domain Ω, the external



EJDE-2009/12 FULLY DISCRETE GALERKIN SCHEMES 3

potential v, and the interaction potential V , a choice which is motivated by the
perspective of the fully discrete problem and the numerical analysis dealt with in
Section 4 and the numerical computations in [3] (some Hartree-dynamical compu-
tations have already been performed in [2]).

Assumption 2.1. Ω ⊂ Rd is a bounded domain with smooth boundary ∂Ω.

Assumption 2.2. Assumption 2.1 holds, v ∈ C∞0 (Ω,R), and V ∈ C∞0 (Rd,R).

Assumption 2.3. Assumption 2.2 holds, and V (−x) = V (x) for all x ∈ Rd.

The Lebesgue and Sobolev spaces used in the following are always defined over
the domain Ω from Assumption 2.1 unless something else is stated explicitly. Thus,
we suppress Ω in the notation of these spaces. Moreover, under Assumption 2.2, let
the Hilbert space H, the linear operator A on H with domain of definition D(A),
and the nonlinear mapping J on H be given by

H := L2,

D(A) := H2 ∩H1
0 ,

A := −∆,

J [ψ] := vψ + f [ψ],

where the nonlinear mapping f is defined by

f [ψ] := λgV [|ψ|2]ψ,
λ ∈ C∞0 (Ω,R),

gV [ϕ](x) :=
∫

Ω

dy V (x− y)ϕ(y).

Remark 2.4. The function λ stands for some space depending coupling function
which can be chosen to be a smooth characteristic function of the domain Ω. Such a
choice, on one hand, insures that all derivatives of f [ψ] vanish at the boundary ∂Ω,
and, on the other hand, switches the nonlocal interaction off in some neighborhood
of ∂Ω where, in the numerical computation, transparent boundary conditions have
to be matched with the outgoing flow of ψ (see [2, 3]).

Remark 2.5. Under Assumption 2.2, we have gV [ϕ] ∈ C∞0 (Rd,C) for all ϕ ∈ L1,
and f [ψ] ∈ L2 for all ψ ∈ L2, see estimate (2.10) below.

We now make the following definition.

Definition 2.6. Let Assumption 2.2 hold, and let T ∈ (0,∞) ∪ {∞}. We call a
differentiable function ψ : [0, T ) → L2 a continuum solution of the Hartree initial-
value problem (1.1) with initial condition ψ0 ∈ D(A) if

i ψ̇(t) = Aψ(t) + J [ψ(t)], ∀t ∈ [0, T ),

ψ(0) = ψ0.
(2.1)

If T <∞, the solution is called local, and if T = ∞, it is called global.

We make use of the following theorem to prove that there exists a unique global
solution of the Hartree initial-value problem (1.1) in the sense of Definition 2.6. In
addition, this solution has higher regularity properties in time which are required
for the bounds on the constants appearing in the L2-error estimates in the fully
discrete setting of Section 4.
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Theorem 2.7 ([16, p.301]). Let H be a Hilbert space and A a linear operator on
H with domain of definition D(A), and A∗ = A.
(a) Let n ∈ N, and let J be a mapping which satisfies the following conditions for
all ψ, ξ ∈ D(Ak),

JD(Ak) ⊆ D(Ak), ∀k = 1, . . . , n, (2.2)

‖J [ψ]‖ ≤ C(‖ψ‖)‖ψ‖, (2.3)

‖AkJ [ψ]‖ ≤ C(‖ψ‖, . . . , ‖Ak−1ψ‖)‖Akψ‖, ∀k = 1, . . . , n, (2.4)

‖Ak(J [ψ]− J [ξ])‖ ≤ C(‖ψ‖, ‖ξ‖, . . . , ‖Akψ‖, ‖Akξ‖)‖Akψ −Akξ‖, ∀k = 0, . . . , n,
(2.5)

where each constant C is a monotone increasing and everywhere finite function of
all its variables. Then, for each ψ0 ∈ D(An), there exists a unique local continuum
solution in the sense of Definition 2.6 with ψ(t) ∈ D(An) for all t ∈ [0, T ).
(b) Moreover, this solution is global if

‖ψ(t)‖ ≤ C, ∀t ∈ [0, T ). (2.6)

(c) In addition to the conditions in (a), let J satisfy the following conditions for
all 1 ≤ k < n: if ψ ∈ Ck([0,∞),H) with dl

dtl
ψ(t) ∈ D(An−l) for all 0 ≤ l ≤ k and

An−l dl

dtl
ψ(t) ∈ C([0,∞),H) for all 0 ≤ l ≤ k, then

J [ψ(t)] is k times differentiable, (2.7)

dk

dtk
J [ψ(t)] ∈ D(An−k−1), (2.8)

An−k−1 dk

dtk
J [ψ(t)] ∈ C([0,∞),H). (2.9)

If this condition holds, then the local solution from (a) is n times differentiable and
dk

dtk
ψ(t) ∈ D(An−k) for all 1 ≤ k ≤ n.

Remark 2.8. With the help of Theorem 2.7 (and its proof) the constants in the es-
timates (4.39) and (4.47) below on the L2-error of the fully discrete approximations
are finite and can be estimated explicitly.

Proof. To prove the assertions of Theorem 2.7, we verify its assumptions for the
situation specified above. Let us start off by checking condition (2.3).
Condition (2.3): ‖J [ψ]‖L2 ≤ C(‖ψ‖L2)‖ψ‖L2

Using Assumption 2.2 and the estimate

‖λgV [ϕψ]χ‖L2 ≤ ‖λ‖L∞‖V ‖L∞(Rd)‖ϕ‖L2‖ψ‖L2‖χ‖L2 , (2.10)

we immediately get

‖J [ψ]‖L2 ≤ (‖v‖L∞ + ‖λ‖L∞‖V ‖L∞(Rd)‖ψ‖
2
L2)‖ψ‖L2 ,

and the prefactor C(‖ψ‖) from (2.3) is a monotone increasing function of ‖ψ‖L2 .
Next, let us check condition (2.4).

Condition (2.4): ‖∆kJ [ψ]‖L2 ≤ C(‖ψ‖L2)‖∆kψ‖L2 for all k ∈ N
To show (2.4), we have to control the L2-norm of ∆k(vψ) and of ∆k(λgV [|ψ|2]ψ).
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Hence, we write the powers of the Dirichlet-Laplacian as follows,

∆k(ϕψ)

=
∑

j1,...,jk=1,...,d
α1,β1,...,αk,βk=0,1

cα1β1...αkβk
(∂α1
j1
∂β1
j1
. . . ∂αk

jk
∂βk

jk
ϕ)(∂1−α1

j1
∂1−β1
j1

. . . ∂1−αk
jk

∂1−βk

jk
ψ),

(2.11)

∆k(gV [ϕ]ψ)

=
∑

j1,...,jk=1,...,d
α1,β1,...,αk,βk=0,1

cα1β1...αkβk
g
∂

α1
j1
∂

β1
j1
...∂

αk
jk
∂

βk
jk
V

[ϕ] (∂1−α1
j1

∂1−β1
j1

. . . ∂1−αk
jk

∂1−βk

jk
ψ),

(2.12)
where cα1β1...αkβk

denote some combinatorial constants. Hence, using (2.10) and
the following Schauder type estimate1

‖ψ‖H2+m ≤ C‖∆ψ‖Hm , ∀ψ ∈ H2+m ∩H1
0 , ∀m ∈ N0,

we get the following bounds on (2.11) and (2.12),

‖∆k(ϕψ)‖L2 ≤ C‖ϕ‖W 2k,∞‖ψ‖H2k ≤ C‖ϕ‖W 2k,∞‖∆kψ‖L2 , (2.13)

‖∆k(gV [ϕ]ψ)‖L2 ≤ C‖V ‖W 2k,∞(Rd)‖ϕ‖L1‖∆kψ‖L2 . (2.14)

Using (2.13), and (2.14) twice, we arrive at

‖∆kJ [ψ]‖L2 ≤ C(‖v‖W 2k,∞ + ‖λ‖W 2k,∞‖V ‖W 2k,∞(Rd)‖ψ‖
2
L2)‖∆kψ‖L2 , (2.15)

where the prefactor C(‖ψ‖, ‖Aψ‖, . . . , ‖Ak−1ψ‖) from (2.4) depends on ‖ψ‖L2 only
and is monotone increasing in ‖ψ‖L2 . Next, we check condition (2.2).

Condition (2.2): JD(∆k) ⊆ D(∆k) for all k ∈ N
Due to (2.15) and since D(∆k) = {ψ ∈ H2 ∩ H1

0 |∆ψ ∈ H2 ∩ H1
0 , . . . ,∆

k−1ψ ∈
H2 ∩ H1

0}, it remains to show that ∆jJ(ψ) ∈ H1
0 for all ψ ∈ D(∆k) and for all

j = 0, . . . , k. But this follows since v, λ ∈ C∞0 and from the fact that C∞(Ω) is
dense in Hm with respect to the Hm-norm for all m ∈ N0.

Condition (2.5):

‖∆k(J [ψ]− J [ξ])‖L2 ≤ C(‖ψ‖L2 , ‖ξ‖L2 , ‖∆kψ‖L2 , ‖∆kξ‖L2)‖∆kψ −∆kξ‖L2

To show (2.5), we write the difference with the help of the decomposition

gV [ϕ1ψ1]χ1 − gV [ϕ2ψ2]χ2

= gV [ϕ1(ψ1 − ψ2)]χ1 + gV [(ϕ1 − ϕ2)ψ2]χ1 + gV [ϕ2ψ2](χ1 − χ2).
(2.16)

Each term on the right-hand side of (2.16) can then be estimated with the help of
(2.14). Hence, as in (2.15), we get

‖∆k(J [ψ]− J [ξ])‖L2 ≤ C(‖v‖W 2k,∞ + ‖λ‖W 2k,∞‖V ‖W 2k,∞(Rd)

× (‖ψ‖2L2 + (‖ψ‖L2 + ‖ξ‖L2)‖∆kψ‖L2))‖∆kψ −∆kξ‖L2 ,

(2.17)
where the prefactor C(‖ψ‖, ‖ξ‖, . . . , ‖Akψ‖, ‖Akξ‖) from (2.5) depends on the low-
est and the highest power of ∆ only, and it is monotone increasing in all its variables.

1I.e., the elliptic regularity estimate of generalized solutions up to the boundary, see for example
[22, p.383].
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Condition (2.6): ‖ψ(t)‖L2 = ‖ψ0‖L2 for all t ∈ [0, T )
This condition is satisfied due to Proposition 2.9 below.

Condition (2.7): J [ψ(t)] is k times differentiable in L2 with respect to time t
Let n ∈ N be fixed, and let k = 1. Then, it is shown in [16, p.299] that part
(a) and conditions (2.7), (2.8), and (2.9) for k = 1 imply that ψ ∈ C2([0,∞), L2)
with d2

dt2ψ(t) ∈ D(An−2) and An−2 d2

dt2ψ(t) ∈ C([0,∞), L2). Then, using conditions
(2.7), (2.8), and (2.9) for subsequent 1 ≤ k < n leads to the claim of part (c)
by iteration. Hence, we have to verify that conditions (2.7), (2.8), and (2.9) are
satisfied for 1 ≤ k < n. To this end, we make use of decomposition (2.16) to
exemplify the case k = 1 and to note that the cases for k ≥ 2 are analogous. In
order to show that J [ψ(t)] is differentiable in L2, we write, using (2.16),

J [ψ(t+ h)]− J [ψ(t)]
h

= v
ψ(t+ h)− ψ(t)

h
+ λgV [ψ(t+ h) ψ̄(t+h)−ψ̄(t)

h ]ψ(t+ h)

+ λgV [ψ(t+h)−ψ(t)
h ψ̄(t+ h)]ψ(t+ h) + λgV [|ψ(t)|2]ψ(t+ h)− ψ(t)

h
.

Applying (2.16) and (2.10), we find that J [ψ(t)] is differentiable in L2 with respect
to t with derivative

d
dt
J [ψ(t)] = vψ̇(t) + λgV [ψ(t) ˙̄ψ(t)]ψ(t) + λgV [ψ̇(t)ψ̄(t)]ψ(t) + λgV [|ψ(t)|2]ψ̇(t).

(2.18)
Using (2.16), (2.13), and (2.14) in the estimate of ‖∆n−2( d

dtJ [ψ(t)]− d
dtJ [ψ(s)])‖

L2

similarly to (2.17), we find that d
dtJ [ψ(t)] ∈ D(∆n−2) and that ∆n−2 d

dtJ [ψ(t)] ∈
C([0,∞), L2). Due to the structure of (2.18), we can iterate the foregoing procedure
to arrive at the assertion. �

To verify condition (2.6), we define the mass M[ψ] and energy H[ψ] of a function
ψ ∈ H1 by

M[ψ] := ‖ψ‖2L2 ,

H[ψ] := ‖∇ψ‖2L2 + (ψ, vψ)L2 +
1
2

(ψ, f [ψ])L2 .

We then have the following statement.

Proposition 2.9. Let Assumption 2.3 hold, and let ψ be the unique local continuum
solution of Theorem 2.7. Then, the mass and the energy of ψ are conserved under
the time evolution,

M[ψ(t)] = M[ψ0], ∀t ∈ [0, T ),

H[ψ(t)] = H[ψ0], ∀t ∈ [0, T ).
(2.19)

Proof. From Theorem 2.7 it follows that the function t 7→ M[ψ(t)] belongs to
C1([0, T ),R+

0 ) with
d
dt
M[ψ(t)] = 2 Re (ψ̇(t), ψ(t))L2 ,

which vanishes due to (2.1). For the conservation of the energy, we have the follow-
ing three parts. First, using the regularity of ψ in time and (ψ,−∆ψ)L2 = ‖∇ψ‖2L2
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for all ψ ∈ H2 ∩H1
0 , we observe that t 7→ ‖∇ψ(t)‖2L2 belongs to C1([0, T ),R+

0 ) and
has the derivative

d
dt
‖∇ψ(t)‖2L2 = 2 Re (ψ̇(t),−∆ψ(t))L2 . (2.20)

Second, the function t 7→ (ψ(t), vψ(t))L2 belongs to C1([0, T ),R) and has the de-
rivative

d
dt

(ψ(t), vψ(t))L2 = 2 Re (ψ̇(t), vψ(t))L2 . (2.21)

Third, using |ψ|2− |ϕ|2 = ψ(ψ̄− ϕ̄) + (ψ−ϕ)ϕ̄ in the decomposition of f [ψ]− f [ϕ]
as in (2.16), we get d

dtgV [|ψ|2]ψ = gV [|ψ|2]ψ̇+ 2 Re(gV [ψ̄ψ̇])ψ in L2, and therefore
the function t→ (ψ(t), f [ψ(t)])L2 belongs to C1([0, T ),R) and has derivative

d
dt

(ψ(t), f [ψ(t)])L2 = 4 Re (ψ̇(t), f [ψ(t)])L2 , (2.22)

where we used Assumption 2.3 to write (g[ψ̄ψ̇]ψ,ψ)L2 = (ψ̇, f [ψ])L2 . Finally, if we
take the scalar product of (2.1) with ψ̇ and the real part of the resulting equation,
we get

0 = Re i ‖ψ̇(t)‖
2

L2 = Re
[
(ψ̇(t),−∆ψ(t))L2 + (ψ̇(t), vψ(t))L2 + (ψ̇(t), f [ψ(t)])L2

]
.

(2.23)
Plugging (2.20), (2.21), and (2.22) into (2.23), we find the conservation of the energy
H[ψ(t)]. �

Remark 2.10. For more general interaction potentials V , in particular in the local
case f [ψ] = |ψ|2ψ in d = 2,2 one can use an estimate from [7] which controls the
L∞-norm of a function ψ ∈ H1 by the square root of the logarithmic growth of the
H2-norm,

‖ψ‖L∞ ≤ C
(
1 +

√
log(1 + ‖ψ‖H2)

)
,

where the constant C depends on ‖ψ‖H1 . This estimate allows to bound the graph
norm of the continuum solution by a double exponential growth, and, hence, makes
the solution global.

Taking the L2-scalar product of (2.1) with respect to functions ϕ ∈ H1
0 , and using

again that (ϕ,−∆ψ)L2 = (∇ϕ,∇ψ)L2 for all ψ ∈ H2 ∩H1
0 and for all ϕ ∈ H1

0 , we
get the following weak formulation of the continuum problem (2.1),

i (ϕ, ψ̇)L2 = (∇ϕ,∇ψ)L2 + (ϕ, vψ)L2 + (ϕ, f [ψ])L2 , ∀ϕ ∈ H1
0 , t ∈ [0, T ),

ψ(0) = ψ0.
(2.24)

This formulation is the starting point for a suitable discretization in space of the
original continuum problem. We will discuss such a semidiscrete approximation in
Section 3.

2We are mainly interested in d = 2 for the numerical computations.



8 W. H. ASCHBACHER EJDE-2009/12

3. The semidiscrete approximation

In this section, we discretize the problem (2.24) in space with the help of Galerkin
theory which makes use of a family {Sh}h∈(0,1) of finite dimensional subspaces.

Assumption 3.1. The family {Sh}h∈(0,1) of subspaces of H1
0 has the property

Sh ⊂ C(Ω) ∩H1
0 , dimSh = Nh <∞, ∀h ∈ (0, 1).

Remark 3.2. For the numerical computation in [3], the physical space is (a smooth
bounded superset of) the open square Ω = (0, D)2 ⊂ R2 with D > 0 whose closure
is the union of the (n − 1)2 congruent closed subsquares generated by dividing
each side of Ω equidistantly into n − 1 intervals. Let us denote by Nh = (n − 2)2

the total number of interior vertices of this lattice and by h = D/(n − 1) the
lattice spacing.3 Moreover, let us choose the Galerkin space Sh to be spanned by
the bilinear Lagrange rectangle finite elements ϕj ∈ C(Ω) whose reference basis
function ϕ0 : Ω → [0,∞) is defined on its support [0, 2h]×2 by

ϕ0(x, y) :=
1
h2


xy, if (x, y) ∈ [0, h]×2,

(2h− x)y, if (x, y) ∈ [h, 2h]× [0, h],
(2h− x)(2h− y), if (x, y) ∈ [h, 2h]×2,

x(2h− y), if (x, y) ∈ [0, h]× [h, 2h],

(3.1)

see Figure 1. The functions ϕj are then defined to be of the form (3.1) having their
support translated by (m1h,m2h) with m1,m2 = 0, . . . ,m − 3. Hence, with this
choice, we have Sh ⊂ C(Ω) ∩H1

0 (Ω) and dimSh = Nh.

Figure 1. ϕ0(x, y) on its support [0, 2h]×2 with maximum at ver-
tex (h, h).

Motivated by the weak formulation (2.24), we make the following definition.

Definition 3.3. Let Assumptions 2.2 and 3.1 hold. We call ψh : [0, T ) → Sh with
ψh, ψ̇h ∈ L2(0, T ;Sh) a semidiscrete solution of the Hartree initial- boundary value

3As bijection from the one-dimensional to the two-dimensional lattice numbering, we may use
the mapping τ : {0, . . . , m− 1}×2 → {0, . . . , m2 − 1} with j = τ(m1, m2) := m1 + m2m.
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problem (1.1) with initial condition ψ0h ∈ Sh if

i
d
dt

(ϕ,ψh)L2 = (∇ϕ,∇ψh)L2 + (ϕ, vψh)L2 + (ϕ, f [ψh])L2 , ∀ϕ ∈ Sh, t ∈ [0, T ),

ψh(0) = ψ0h.

(3.2)

Remark 3.4. In general, the weak problem (2.24) is set up using the Gelfand
evolution triple H1

0 ⊂ L2 ⊂ (H1
0 )∗ = H−1. One then looks for weak solutions

ψ ∈W 1
2 (0, T ;H1

0 , L
2) ⊂ C([0, T ), L2) motivating Definition 3.3.

We assume the Galerkin subspace Sh from Assumption 3.1 to satisfy the following
additional approximation and inverse inequalities.

Assumption 3.5. Let Assumption 3.1 hold. Then, there exists a constant CA > 0
such that

inf
ϕ∈Sh

(
‖ψ − ϕ‖L2 + h‖ψ − ϕ‖H1

)
≤ CAh

2‖ψ‖H2 , ∀ψ ∈ H2 ∩H1
0 .

Remark 3.6. For an order of accuracy r ≥ 2 of the family {Sh}h∈(0,1), the usual
assumption replaces the right-hand side by CAhs‖ψ‖Hs for 1 ≤ s ≤ r and is asked
to hold for all ψ ∈ Hs ∩H1

0 . For simplicity, we stick to Assumption 3.5.

Assumption 3.7. Let Assumption 3.1 hold. Then, there exists a constant CB > 0
such that

‖ϕ‖H1 ≤ CBh
−1‖ϕ‖L2 , ∀ϕ ∈ Sh.

Remark 3.8. For the two-dimensional bilinear Lagrange finite element setting of
Remark 3.2, both Assumption 3.5 and Assumption 3.7 hold (see for example [6,
p.109,111]).

Furthermore, we make an assumption on the approximation quality of the ini-
tial condition ψ0h ∈ Sh of the semidiscrete problem (3.2) compared to the initial
condition ψ0 ∈ H2 ∩H1

0 of the continuum problem (2.1).

Assumption 3.9. Let Assumption 3.1 hold. Then, there exists a constant C0 > 0
such that

‖ψ0 − ψ0h‖L2 ≤ C0h
2. (3.3)

The semidiscrete scheme has the following conservation properties.

Proposition 3.10. Let Assumptions 2.3 and 3.1 hold, and let ψh be a semidiscrete
solution of the Hartree initial-boundary value problem (1.1) in the sense of Defini-
tion 3.3. Then, the mass and energy of ψh are conserved under the time evolution,

M[ψh(t)] = M[ψ0h], ∀t ∈ [0, T ),

H[ψh(t)] = H[ψ0h], ∀t ∈ [0, T ).
(3.4)

Proof. If we plug ϕ = ψh(t) into (3.2) and take the imaginary part of the resulting
equation, we get the conservation of the mass. If we plug ϕ = ψ̇h(t) into (3.2) and
take the real part of the resulting equation, we get the conservation of the energy
using Assumption 2.3 (in the sense of Remark 3.4). �

Existence-uniqueness is addressed in the following theorem.
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Theorem 3.11. Let Assumptions 2.3 and 3.1 hold. Then, there exists a unique
global semidiscrete solution ψh of the Hartree initial-boundary value problem (1.1)
in the sense of Definition 3.3.

Proof. Let {ϕj}Nh
j=1 be a basis of the Galerkin space Sh, and let us write

ψh(t) =
Nh∑
j=1

zj(t)ϕj . (3.5)

Plugging (3.5) into the semidiscrete system (3.2), for z(t) := (z1(t), . . . , zNh
(t)) ∈

CNh , we obtain

i ż(t) = A−1(B + Y )z(t) +A−1H[z(t)]z(t), ∀t ∈ [0, T ),

z(0) = z0,
(3.6)

where ψ0h =
∑Nh

j=1(z0)j ϕj and the matrices A,B ∈ CNh×Nh are the positive
definite mass and stiffness matrices, respectively,

Aij := (ϕi, ϕj)L2 , Bij := (∇ϕi,∇ϕj)L2 .

Moreover, Y ∈ CNh×Nh is the external potential matrix,

Yij := (ϕi, vϕj)L2 ,

and the matrix-valued function H : CNh → CNh×Nh is defined by

H[z]ij :=
Nh∑
k,l=1

z̄kzl (ϕi, λg[ϕ̄kϕl]ϕj)L2 .

Since the function CNh 3 z 7→ A−1(B + Y )z + A−1H[z]z ∈ CNh is locally Lip-
schitz continuous analogously to the continuum case, the Picard-Lindelöf theory
for ordinary differential equations implies local existence and uniqueness of the
initial-value problem (3.6). Moreover, this local solution is a global solution if it
remains restricted to a compact subset of CNh . But this is the case due to the mass
conservation from (3.4). �

We next turn to the L2-error estimate of the semidiscretization. For that pur-
pose, we introduce the Ritz projection (also called elliptic projection).

Definition 3.12. Let Assumption 3.1 hold. Then, the Ritz projection Rh : H1
0 →

Sh is defined to be the orthogonal projection from H1
0 onto Sh with respect to the

Dirichlet scalar product (∇·,∇·)L2 on H1
0 ; i.e.,

(∇ϕ,∇Rhψ)L2 = (∇ϕ,∇ψ)L2 , ∀ϕ ∈ Sh.

The Ritz projection satisfies the following error estimate.

Lemma 3.13 ([20, p.8]). Let Assumptions 3.1 and 3.5 hold. Then, there exists a
constant CR > 0 such that

‖(1−Rh)ψ‖L2 + h‖(1−Rh)ψ‖H1 ≤ CRh
2‖ψ‖H2 , ∀ψ ∈ H2 ∩H1

0 . (3.7)

The next theorem is the main assertion of this section.
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Theorem 3.14. Let Assumptions 2.2, 3.1, 3.5, and 3.9 hold, and let ψ be the
solution of the continuum problem from Theorem 2.7 and ψh the solution of the
semidiscrete problem from Theorem 3.11. Then, for any 0 < T <∞, there exists a
constant CE > 0 such that

max
t∈[0,T ]

‖ψ(t)− ψh(t)‖L2 ≤ CEh
2.

Proof. We decompose the difference of ψ and ψh as

ψ(t)− ψh(t) = ρ(t) + θ(t),

where ρ(t) and θ(t) are defined with the help of the Ritz projection Rh from (3.12)
by

ρ(t) := (1−Rh)ψ(t), θ(t) := Rhψ(t)− ψh(t).
Making use of the schemes (2.24), (3.2), and (3.12), we can write

i (ϕ, θ̇(t))L2 − (∇ϕ,∇θ(t))L2

= − i (ϕ, ρ̇(t))L2 + (ϕ, v(ψ(t)− ψh(t)))L2 + (ϕ, f [ψ(t)]− f [ψh(t)])L2 .
(3.8)

Plugging ϕ = θ(t) ∈ Sh into (3.8) and taking the imaginary part of the resulting
equation, we get the differential inequality

1
2

d
dt
‖θ(t)‖2L2

≤ (‖ρ̇(t)‖L2 + ‖v(ψ(t)− ψh(t))‖L2 + ‖f [ψ(t)]− f [ψh(t)]‖L2) ‖θ(t)‖L2

≤ (‖ρ̇(t)‖L2 + c1 (‖ρ(t)‖L2 + ‖θ(t)‖L2)) ‖θ(t)‖L2 ,

(3.9)

where we used the conservation laws (2.19) and (3.4), and (2.17) to define the
constant

c1 := ‖v‖L∞ + 2‖λ‖L∞‖V ‖L∞(Rd) (M[ψ0] +M[ψ0h]) .

Using ε > 0 to regularize the time derivative of ‖θ‖L2 at θ = 0 by rewriting the
left-hand side of (3.9) as 1

2
d
dt‖θ‖

2
L2 = 1

2
d
dt (‖θ‖

2
L2 + ε2), we get

d
dt

(
‖θ‖2L2 + ε2

)1/2

≤ ‖ρ̇(t)‖L2 + c1 (‖ρ(t)‖L2 + ‖θ(t)‖L2) , (3.10)

where we used ‖θ(t)‖L2 ≤
(
‖θ‖2L2 + ε2

)1/2. Integrating (3.10) from 0 to t, letting
ε→ 0, and applying Grönwall’s lemma to the resulting inequality, we find

‖θ(t)‖L2 ≤ ‖θ(0)‖L2 +
∫ t

0

ds
(
‖ρ̇(s)‖L2 + c1‖ρ(s)‖L2

)
+ c1

∫ t

0

ds
(
‖θ(0)‖L2 +

∫ s

0

du
(
‖ρ̇(u)‖L2 + c1‖ρ(u)‖L2

))
ec1(t−s).

(3.11)
To extract the factor h2, we apply (3.7) and Assumption 3.9 to obtain

‖ρ(t)‖L2 ≤ CR‖ψ(t)‖H2h
2, (3.12)

‖ρ̇(t)‖L2 ≤ CR‖ψ̇(t)‖H2h
2, (3.13)

‖θ(0)‖L2 ≤
(
C0 + CR‖ψ0‖H2

)
h2. (3.14)

Plugging (3.12), (3.13), and (3.14) into (3.11), we finally arrive at

‖ψ(t)− ψh(t)‖L2 ≤ ‖θ(t)‖L2 + ‖ρ(t)‖L2 ≤ c2(t)h2,



12 W. H. ASCHBACHER EJDE-2009/12

where the time dependent prefactor is defined by

c2(t) :=
(
C0 + CR‖ψ0‖H2

)
ec1t + CR

∫ t

0

ds
(
‖ψ̇(s)‖H2 + c1‖ψ(s)‖H2

)
+ c1CR

∫ t

0

ds
∫ s

0

du
(
‖ψ̇(u)‖H2 + c1‖ψ(u)‖H2

)
ec1(t−s) + CR‖ψ(t)‖H2 .

Setting CE := maxt∈[0,T ] c2(t) brings the proof of Theorem 3.14 to an end. �

Remark 3.15. For the local case f [ψ] = |ψ|2ψ, one replaces the original locally
Lipschitz nonlinearity f by a globally Lipschitz continuous nonlinearity which co-
incides with f in a given neighborhood of the solution ψ of the continuum problem.
One then first shows that the semidiscrete solution of the modified problem satisfies
the desired L2-error bound, and, second, that for h sufficiently small, the modified
solution lies in the given neighborhood of ψ. But for such h, the solution of the
modified problem coincides with the solution of the original problem, and, hence,
the solution of the original problem satisfies the desired L2-error bound, too (see
for example [1]).

4. The fully discrete approximation

In this section, we discretize the semidiscrete problem (3.2) in time. To this end,
let us denote by N ∈ N the desired fineness of the time discretization with time
discretization scale τ and its multiples tn for all n = 0, 1, 2, . . . , N ,

τ :=
T

N
, tn := nτ. (4.1)

As mentioned in the Introduction, we will use two different time discretization
schemes of Crank-Nicholson type to approximate the semidiscrete solution ψh of
Theorem 3.11 at time tn by Ψn ∈ Ψ, where

Ψ := (Ψ0,Ψ1, . . . ,ΨN ) ∈ S×(N+1)
h . (4.2)

These two schemes differ in the way of approximating the nonlinear term gV [|ψ|2]ψ
as follows. Let N := {1, 2, . . . , N} and N0 := N ∪ {0}, and set

Ψn−1/2 :=
1
2

(Ψn + Ψn−1) , ∀n ∈ N . (4.3)

The first scheme implements the one-step one-stage Gauss-Legendre Runge-Kutta
method in which the nonlinear term is discretized by

gV [|Ψn−1/2|2]Ψn−1/2. (4.4)

In this method, the mass M[Ψn] is conserved under the discrete time evolution.
The second scheme, introduced in [9] and applied in [1], discretizes the nonlinear
term by

gV [ 12 (|Ψn|2 + |Ψn−1|2)]Ψn−1/2. (4.5)

This method, in addition to the mass, also conserves the energy H[Ψn] of the
system. In the following, for convenience, we will call the first scheme coherent and
the second one incoherent.
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4.1. Coherent scheme. To define what we mean by a coherent solution of the
Hartree initial-boundary value problem (1.1), we set

Ψ̇n :=
1
τ

(Ψn −Ψn−1) , ∀n ∈ N .

Definition 4.1. Let Assumption 2.2 and 3.1 hold. We call Ψ ∈ S×(N+1)
h a coherent

fully discrete solution of the Hartree initial-boundary value problem (1.1) with
initial condition ψ0h ∈ Sh if

i (ϕ, Ψ̇n)L2 = (∇ϕ,∇Ψn−1/2)L2 + (ϕ, vΨn−1/2)L2 + (ϕ, f [Ψn−1/2])L2 ,

∀ϕ ∈ Sh, ∀n ∈ N ,
Ψ0 = ψ0h.

(4.6)

The coherent solution has the following conservation property.

Proposition 4.2. Let Ψ ∈ S
×(N+1)
h be a coherent fully discrete solution of the

Hartree initial-boundary value problem (1.1) in the sense of Definition 4.1. Then,
the mass of Ψ is conserved under the discrete time evolution,

M[Ψn] = M[ψ0h], ∀n ∈ N0. (4.7)

Proof. If we plug ϕ = Ψn−1/2 into (4.6) and take the imaginary part of the resulting
equation, we get

0 = Im i (Ψn−1/2, Ψ̇n)L2 =
1
2τ

(M[Ψn]−M[Ψn−1]) .

�

Remark 4.3. The energy H[Ψn] of the coherent solution (4.6) is not conserved
under the discrete time evolution (see [1] and references therein, in particular [17]
and [21] for the local case with d = 1).

The question of existence and uniqueness of a coherent solution is addressed in
the following theorem.

Theorem 4.4. Let Assumptions 2.2, 3.1, and 3.7 hold, and let the time discretiza-
tion scale τ be sufficiently small. Then, there exists a unique coherent fully discrete
solution of the Hartree initial-boundary value problem (1.1) in the sense of Defini-
tion 4.1.

Proof. Let φ ∈ Sh be given, and define the mapping Fφ : Sh → Sh by

(ϕ, Fφ[ψ])L2 := (ϕ, φ)L2 −
i τ
2

(
(∇ϕ,∇ψ)L2 + (ϕ, vψ)L2 + (ϕ, f [ψ])L2

)
, ∀ϕ ∈ Sh.

(4.8)
For some n ∈ N , let the n-th component Ψn−1 of Ψ ∈ S×(N+1)

h from (4.2) be given.
Adding 2 i (ϕ,Ψn−1)/τ on both sides of (4.6), we can rewrite (4.6) with the help of
(4.8) in the form of a fixed point equation for Ψn−1/2,

Ψn−1/2 = FΨn−1 [Ψn−1/2], (4.9)

from which we retrieve the unknown component Ψn by (4.3). In order to construct
the unique solution of (4.9), we make use of Banach’s fixed point theorem on the
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compact ball Bn−1 := {ψ ∈ Sh | ‖ψ‖L2 ≤M[Ψn−1]1/2+1} in Sh. Using Assumption
3.7 and (2.17), we get, for ψ, ξ ∈ Sh,
|(ϕ, FΨn−1 [ψ]− FΨn−1 [ξ])L2 |

≤ τ

2

(
C2
Bh
−2 + ‖v‖L∞ + 2‖λ‖L∞‖V ‖L∞(Rd)

(
‖ψ‖2L2 + ‖ξ‖2L2

))
‖ψ − ξ‖L2‖ϕ‖L2 .

(4.10)
Plugging ϕ = FΨn−1 [ψ]− FΨn−1 [ξ] into (4.10) and picking ψ and ξ from Bn−1, we
find

‖FΨn−1 [ψ]− FΨn−1 [ξ]‖L2 ≤
αn−1

2
τ‖ψ − ξ‖L2 , (4.11)

where the constant αn−1 is defined, for all n ∈ N , by

αn−1 := C2
Bh
−2 + ‖v‖L∞ + 4‖λ‖L∞‖V ‖L∞(Rd)(M[Ψn−1]1/2 + 1)2. (4.12)

Let now αn−1(M[Ψn−1]1/2 + 1)τ ≤ 1. Then, it follows from (4.11) and (4.12)
that FΨn−1 maps Bn−1 into Bn−1 (set ξ = 0 in (4.11)) and that FΨn−1 is a strict
contraction on Bn−1. Therefore, for such τ , Banach’s fixed point theorem implies
the existence of a unique solution Ψn−1/2 ∈ Bn−1 of the fixed point equation (4.9).
Moreover, due to the mass conservation (4.7), there exists no solution Ψn−1/2 of
(4.9) with Ψn−1/2 ∈ Sh \ Bn−1. Hence, the component Ψn of the coherent solution
exists and is unique for such τ . Starting at Ψ0 = ψ0h and proceeding iteratively, we
get all n + 1 components of the coherent solution Ψ ∈ S

×(N+1)
h . Moreover, again

due to (4.7), we get a uniform bound on the size of the time discretization scale τ ,
e.g.

α0(M[ψ0h]1/2 + 1)τ ≤ 1.
�

Remark 4.5. Since α0 ≥ C2
Bh
−2, we have that τ ≤ C−2

B h2, where CB stems from
Assumption 3.7.

We next turn to the first of the two main assertions of the present paper which
is the time quadratic accuracy estimate on the L2-error of the coherent solution.

Theorem 4.6. Let Assumptions 2.2, 3.1, 3.5, and 3.9 hold, and let Ψ ∈ S×(N+1)
h

be the coherent solution from Theorem 4.4. Then, there exists a constant CK > 0
such that

max
n∈N0

‖ψ(tn)−Ψn‖L2 ≤ CK(τ2 + h2).

Remark 4.7. The constant CK depends on higher Sobolev norms of the continuum
solution ψ. These norms exist due to the regularity assertion in Theorem 2.7(c).

Proof. Let n ∈ N be fixed and define ψn := ψ(tn) with tn from (4.1). As in the
proof of Theorem 3.14, we decompose the difference to be estimated as

ψn −Ψn = ρn + θn, (4.13)

where ρn and θn are again defined with the help of the Ritz projection from (3.12)
by

ρn := (1−Rh)ψn, θn := Rhψn −Ψn. (4.14)
Using Taylor’s theorem in order to expand ψn around t = 0 up to zeroth order in
tn and the estimate on the Ritz projection (3.7), we immediately get

‖ρn‖L2 ≤ CRh
2
(
‖ψ0‖H2 +

∫ tn

0

dt ‖ψ̇(t)‖H2

)
. (4.15)
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To estimate θn, we want to extract suitable small differences from the expression

Ln,ϕ := i
τ

(ϕ, θn − θn−1)L2 −
1
2
(∇ϕ,∇(θn + θn−1))L2 −

1
2
(ϕ, v(θn + θn−1))L2

(4.16)
which contains all the linear terms in (4.6) moved to the left-hand side with Ψn

replaced by θn. For this purpose, we first plug the definition of θn into (4.16), and
then use the definition of the Ritz projection (3.12) and the scheme (4.6) to get

Ln,ϕ = i
τ

(ϕ,Rh(ψn − ψn−1))L2 −
1
2
(∇ϕ,∇(ψn + ψn−1))L2

− 1
2
(ϕ, vRh(ψn + ψn−1))L2 − (ϕ, f [Ψn−1/2])L2 .

(4.17)

Rewriting the first term on the right-hand side of (4.17) with the help of the con-
tinuum solution satisfying the weak formulation (2.24), we have

i
τ

(ϕ,Rh(ψn − ψn−1))L2

= i
τ

(ϕ, (Rh − 1)(ψn − ψn−1))L2 + i (ϕ, 1
τ (ψn − ψn−1)− ψ̇n−1/2)L2

+ (∇ϕ,∇ψn−1/2)L2 + (ϕ, vψn−1/2)L2 + (ϕ, f [ψn−1/2])L2 ,

(4.18)

where we used ψn−1/2 := ψ(tn − τ/2) and ψ̇n−1/2 := ψ̇(tn − τ/2). Plugging (4.18)
into (4.17), we can express Ln,ϕ in the form

Ln,ϕ =
6∑
j=1

(ϕ, ω(j)
n )L2 , (4.19)

where the functions ω(j)
n with j = 1, . . . , 6 are defined by

ω(1)
n := i

τ
(Rh − 1)(ψn − ψn−1), ω(2)

n := i
(

1
τ (ψn − ψn−1)− ψ̇n−1/2

)
,

ω(3)
n := ∆

(
1
2

(
ψn + ψn−1

)
− ψn−1/2

)
, ω(4)

n := v
(
ψn−1/2 − 1

2 (ψn + ψn−1)
)
,

ω(5)
n :=

1
2
v (1−Rh) (ψn + ψn−1) , ω(6)

n := f [ψn−1/2]− f [Ψn−1/2],

and, for ω(3)
n , we used again (∇ϕ,∇ψ)L2 = (ϕ,−∆ψ)L2 for all ψ ∈ H2 ∩ H1

0 .
Plugging ϕ = (θn + θn−1)/2 into (4.16) and (4.19), and taking the imaginary part
of the resulting equation, we get (if θn = 0, we are left with (4.15))

‖θn‖L2 ≤ ‖θn−1‖L2 + τ
6∑
j=1

‖ω(j)
n ‖L2 . (4.20)

Let us next estimate the terms ‖ω(j)
n ‖L2 for all j = 1, . . . , 6. For ω(1)

n , we expand
ψn around t = tn−1 up to zeroth order in τ and use (3.7) such that

‖ω(1)
n ‖L2 ≤ CRh

2τ−1

∫ tn

tn−1

dt ‖ψ̇(t)‖H2 . (4.21)
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For ω(2)
n , we expand ψn−1 and ψn around t = tn − τ/2 up to second order in τ/2,

‖ω(2)
n ‖L2 ≤

1
2τ

( ∫ tn−τ/2

tn−1

dt (tn−1 − t)2‖
...
ψ(t)‖L2 +

∫ tn

tn−τ/2
dt (tn − t)2‖

...
ψ(t)‖L2

)
≤ τ

8

∫ tn

tn−1

dt ‖
...
ψ(t)‖L2 .

(4.22)
Analogously, for ω(3)

n and ω(4)
n , we expand ψn−1 and ψn around t = tn − τ/2 up to

first order in τ/2,

‖ω(3)
n ‖L2 ≤

τ

4

∫ tn

tn−1

dt ‖∆ψ̈(t)‖L2 , (4.23)

‖ω(4)
n ‖L2 ≤

τ

4
‖v‖L∞

∫ tn

tn−1

dt ‖ψ̈(t)‖L2 . (4.24)

For ω(5)
n , expanding ψn−1 and ψn around t = 0 up to zeroth order in time, we get,

analogously to the estimate of ω(1)
n ,

‖ω(5)
n ‖L2 ≤ CRh

2‖v‖L∞
(
‖ψ0‖H2 +

∫ tn

0

dt ‖ψ̇(t)‖H2

)
. (4.25)

Finally, for ω(6)
n , we apply the local Lipschitz continuity (2.17) to get

‖ω(6)
n ‖L2 ≤ c1 ‖ψn−1/2 −Ψn−1/2‖L2 , (4.26)

where we used the continuum mass conservation (2.19) and the coherent fully dis-
crete mass conservation (4.7) to define the constant

c1 := 2‖λ‖L∞‖V ‖L∞(Rd) (M[ψ0] +M[ψ0h]) . (4.27)

Since we want to reinsert the decomposition (4.13) into the right-hand side of (4.26),
we write
‖ψn−1/2 −Ψn−1/2‖L2 ≤ ‖ψn−1/2 − 1

2 (ψn + ψn−1)‖L2

+
1
2

(‖ρn−1‖L2 + ‖ρn‖L2 + ‖θn−1‖L2 + ‖θn‖L2) .
(4.28)

Plugging the estimates (4.15), (4.21) to (4.26), and (4.28) into (4.20), we find

‖θn‖L2≤ ‖θn−1‖L2 +
(
A(1)
n +τA(2)

n

)
h2 +A(3)

n τ2 +
c1
2
τ (‖θn−1‖L2 + ‖θn‖L2) , (4.29)

where the first term on the right-hand side of (4.28) was estimated as in ω
(3)
n or

ω
(4)
n , and

A(1)
n := CR

∫ tn

tn−1

dt ‖ψ̇(t)‖H2 , (4.30)

A(2)
n := CR (c1 + ‖v‖L∞)

(
‖ψ0‖H2 +

∫ tn

0

dt ‖ψ̇(t)‖H2

)
, (4.31)

A(3)
n :=

1
4

(c1 + ‖v‖L∞)
∫ tn

tn−1

dt ‖ψ̈(t)‖L2 +
1
8

∫ tn

tn−1

dt ‖
...
ψ(t)‖L2

+
1
4

∫ tn

tn−1

dt ‖∆ψ̈(t)‖L2 .

(4.32)
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If we choose the time discretization scale τ to be small enough, e.g. c1τ ≤ 1, we
can construct the following recursive bound on ‖θn‖L2 from inequality (4.29),

‖θn‖L2 ≤ B(1)‖θn−1‖L2 +B(2)
n , (4.33)

where we used that 1/(1− c1τ/2) ≤ 1 + c1τ if c1τ ≤ 1 to define

B(1) := (1 + c1τ)2,

B(2)
n := (1 + c1τ)

((
A(1)
n + τA(2)

n

)
h2 +A(3)

n τ2
)
.

Therefore, if we iterate the bound (4.33) until we arrive at ‖θ0‖L2 , we get

‖θn‖L2 ≤
(
B(1)

)n
‖θ0‖L2 +

n∑
k=1

(
B(1)

)n−k
B

(2)
k

≤ c2

(
‖θ0‖L2 +

n∑
k=1

((
A

(1)
k + τA

(2)
k

)
h2 +A

(3)
k τ2

))
,

(4.34)

where, on the second line of (4.34), we first extract the global factor (B(1))n which
can then be estimated as (B(1))n ≤ (1 + c1T/N)2N ≤ c2 with the definition

c2 := e2c1T . (4.35)

It remains to estimate ‖θ0‖L2 on the right-hand side of (4.34). This is again done
by using the estimate on the Ritz projection (3.7),

‖θ0‖L2 ≤ ‖ψ0 − ψ0h‖L2 + ‖(Rh − 1)ψ0‖L2 ≤ ‖ψ0 − ψ0h‖L2 +CRh
2‖ψ0‖H2 . (4.36)

Hence, with estimate (4.15) on ‖ρn‖L2 and the estimates (4.34) and (4.36) on
‖θn‖L2 in the decomposition (4.14), taking the maximum over all times, we finally
arrive at

max
n∈N0

‖ψn −Ψn‖L2 ≤ c2‖ψ0 − ψ0h‖L2 + c3h
2 + c4τ

2, (4.37)

where the constants c3 and c4 are defined by

c3 := CR (1 + c2 (1 + T (c1 + ‖v‖L∞)))
(
‖ψ0‖H2 +

∫ T

0

dt ‖ψ̇(t)‖H2

)
, (4.38)

c4 :=
c2
4

(
(c1 + ‖v‖L∞)

∫ T

0

dt ‖ψ̈(t)‖L2 +
1
2

∫ T

0

dt ‖
...
ψ(t)‖L2 +

∫ T

0

dt ‖∆ψ̈(t)‖L2

)
.

(4.39)

The constants c1 and c2 are given in (4.27) and (4.35), respectively. Using Assump-
tion 3.9 and setting CK := max{c2C0 + c3, c4} brings the proof of Theorem 4.6 to
an end. �

Remark 4.8. We can compute an explicit bound on the integrands in (4.38) and
(4.39) on any finite time interval. As an example, for the last term in the constant
c4 from (4.39), we have (see Theorem 2.7(c) and [16, p.299])

‖∆ψ̈(t)‖L2 ≤ ‖∆3ψ(t)‖L2 + ‖∆2J [ψ(t)]‖L2 + ‖∆ d
dtJ [ψ(t)]‖

L2 .

The first term is exponentially bounded in time using the conditions from Theo-
rem 2.7 (a) and (b) and Grönwall’s lemma on the Duhamel integral form of the
differential equation (2.1),

‖∆3ψ(t)‖L2 ≤ ‖∆3ψ0‖L2 eC(M[ψ0])t,
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where the constant C stems from (2.15) (see also [16, p.300]). In contradistinction to
the general case from Theorem 2.7(a), the growth rate C from (2.15) only depends
on the mass of the initial condition (and on v, V , and λ, of course). The second term
is again bounded due to (2.4). Finally, the third term is bounded due to equation
(2.18) for the time derivative of the nonlinear term J [ψ(t)] and the corresponding
estimates (2.13) and (2.14).

4.2. Incoherent scheme. As described at the beginning of Section 4, we also
study a second discretization scheme which approximizes the nonlinear term gV [|ψ|2]ψ
not by (4.4) but rather by the expression (4.5).

Definition 4.9. Let Assumptions 2.2 and 3.1 hold. We call Ψ ∈ S
×(N+1)
h an

incoherent fully discrete solution of the Hartree initial-boundary value problem
(1.1) with initial condition ψ0h ∈ Sh if

i (ϕ, Ψ̇n)L2 = (∇ϕ,∇Ψn−1/2)L2 + (ϕ, vΨn−1/2)L2

+
(
ϕ, 1

2λgV [|Ψn|2 + |Ψn−1|2]Ψn−1/2

)
L2 , ∀ϕ ∈ Sh, n ∈ N ,

Ψ0 = ψ0h.

(4.40)

The incoherent solution has the following conservation properties.

Proposition 4.10. Let Ψ ∈ S×(N+1)
h be an incoherent fully discrete solution of the

Hartree initial-boundary value problem (1.1) in the sense of Definition 4.9, and let
Assumption 2.3 hold. Then, the mass and the energy of Ψ are conserved under the
discrete time evolution,

M[Ψn] = M[ψ0h], ∀n ∈ N0,

H[Ψn] = H[ψ0h], ∀n ∈ N0.
(4.41)

Proof. Plugging ϕ = Ψn−1/2 into (4.40) and taking the imaginary part of the
resulting equation leads to the mass conservation as in the proof of Proposition
4.2. In order to prove the energy conservation, we plug ϕ = Ψ̇n into (4.40) and
take the real part of the resulting equation. Using that (Ψn, λgV [|Ψn−1|2]Ψn)L2 =
(Ψn−1, λgV [|Ψn|2]Ψn−1)L2 due to Assumption 2.3, we get

0 = Re i (Ψ̇n, Ψ̇n)L2 =
1
2τ

(H[Ψn]−H[Ψn−1]) .

�

We next turn to the proof of existence-uniqueness of the incoherent solution.

Theorem 4.11. Let Assumptions 2.2, 3.1, and 3.7 hold, and let the time dis-
cretization scale τ be sufficiently small. Then, there exists a unique incoherent fully
discrete solution of the Hartree initial-boundary value problem (1.1) in the sense of
Definition 4.9.

Proof. The proof for the incoherent solution is analogous to the proof of the coherent
solution. Let φ ∈ Sh be given, and define the mapping Gφ : Sh → Sh by

(ϕ,Gφ[ψ])L2 := (ϕ, φ)L2 −
i τ
2

(
(∇ϕ,∇ψ)L2 + (ϕ, vψ)L2

+ (ϕ, 1
2λgV [|2ψ − φ|2 + |φ|2]ψ)

L2

)
, ∀ϕ ∈ Sh.

(4.42)



EJDE-2009/12 FULLY DISCRETE GALERKIN SCHEMES 19

For some n ∈ N , let the n-th component Ψn−1 of Ψ ∈ S×(N+1)
h from (4.2) be given.

Adding 2 i(ϕ,Ψn−1)/τ on both sides of (4.40), we rewrite (4.40) with the help of
(4.42) in the form of a fixed point equation for Ψn−1/2,

Ψn−1/2 = GΨn−1 [Ψn−1/2].

To use the Banach’s fixed point theorem as in the proof of Theorem 4.4, we show
that GΨn−1 maps the compact Ball Bn−1 := {ψ ∈ Sh | ‖ψ‖L2 ≤ M[Ψn−1]1/2 + 1}
into itself and that GΨn−1 is a strict contraction on Bn−1. To this end, we write

|(ϕ,GΨn−1 [ψ]−GΨn−1 [ξ])L2 |

≤ τ

2

(
‖∇(ψ − ξ)‖L2‖∇ϕ‖L2 + ‖v‖L∞‖ψ − ξ‖L2‖ϕ‖L2 +

1
2
A‖ϕ‖L2

)
,

(4.43)

where, with the help of (2.10), (2.16), and ||z|2 − |w|2| ≤ |z + w||z − w| for all
z, w ∈ C, the third term A on the right-hand side of (4.43) can be estimated as

A := ‖λgV [|2ψ −Ψn−1|2 + |Ψn−1|2]ψ − λgV [|2ξ −Ψn−1|2 + |Ψn−1|2]ξ‖L2

≤ 8‖λ‖L∞‖V ‖L∞(Rd)

(
‖ψ‖2L2 + ‖ξ‖2L2 + ‖Ψn−1‖2L2

)
‖ψ − ξ‖L2 .

Hence, plugging ϕ = GΨn−1 [ψ]−GΨn−1 [ξ] into (4.43), we get for ψ, ξ ∈ Bn−1 using
Assumption 3.7,

‖GΨn−1 [ψ]−GΨn−1 [ξ]‖L2 ≤
αn−1

2
τ ‖ψ − ξ‖L2 ,

where

αn−1 := C2
Bh
−2 + ‖v‖L∞ + 12‖λ‖L∞‖V ‖L∞(Rd) (M[Ψn−1]1/2 + 1)2

like in the coherent scheme (4.12). Therefore, we arrive at the claim as in the proof
of Proposition 4.4 using the mass conservation from (4.41), i.e., the incoherent
solution exists and is unique if the time discretization scale τ is sufficiently small,
e.g. α0(M[ψ0h]1/2 + 1)τ ≤ 1. �

Finally, we also provide a time quadratic accuracy estimate on the L2-error of
the incoherent solution. Again, the proof is analogous to the corresponding proof
for the coherent solution from Theorem 4.6.

Theorem 4.12. Let Assumptions 2.2, 3.1, 3.5, and 3.9 hold, and let Ψ ∈ S×(N+1)
h

be the incoherent solution from Theorem 4.11. Then, there exists a constant CI > 0
such that

max
n∈N0

‖ψ(tn)−Ψn‖L2 ≤ CI(τ2 + h2).

Proof. As in (4.13) and (4.14), we make use of the decomposition ψn−Ψn = ρn+θn,
and we estimate ρn again by (4.15). In order to estimate ‖θn‖L2 , we define Ln,ϕ
as in (4.16). Then, everything in equation (4.17) remains unchanged up to the last
term which is replaced by the expression −(ϕ, 1

2λgV [|Ψn|2 + |Ψn−1|2]Ψn−1/2)L2 .
Using again (4.18), we can rewrite Ln,ϕ as in equation (4.19), where the terms ω(j)

n

remain unchanged for all j = 1, . . . , 5, whereas the term ω
(6)
n now has the form

ω(6)
n := f [ψn−1/2]− λgV [ 12 (|Ψn|2 + |Ψn−1|2)]Ψn−1/2 = ω

(6)
n,1 + ω

(6)
n,2 + ω

(6)
n,3,
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where we use the same notation as introduced after (4.18) to define

ω
(6)
n,1 := λgV [|ψn−1/2|2](ψn−1/2 − 1

2 (ψn + ψn−1)),

ω
(6)
n,2 :=

1
2
λgV [|ψn−1/2|2 − 1

2 (|ψn|2 + |ψn−1|2)](ψn + ψn−1),

ω
(6)
n,3 :=

1
2
λgV [ 12 (|ψn|2 + |ψn−1|2)](ψn + ψn−1)− λgV [ 12 (|Ψn|2 + |Ψn−1|2)]Ψn−1/2.

For ω(6)
n,1, expanding ψn−1 and ψn around t = tn − τ/2 up to first order in τ/2, we

get , using (2.10) and the mass conservation (2.19),

‖ω(6)
n,1‖L2 ≤

τ

4
‖λ‖L∞‖V ‖L∞(Rd)M[ψ0]

∫ tn

tn−1

dt ‖ψ̈(t)‖L2 . (4.44)

To estimate ω(6)
n,2, we expand ψn−1 and ψn around t = tn − τ/2 up to first order in

τ/2 and get similarly

‖ω(6)
n,2‖L2 ≤ ‖λ‖L∞‖V ‖L∞(Rd)M[ψ0]1/2‖|ψn−1/2|2 − 1

2 (|ψn|2 + |ψn−1|2)‖L1

≤ a(0)(a(1)
n τ + a(2)

n τ2 + a(3)
n τ3),

(4.45)

where we define

a(0) := ‖λ‖L∞‖V ‖L∞(Rd)M[ψ0]1/2,

a(1)
n := M[ψ0]

∫ tn

tn−1

dt ‖ψ̈(t)‖L2

a(2)
n :=

1
2
‖ψ̇n−1/2‖L2

(
‖ψ̇n−1/2‖L2 +

∫ tn

tn−1

dt ‖ψ̈(t)‖L2

)
a(3)
n :=

1
8

∫ tn

tn−1

dt ‖ψ̈(t)‖
2

L2 .

For ω(6)
n,3, using in particular again ||z|2− |w|2| ≤ |z+w||z−w| for all z, w ∈ C and

the decomposition (4.13), we get

‖ω(6)
n,3‖L2 ≤

1
4
‖λgV [|ψn|2 + |ψn−1|2](ψn −Ψn + ψn−1 −Ψn−1)‖L2

+
1
4
‖λgV [|ψn|2 − |Ψn|2 + |ψn−1|2 − |Ψn−1|2](Ψn + Ψn−1)‖L2

≤ ‖λ‖L∞‖V ‖L∞(Rd)(M[ψ0] +M[ψ0h])(‖ρn‖L2 + ‖ρn−1‖L2 + ‖θn‖L2 + ‖θn−1‖L2).
(4.46)

Therefore, plugging the estimates (4.44), (4.45), and (4.46) into (4.20), we again
find the closed inequality (4.29), the coefficients A(1)

n and A
(2)
n having the same

form as in (4.30) and (4.31), respectively. Using estimate (4.44) on ω
(6)
n,1, we see

that the coefficient A(3)
n in the incoherent case contains all the terms from (4.32)

of the coherent case with c1 replaced by a(0), plus an additional term of the form
a(0)(a(1)

n + a
(2)
n τ + a

(3)
n τ2) which is due to the estimate (4.45) of ω(6)

n,2. Plugging the

coefficients A(1)
n , A(2)

n , and A
(3)
n into the iterated bound (4.34) and using estimate

(4.36) on θ0, we again get an estimate of the form (4.37) where the constant c3 has
the same form as in (4.38) whereas the constant c4, compared to (4.39), now looks



EJDE-2009/12 FULLY DISCRETE GALERKIN SCHEMES 21

like

c4 :=
c2
4

(
(a(0) + ‖v‖L∞)

∫ T

0

dt ‖ψ̈(t)‖L2 +
1
2

∫ T

0

dt ‖
...
ψ(t)‖L2 +

∫ T

0

dt ‖∆ψ̈(t)‖L2

)
+ c2a

(0)
(
M[ψ0] + 1

2 T max
t∈[0,T ]

‖ψ̇(t)‖L2

) ∫ T

0

dt ‖ψ̈(t)‖L2

+
c2a

(0)

2
T max
t∈[0,T ]

‖ψ̇(t)‖
2

L2 +
c2a

(0)

8
T 2

∫ T

0

dt ‖ψ̈(t)‖
2

L2 .

(4.47)
Herewith, as in the proof of Theorem 4.6, we arrive at the assertion. �

Remark 4.13. Using estimates as in Remark 4.8, we can again bound the constants
in (4.47) explicitly.
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