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Abstract. We consider a mathematical model which describes the antiplane

shear deformation of a cylinder in frictional contact with a rigid foundation.
The contact is bilateral and is modelled with a total slip rate dependent fric-

tion law. The material is assumed to be electro-viscoelastic and the foundation

is assumed to be electrically conductive. First, we describe the classical for-
mulation for the antiplane problem and we give the corresponding variational

formulation which is given by a system coupling an evolutionary variational

equality for the displacement field and a time-dependent variational equation
for the electric potential field. Then we prove the existence of a unique weak

solution to the model. The proof is based on arguments of variational inequal-

ities and by using the Banach fixed-point Theorem.

1. Introduction

The contact between deformable bodies is a phenomenon frequently found in
industry and in everyday life. The contact of the breaking pads with the wheel, of
the tire with the road and the piston with the skirt are just simples examples. Con-
siderable progress has been achieved recently in modelling, mathematical analysis
and numerical simulations of various contact processes and, as a result, a general
Mathematical Theory of Contact Mechanics (MTCM) is currently maturing. It is
concerned with the mathematical structures which underlie general contact prob-
lems with different constitutive laws (i.e., different materials), varied geometries
and settings, and different contact conditions, see for instance [6, 14, 15] and the
references therein. The reason is that, owing to the inherent complicated nature,
contact phenomena are modelled by difficult nonlinear problems, which explains
the slow progress in their mathematical analysis.

Piezoelectric materials are characterized by the coupling between the mechanical
and electrical properties. This coupling leads to the appearance of electric potential
when mechanical stress is present and, conversely, mechanical stress is generated
when electric potential is presented. The first effect is used in mechanical sensors
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and the reverse effect is used in actuators, in engineering control equipment. Piezo-
electric materials for which the mechanical properties are elastic are called electro-
elastic materials and those for which the mechanical properties are viscoelastic are
called electro-viscoelastic material’s. General models for electro-viscoelastic mate-
rials can be found in [3] In all these references the foundation was assumed to be
electrically insulated. Antiplane problems [1, 4, 5, 13, 6] for piezoelectric materials
were considered in [8, 2, 9, 12, 10, 7, 16]. We rarely actually load piezoelectric
bodies so as to cause them to deform in antiplane shear; however, the governing
equations and boundary conditions for antiplane shear problems involving piezo-
electric materials are beautifully simple and the solution has many of the features
of the more general case and may help us to solve the more complex problem too.

In this paper, as in [12, 10, 7, 16, 17]; there a model for the antiplane contact of
an electro-elastic cylinder was considered under the assumption that the foundation
is electrically conductive; the variational formulation of the model was derived and
the existence of a unique solution to the model was proved by using arguments of
evolutionary variational inequalities. Unlike [2, 11, 12, 6], in the present paper we
consider a quasistatic contact problem between a rigid foundation and a cylinder.
This problem is considered to be antiplane, i.e. the displacements parallel to the
generators of the cylinder and is independent to the axial coordinate. Our interest
is to describe a simple physical process in which both frictional contact, viscosity
and piezoelectric effects are involved, and to show that the resulting model leads
to a well-posed mathematical problem. Taking into account the frictional contact
between a viscous piezoelectric body and an electrically conductive foundation in
the study of an antiplane problem leads to a new and interesting mathematical
model which has the virtue of relative mathematical simplicity without loss of
essential physical relevance.

Our paper is structured as follows. In section 2 we present the model of the
antiplane frictional contact of an electro-viscoelastic cylinder. In section 3 we in-
troduce the notation, list the assumption on problem’s data, derive the variational
formulation of the problem and state our main existence and uniqueness result; i.e.,
Theorem 4.1. The proof of this result is carried out in several steps in Section 4
and is based on the argument of evolutionary variational inequalities and Banach’s
fixed point.

2. The antiplane contact problem

We consider a piezoelectric body B identified with a region in R3 it occupies in a
fixed and undistorted reference configuration. We assume that B is a cylinder with
generators parallel to the x3-axes with a cross-section which is a regular region Ω
in the x1, x2-plane, Ox1x2x3 being a Cartesian coordinate system. The cylinder
is assumed to be sufficiently long so that the end effects in the axial direction are
negligible. Thus, B = Ω×(−∞,+∞). The cylinder is acted upon by body forces of
density f0 and has volume free electric charges of density q0. It is also constrained
mechanically and electrically on the boundary. To describe the boundary condi-
tions, we denote by ∂Ω = Γ the boundary of Ω and we assume a partition of Γ
into three open disjoint parts Γ1, Γ2 and Γ3, on the one hand, and a partition of
Γ1 ∪ Γ2 into two open parts Γa and Γb, on the other hand. We assume that the
one-dimensional measure of Γ1 and Γa, denoted meas Γ1 and meas Γa, are posi-
tive. The cylinder is clamped on Γ1 × (−∞,+∞) and therefore the displacement
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field vanishes there. Surface tractions of density f2 act on Γ2 × (−∞,+∞). We
also assume that the electrical potential vanishes on Γa× (−∞,+∞) and a surface
electrical charge of density qb is prescribed on Γb × (−∞,+∞). The cylinder is in
contact over Γ3 × (−∞,+∞) with a conductive obstacle, the so called foundation.
The contact is frictional and is modelled with Tresca’s law. We are interested in
the deformation of the cylinder on the time interval [0, T ].

Below in this paper the indices i and j denote components of vectors and tensors
and run from 1 to 3, summation over two repeated indices is implied, and the
index that follows a comma represents the partial derivative with respect to the
corresponding spatial variable; also, a dot above represents the time derivative. We
use S3 for the linear space of second order symmetric tensors on R3 or, equivalently,
the space of symmetric matrices of order 3, and “ · ”, ‖ · ‖ will represent the inner
products and the Euclidean norms on R3 and S3; we have:

u · v = uivi, ‖v‖ = (v · v)1/2 for all u = (ui), v = (vi) ∈ R3,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 for all σ = (σij), τ = (τij) ∈ S3.

We assume that
f0 = (0, 0, f0), (2.1)

with f0 = f0(x1, x2, t) : Ω× [0, T ] → R, and

f2 = (0, 0, f2), (2.2)

with f2 = f2(x1, x2, t) : Γ2 × [0, T ] → R. The body forces (2.1)and the surface
tractions (2.2) would be expected to give rise to a deformation of the elastic cylinder
whose displacement, denoted by u, is of the form

u = (0, 0, u), (2.3)

with u = u(x1, x2, t) : Ω × [0, T ] → R. Such kind of deformation, associated to a
displacement field of the form (2.3), is called an antiplane shear. We assume too
that

q0 = q0(x1, x2, t), (2.4)

q2 = q2(x1, x2, t), (2.5)

with q0 : Ω × [0, T ] → R and q2 : Γb × [0, T ] → R. The electric charges (2.4),
(2.5) would be expected to give rise to deformations and to electric charges of
the piezoelectric cylinder corresponding to an electric potential field ϕ which is
independent on x3 and have the form

ϕ = ϕ(x1, x2, t) : Ω× [0, T ] → R. (2.6)

The infinitesimal strain tensor, denoted by ε(u) = (εij(u)), is defined by

εij(u) =
1
2

(ui,j + uj,i), i, j = 1, 2, 3, (2.7)

where the index that follows a comma indicates a partial derivative with respect
to the corresponding component of the spatial variable. Moreover, in the sequel,
the convention of summation upon a repeated index is used. From (2.3) and (2.7)
it follows that, in the case of the antiplane problem, the infinitesimal strain tensor
becomes

ε(u) =

 0 0 1
2u,1

0 0 1
2u,2

1
2u,1

1
2u,2 0

 . (2.8)
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We also denote by E(ϕ) = (Ei(ϕ)) the electric field and by D = (Di) the electric
displacement field where

εij(u) =
1
2

(ui,j + uj,i), (2.9)

Ei(ϕ) = −ϕ,i . (2.10)

Let σ = (σij) denote the stress field. We suppose that the material’s behavior
is modelled by an electro-viscoelastic constitutive law of the form

σ = 2θε(u̇) + ζ tr ε(u̇) I + 2µε(u) + λ tr ε(u) I− E∗E(ϕ), (2.11)

D = Eε(u) + αE(ϕ), (2.12)

where ζ and θ are viscosity coefficients, λ and µ are the Lamé coefficients, tr ε(u) =
εii(u), I is the unit tensor in R3, α is the electric permittivity constant, E represents
the third-order piezoelectric tensor and E∗ is its transpose. We assume that

Eε =

e(ε13 + ε31)
e(ε23 + ε32)

eε33

 ∀ε = (εij) ∈ S3, (2.13)

where e is a piezoelectric coefficient. We also assume that the coefficients θ, µ, α
and e depend on the spatial variables x1, x2, but are independent on the spatial
variable x3. Since Eε ·v = ε · E∗v for all ε ∈ S3, v ∈ R3, it follows from (2.12) that

E∗v =

 0 0 ev1
0 0 ev2
ev1 ev2 ev3

 ∀v = (vi) ∈ R3. (2.14)

Here and below the dot above represents the derivative with respect to the time
variable. The stress field is given by the matrix

σ =

 0 0 σ13

0 0 σ23

σ31 σ32 0

 . (2.15)

In the antiplane context (2.3), (2.6), using the constitutive equations (2.11), (2.12)
and equalities (2.13), (2.14) it follows that the stress field and the electric displace-
ment field are given by

σ =

 0 0 θu̇,1 +µu,1 +eϕ,1
0 0 θu̇,2 +µu,2 +eϕ,2

θu̇,1 +µu,1 +eϕ,1 θu̇,2 µu,2 +eϕ,2 0

 , (2.16)

D =

eu,1−αϕ,1eu,2−αϕ,2
0

 . (2.17)

We assume that the process is mechanically quasistatic and electrically static
and therefore is governed by the equilibrium equations

Div σ + f0 = 0, (2.18)

Di,i − q0 = 0 in B × (0, T ), (2.19)

where Div σ = (σij,j) represents the divergence of the tensor field σ. Thus, keeping
in mind (2.16), (2.17), (2.3), (2.6), (2.1) and (2.4), the equilibrium equations above
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reduce to the following scalar equations

div(θ∇u̇+ µ∇u) + div(e∇ϕ) + f0 = 0 in Ω× (0, T ), (2.20)

div(e∇u− α∇ϕ) = q0 in Ω× (0, T ). (2.21)

Here and below we use the notation

div τ = τ1,1 + τ1,2 for τ = (τ1(x1, x2, t), τ2(x1, x2, t)),

∇v = (v,1, v,2), ∂νv = v,1 ν1 + v,2 ν2 for v = v(x1, x2, t).

Recall that, since the cylinder is clamped on Γ1 × (−∞,+∞), the displacement
field vanishes there. Thus (2.3) implies

u = 0 on Γ1 × (0, T ), (2.22)

the electrical potential vanishes too on Γa × (−∞,+∞); thus (2.6) imply that

ϕ = 0 on Γa × (0, T ). (2.23)

Let ν denote the unit normal on Γ× (−∞,+∞). We have

ν = (ν1, ν2, 0), (2.24)

with νi = νi(x1, x2) : Γ → R, i = 1, 2. For a vector v we denote by vν and vτ its
normal and tangential components on the boundary, given by

vν = v · ν, vτ = v − vνν, (2.25)

respectively. In (2.25) and everywhere in this paper “·” represents the inner product
on the space R3 (d = 2, 3). Moreover, for a given stress field σ we denote by σν and
στ the normal and the tangential components on the boundary, respectively; i.e.,

σν = (σν) · ν, στ = σν − σνν. (2.26)

From (2.24), (2.16) and (2.17) we deduce that the Cauchy stress vector and the
normal component of the electric displacement field are given by

σν = (0, 0, θ∂ν u̇+ µ∂νu+ e∂νϕ), D · ν = e∂νu− α∂νϕ. (2.27)

Here and subsequently we use the notations ∂νu = u,1ν1 +u,2ν2 and ∂νϕ = ϕ,1ν1 +
ϕ,2ν2. Keeping in mind the traction boundary condition σν = f2 on Γ2× (−∞,∞)
and the electric conditions D · ν = q2 on Γb × (−∞,∞), it follows from (2.2), (2.5)
and (2.27) that

θ∂ν u̇+ µ∂νu+ e∂νϕ = f2 on Γ2 × (0, T ), (2.28)

e∂νu− α∂νϕ = q2 on Γb × (0, T ). (2.29)

We now describe the frictional contact condition on Γ3×(−∞,+∞). Everywhere
in this paper the notation | · | is used to denote the Euclidean norm on R (d = 1
or 3). First, we remark that from (2.3), (2.24) and (2.25) we obtain uν = 0, which
shows that the contact is bilateral, i.e. there is no loss of contact during the process.
Using again (2.3), (2.24) and (2.25), we find

uτ = (0, 0, u). (2.30)

Similarly, from (2.13), (2.24) and (2.26)

στ = (0, 0, στ ). (2.31)

where
στ = θ∂ν u̇+ µ∂νu+ e∂νϕ. (2.32)
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We assume that the friction is invariant with respect to the x3 axis and for all
t ∈ [0, T ] it is modelled by the following conditions on Γ3:

|στ (t)| ≤ g(
∫ t

0

|u̇τ (s)|ds),

|στ (t)| < g(
∫ t

0

|u̇τ (s)|ds) ⇒ u̇τ (t) = 0,

|στ (t)| = g(
∫ t

0

|u̇τ (s)|ds) ⇒ ∃β ≥ 0 tel que στ = −βu̇τ .

(2.33)

Here g : Γ3 → R+ is a given function, the friction bound, and u̇τ represents the
tangential velocity on the contact boundary. This is a version of Tresca’s friction
law where the friction bound g is assumed to depend on the accumulated slip of
the surface. In (2.33) the strict inequality holds in the stick zone and the equality
in the slip zone.

Using now (2.30)–(2.33) it is straightforward to see that the friction law (2.33)
implies

|θ∂ν u̇+ µ∂νu+ e∂νϕ| ≤ g(
∫ t

0

|u̇τ (s)|ds),

|θ∂ν u̇+ µ∂νu+ e∂νϕ| < g(
∫ t

0

|u̇τ (s)|ds) ⇒ u̇ = 0,

|θ∂ν u̇+ µ∂νu+ e∂νϕ| = g(
∫ t

0

|u̇τ (s)|ds) ⇒ ∃β ≥ 0

such that θ∂ν u̇+ µ∂νu+ e∂νϕ = −βu̇, on Γ3 × (0, T ).

(2.34)

Next, since the foundation is electrically conductive and the contact is bilateral,
we assume that the normal component of the electric displacement field or the free
charge is proportional to the difference between the potential on the foundation
and the body’s surface. Thus,

D · ν = k (ϕ− ϕF ) on Γ3 × (0, T ),

where ϕF represents the electric potential of the foundation and k is the electric
conductivity coefficient. We use (2.27) and the previous equality to obtain

e∂νu− α∂νϕ = k (ϕ− ϕF ) on Γ3 × (0, T ). (2.35)

Finally, we prescribe the initial displacement,

u(0) = u0 in Ω, (2.36)

where u0 is a given function on Ω.
Now, the mathematical model which describes the antiplane shear of an electro-

viscoelastic cylinder in frictional contact with a conductive foundation is completed
and can be stated as follows.

Problem P. Find the displacement field u : Ω × [0, T ] → R and the electric
potential ϕ : Ω× [0, T ] → R such that

div(θ∇u̇+ µ∇u) + div(e∇ϕ) + f0 = 0 in Ω× (0, T ), (2.37)

div(e∇u− α∇ϕ) = q0 in Ω× (0, T ), (2.38)

u = 0 on Γ1 × (0, T ), (2.39)

θ∂ν u̇+ µ∂νu+ e∂νϕ = f2 on Γ2 × (0, T ), (2.40)
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
|θ∂ν u̇+ µ∂νu+ e∂νϕ| ≤ g(

∫ t

0
|u̇τ (s)|ds),

|θ∂ν u̇+ µ∂νu+ e∂νϕ| < g(
∫ t

0
|u̇τ (s)|ds) ⇒ u̇ = 0,

|θ∂ν u̇+ µ∂νu+ e∂νϕ| = g(
∫ t

0
|u̇τ (s)|ds) ⇒ ∃β ≥ 0

such that θ∂ν u̇+ µ∂νu+ e∂νϕ = −βu̇, on Γ3 × (0, T ),

(2.41)

e∂νu− α∂νϕ = q2 on Γb × (0, T ), (2.42)

e∂νu− α∂νϕ = k (ϕ− ϕF ) on Γ3 × (0, T ), (2.43)

u(0) = u0 in Ω. (2.44)

Note that once the displacement field u and the electric potential ϕ which solve
Problem P are known, then the stress tensor σ and the electric displacement field
D can be obtained by using the constitutive laws (2.16) and (2.17), respectively.

3. Variational formulation and main result

In this section we derive the variational formulation of Problem P and state our
main existence and uniqueness result, Theorem 4.1. To this end, we introduce the
subspaces of H1(Ω) defined by

V = {v ∈ H1(Ω) : v = 0 on Γ1}, W = {ψ ∈ H1(Ω) : ψ = 0 on Γa}.

Since meas Γ1 > 0 and meas Γa > 0, it is well known that V and W are real Hilbert
spaces with the inner products

(u, v)V =
∫

Ω

∇u · ∇v dx ∀u, v ∈ V, (ϕ,ψ)W =
∫

Ω

∇ϕ · ∇ψ dx ∀ϕ, ψ ∈W.

Moreover, the associated norms

‖v‖V = ‖∇v‖L2(Ω)2 ∀v ∈ V, ‖ψ‖W = ‖∇ψ‖L2(Ω)2 ∀ψ ∈W (3.1)

are equivalent on V and W , respectively, with the usual norm ‖ · ‖H1(Ω). By
Sobolev’s trace Theorem we deduce that there exist two positive constants cV > 0
and cW > 0 such that

‖v‖L2(Γ3) ≤ cV ‖v‖V ∀v ∈ V, ‖ψ‖L2(Γ3) ≤ cW ‖ψ‖W ∀ψ ∈W. (3.2)

For a real Banach space (X, ‖ · ‖X) we use the usual notation for the spaces
Lp(0, T ;X) and W k,p(0, T ;X) where 1 ≤ p ≤ ∞, k = 1, 2, . . . ; we also denote by
C([0, T ];X) and C1([0, T ];X) the spaces of continuous and continuously differen-
tiable functions on [0, T ] with values in X, with the respective norms

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X ,

‖x‖C1([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X + max
t∈[0,T ]

‖ẋ(t)‖X .

Here and subsequently, we still write w for the trace γw of a function w on Γ, for
all w ∈ V .

In the study of the Problem P, we assume that the viscosity coefficient and the
electric permittivity coefficient satisfy

θ ∈ L∞(Ω) and there exists θ∗ > 0 such that θ(x) ≥ θ∗ a.e. x ∈ Ω, (3.3)

α ∈ L∞(Ω) and there exists α∗ > 0 such that α(x) ≥ α∗ a.e. x ∈ Ω. (3.4)
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We also assume that the Lamé coefficient and the piezoelectric coefficient satisfy

µ ∈ L∞(Ω) and µ(x) > 0 a.e. x ∈ Ω, (3.5)

e ∈ L∞(Ω). (3.6)

The forces, tractions, volume and surface free charge densities have the regularity

f0 ∈W 1,2(0, T ;L2(Ω)), f2 ∈W 1,2(0, T ;L2(Γ2)), (3.7)

q0 ∈W 1,2(0, T ;L2(Ω)), q2 ∈W 1,2(0, T ;L2(Γb)). (3.8)

The electric conductivity coefficient satisfy

k ∈ L∞(Γ3) and k(x) ≥ 0 a.e. x ∈ Γ3. (3.9)

Finally, we assume that the electric potential of the foundation and the initial
displacement are such that

ϕF ∈W 1,2(0, T ;L2(Γ3)), (3.10)

We suppose that the friction bound function g satisfies the following properties:

(a) g : Γ3 × R → R+;

(b) ∃Lg ≥ 0 such that |g(x, r1)− g(x, r2)| ≤ Lg|r1 − r2|,
∀ r1, r2 ∈ R a.e. x ∈ Γ3;

(c) ∀r ∈ R, g(., r) is Lebesgue measurable on Γ3;

(d) g(., r) ∈ L2(Γ3).

(3.11)

The initial data are chosen such that

u0 ∈ V. (3.12)

For every t ∈ [0, T ] we need to consider the operator St defined by

St : L∞(0, T ;V ) → L2(Γ),

St(v) =
∫ t

0

|v(s)| ds a.e. on Γ.
(3.13)

From (3.2) and (3.13) it follows that the for all v1, v2 ∈ L∞(0, T ;V ) the following
inequality holds:

‖St(v1)− St(v2)‖L2(Γ) ≤ C

∫ t

0

‖v1(s)− v2(s)‖V ds. (3.14)

Here and bellow C represents a positive constant whose value may change from line
to line.

We define now the functional j : L2(Γ)× V → R+ given by

j(ξ, v) =
∫

Γ3

g(ξ)|v| da ∀ξ ∈ L2(Γ), ∀v ∈ V. (3.15)

Using conditions (3.11), we deduce that the integral in (3.15) is well defined.
We also define the mappings f : [0, T ] → V and q : [0, T ] →W respectively, by

(f(t), v)V =
∫

Ω

f0(t)v dx+
∫

Γ2

f2(t)v da, (3.16)

(q(t), ψ)W =
∫

Ω

q0(t)ψ dx−
∫

Γb

q2(t)ψ da+
∫

Γ3

k ϕF (t)ψ da, (3.17)
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for all v ∈ V , ψ ∈W and t ∈ [0, T ]. The definition of f and q are based on Riesz’s
representation theorem; moreover, it follows from assumptions by 3.7 and 3.8, that
the integrals above are well-defined and

f ∈W 1,2(0, T ;V ), q ∈W 1,2(0, T ;W ). (3.18)

We define now the bilinear forms :

aθ : V × V → R, aθ(u, v) =
∫

Ω

θ∇u · ∇v dx, (3.19)

aµ : V × V → R, aµ(u, v) =
∫

Ω

µ∇u · ∇v dx, (3.20)

ae : V ×W → R, ae(u, ϕ) =
∫

Ω

e∇u · ∇ϕdx = a∗e(ϕ, u), (3.21)

aα : W ×W → R, aα(ϕ,ψ) =
∫

Ω

α∇ϕ · ∇ψ dx+
∫

Γ3

k ϕψ dx, (3.22)

for all u, v ∈ V and ϕ,ψ ∈ W . Using the conditions in (3.15)– (3.18), we deduce
that the integrals (3.19)– (3.22) are well defined. From (3.1)–(3.2), we can deduce
that the bilinear forms aθ(·, ·), aµ(·, ·), ae(·, ·), a∗e(·, ·) and aα(·, ·) are continuous;
moreover, the forms aθ(·, ·), aµ(·, ·) and aα(·, ·) are symmetric and in addition, the
form aθ(·, ·) is V -elliptic and aα(·, ·) is W -elliptic, since

aθ(v, v) ≥ θ∗‖v‖2V ∀v ∈ V, (3.23)

aα(ψ,ψ) ≥ α∗‖ψ‖2W ∀ψ ∈W. (3.24)

The variational formulation of Problem P is based of the following result.

Lemma 3.1. If (u, ϕ) is a smooth solution to Problem P, then (u(t), ϕ(t)) ∈ V ×W
and we have:

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + a∗e(ϕ(t), v − u̇(t))

+ j(St(u̇), v)− j(St(u̇), u̇(t))

≥ (f(t), v − u̇(t))V ∀v ∈ V, t ∈ [0, T ],
(3.25)

aα(ϕ(t), ψ)− ae(u(t), ψ) = (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ], (3.26)

u(0) = u0. (3.27)

Proof. Let (u, ϕ) denote a smooth solution to Problem P, we have u(t) ∈ V , u̇(t) ∈
V and ϕ(t) ∈W a.e. t ∈ [0, T ] and, from (2.37), (2.39) and (2.40), we obtain∫

Ω

θ∇u̇(t) · ∇(v − u̇(t)) dx+
∫

Ω

µ∇u(t) · ∇(v − u̇(t)) dx

+
∫

Ω

e∇ϕ(t) · ∇(v − u̇(t)) dx

=
∫

Ω

f0(t) (v − u̇(t)) dx+
∫

Γ2

f2(t) (v − u̇(t)) da

+
∫

Γ3

(θ∂ν u̇(t) + µ∂νu(t) + e∂νϕ(t))(v − u̇(t)) da, ∀v ∈ V t ∈ (0, T ),
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and from (2.38) and (2.42)–(2.43) we obtain∫
Ω

α∇ϕ(t) · ∇ψ dx−
∫

Ω

e∇u(t) · ∇ψ dx

=
∫

Ω

q0(t)ψ dx−
∫

Γb

q2(t)ψ da+
∫

Γ3

k ϕF (t)ψ da ∀ψ ∈W t ∈ (0, T ).
(3.28)

Using (3.16) and (3.19)–(3.21) we obtain

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + a∗e(ϕ(t), v − u̇(t))

−
∫

Γ3

(θ∂ν u̇(t) + µ∂νu(t) + e∂νϕ(t))(v − u̇(t)) da

= (f(t), v − u̇(t))V , ∀v ∈ V, t ∈ [0, T ],

(3.29)

Keeping in mind (3.17) and (3.21)–(3.22), we find the second equality in Lemma
(3.1); i.e.,

aα(ϕ(t), ψ)− ae(u(t), ψ) = (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ], (3.30)

Using the frictional contact condition (2.41) and (3.15) on Γ3 × (0, T ), we deduce
that for all t ∈ [0, T ]

j(St(u̇), u̇(t)) = −
∫

Γ3

(θ∂ν u̇(t) + µ∂νu(t) + e∂νϕ(t))u̇(t) da, (3.31)

it is very easy to see that

j(St(u̇), v) ≥ −
∫

Γ3

(θ∂ν u̇(t) + µ∂νu(t) + e∂νϕ(t))v da, ∀v ∈ V. (3.32)

The first inequality in Lemma (3.1) follows now from (3.29) and (3.31)–(3.32).
Now, from Lemma (3.1) and the initial condition (3.27) lead to give the following
variational Problem:

Problem PV. Find a displacement field u : [0, T ] → V and an electric potential
field ϕ : [0, T ] →W such that

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + a∗e(ϕ(t), v − u̇(t))

+ j(St(u̇), v)− j(St(u̇), u̇(t))

≥ (f(t), v − u̇(t))V , ∀v ∈ V, t ∈ [0, T ],
(3.33)

aα(ϕ(t), ψ)− ae(u(t), ψ) = (q(t), ψ)W , ∀ψ ∈W, t ∈ [0, T ], (3.34)

u(0) = u0. (3.35)

�

4. An existence and uniqueness result

Our main existence and uniqueness result, which we state and prove in this
section, is the following.

Theorem 4.1. Assume that (3.3)–(3.12) hold. Then the variational problem PV
possesses a unique solution (u, ϕ) satisfies

u ∈W 1,2(0, T ;V ), ϕ ∈W 1,2(0, T ;W ). (4.1)
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A couple of functions (u, ϕ) which solves Problem PV is called a weak solution of
the antiplane contact Problem P. We conclude by Theorem (4.1) that the antiplane
contact Problem P has a unique weak solution, provided that (3.3)–(3.12) hold.

We turn to the proof of Theorem (4.1) which will be carried out in several steps.
To this end, in the rest of this section we assume that (3.3)–(3.12) hold and let
η and ξ be two elements of W 1,2(0, T ;V ). We consider the following variational
Problem:

Problem PV1
ηξ. Find vηξ : [0, T ] → V such that

aθ(vηξ(t), v − vηξ(t)) + (η(t), v − vηξ(t))V + j(St(ξ), v)− j(St(ξ), vηξ(t))

≥ (f(t), v − vηξ(t))V , ∀v ∈ V, a.e. t ∈ [0, T ],
(4.2)

The unique solvability of the intermediate Problem PV1
ηξ follows from the fol-

lowing result:

Lemma 4.2. There exists a unique solution vηξ to Problem PV1
ηξ. Moreover,

vηξ ∈W 1,2(0, T ;V ). (4.3)

Proof. It follows from classical results for variational inequalities that there exists
a unique solution vηξ ∈ V that solves (4.2) a.e. t ∈ (0, T ).

Taking v = 0V in (4.2), we deduce that

aθ(vηξ(t),−vηξ(t)) + (η(t),−vηξ(t))V ≥ (f(t),−vηξ(t))V , a.e. t ∈ [0, T ].

From (3.23), we can deduce that

θ‖vηξ(t)‖V ≤ ‖f(t)‖V + ‖η(t)‖V , a.e. t ∈ [0, T ], (4.4)

Taking in mind (4.4), (3.18) and the regularity η ∈W 1,2(0, T ;V ), we obtain vηξ ∈
W 1,2(0, T ;V ), which conclude the proof. �

In the next step, we use the displacement field vηξ obtained in Lemma (4.2) to
define the following variational Problem PV2

ηξ for the electrical potential field:

Problem PV2
ηξ. Find an electrical potential field ϕηξ : [0, T ] → V such that

aα(ϕηξ(t), ψ) + ae(uηξ(t), ψ) = (q(t), ψ)W , ∀ψ ∈W, t ∈ [0, T ], (4.5)

The unique solvability of the electrical Problem PV2
ηξ follows from the following

result:

Lemma 4.3. There exists a unique solution ϕηξ to Problem PV2
ηξ such that

ϕηξ ∈W 1,2(0, T ;W ), (4.6)

which satisfies (4.5), Moreover, if ϕηξ1
and ϕηξ2

are the solutions of (4.5) corre-
sponding to ηξ1, ηξ2 ∈ C([0, T ];V ) then, there exists c > 0, such that

‖ϕηξ1
(t)− ϕηξ2

(t)‖W ≤ c‖uηξ1
(t)− uηξ2

(t)‖V . (4.7)

Proof. Let t ∈ [0, T ]. We use the properties of the bilinear form aα and the Lax-
Milgram Lemma to see that there exists a unique element ϕηξ(t) ∈W which solves
PV2

ηξ at any moment t ∈ [0, T ]. Consider now t1, t2 ∈ [0, T ]; using (3.24) and (4.5)
we find that

α∗‖ϕ(t1)− ϕ(t2)‖2W ≤ ‖e‖L∞(Ω)‖u(t1)− u(t2)‖V ‖ϕ(t1)− ϕ(t2)‖W

+ ‖q(t1)− q(t2)‖W ‖ϕ(t1)− ϕ(t2)‖W

(4.8)
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which implies

‖ϕ(t1)− ϕ(t2)‖W ≤ c (‖u(t1)− u(t2)‖V + ‖q(t1)− q(t2)‖W ). (4.9)

We note that regularity uηξ ∈ C1([0, T ];V ) combined with (3.18) and (4.9) imply
that ϕηξ ∈W 1,2(0, T ;W ), which concludes the proof. �

We consider now the operator Λη : C([0, T ];V ) → C([0, T ];V ) defined for all
η ∈ L∞(0, T ;V ) by the equality

(Ληξ(t), w)V = aµ(vηξ(t), w) + a∗e(ϕηξ(t), w) ∀w ∈ V, t ∈ [0, T ]. (4.10)

We have the following result.

Lemma 4.4. For every element η ∈ L∞(0, T ;V ) the operator Λη has a unique
fixed point ξη ∈ L∞(0, T ;V ).

Proof. Let η ∈ L∞(0, T ;V ) and ξi ∈ L∞(0, T ;V ), i = 1, 2. To simplify the notation,
we denote by vi the unique solution to Problem PV1

ηξi
, for i = 1, 2. Thus, from

(4.2) we can write

aθ(vi(t), v − vi(t)) + (η(t), v − vi(t))V + j(St(ξi), v)− j(St(ξi), vi(t))

≥ (f(t), v − vi(t))V , ∀v ∈ V, a.e. t ∈ [0, T ].
(4.11)

After some algebra and from (4.11), we find

θ‖v1(t)− v2(t)‖2V ≤ j(St(ξ1), v2(t))− j(St(ξ2), v2(t))

+ j(St(ξ2), v1(t))− j(St(ξ1), v1(t)), a.e. t ∈ [0, T ].
(4.12)

Using now (3.2), (3.11), (3.14) and (3.15), it follows that

j(St(ξ1), v2(t))− j(St(ξ2), v2(t)) + j(St(ξ2), v1(t))− j(St(ξ1), v1(t))

≤ C × ‖v1(t)− v2(t)‖V

∫ t

0

‖ξ1(s)− ξ2(s)‖V ds a.e. t ∈ [0, T ].
(4.13)

Using (4.12), (4.13) we deduce that

‖v1(t)− v2(t)‖V ≤ C

∫ t

0

‖ξ1(s)− ξ2(s)‖V ds, a.e. t ∈ [0, T ]. (4.14)

Let η1, η2 ∈ C([0, T ];V ) and denote by ui and ϕi the functions uηξi and ϕηξi

obtained in Lemmas 4.2 and 4.3, for i = 1, 2. Let t ∈ [0, T ]. Using the definition
(4.10) of the operator Λη we obtain

(Ληξ1(t), w)V = aµ(v1(t), w) + a∗e(ϕ1(t), w) ∀w ∈ V, t ∈ [0, T ], (4.15)

and

(Ληξ2(t), w)V = aµ(v2(t), w) + a∗e(ϕ2(t), w) ∀w ∈ V, t ∈ [0, T ]. (4.16)

From (3.21), (4.5), (4.15) and (4.16) we deduce

‖Ληξ1(t)− Ληξ2(t)‖V ≤ C (
∫ t

0

‖v1(s)− v2(s)‖V ds+ ‖ϕ1(t)− ϕ2(t)‖W ),

and, keeping in mind (4.7) and (4.14), we find

‖Ληξ1(t)− Ληξ2(t)‖V ≤ C ′
∫ t

0

‖ξ1(s)− ξ2(s)‖V ds, a.e. t ∈ [0, T ]. (4.17)
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We define now the set ‖ · ‖κ as follows

‖v‖κ = Inf
{
M > 0 e−κt‖v‖V ≤M a.e. t ∈ (0, T )

}
, ∀v ∈ L∞(0, T ;V ),

(4.18)
such that κ > 0 to be determined later. The norm ‖·‖κ is equivalent to the standard
norm ‖ · ‖L∞(0,T ;V ). Using now (4.18) and the definition of the norm ‖ · ‖κ, we can
obtain :

e−κt‖Ληξ1(t)− Ληξ2(t)‖V ≤ C ′ e−κt

∫ t

0

eκse−κs‖ξ1(s)− ξ2(s)‖V ds, (4.19)

then

e−κt‖Ληξ1(t)− Ληξ2(t)‖V ≤ C ′ e−κt‖ξ1 − ξ2‖κ

∫ t

0

eκs ds, (4.20)

we deduce

e−κt‖Ληξ1(t)− Ληξ2(t)‖V ≤ C ′

κ
e−κt‖ξ1 − ξ2‖κ, a.e. t ∈ [0, T ]. (4.21)

Consequently, we deduce that

‖Ληξ1(t)− Ληξ2(t)‖κ ≤
C ′

κ
‖ξ1 − ξ2‖κ. (4.22)

Taking κ such that κ > C ′, we conclude that the operator Λη is a contraction on
the space (L∞(0, T ;V ), ‖ · ‖κ). From Banach fixed point Theorem, we deduce that
the operator Λη has a unique fixed-point ξη ∈ L∞(0, T ;V ). �

In what follows, we continue to write

vη = vηξη, ∀η ∈ L∞(0, T ;V ), (4.23)

where ξη is the unique fixed point of the operator Λη, then from (4.10) and (4.23)
we obtain

vη = ξη. (4.24)
Let uη : [0, T ] → V be the function defined by

uη =
∫ t

0

vη(s) ds+ u0 ∀t ∈ [0, T ]. (4.25)

We also define the operator Λ : L∞(0, T ;V ) → L∞(0, T ;V ) by

(Λη(t), w)V = aµ(uη(t), w) + a∗e(ϕη(t), w) ∀w ∈ V, t ∈ [0, T ]. (4.26)

We have the following result.

Lemma 4.5. The operator Λ has a unique fixed point η∗ ∈ L∞(0, T ;V ).

Proof. Using (4.24) and the fact that vη is the unique solution of Problem PV1
ηξ,

we can obtain
aθ(vη(t), v − vη(t)) + j(St(vη), v)− j(St(vη), vη(t))

≥ (f(t), v − vη(t))V − (η(t), v − vη(t))V , ∀v ∈ V, a.e. t ∈ [0, T ].
(4.27)

Let η1, η2 ∈ L∞(0, T ;V ) and denote by ui and ϕi the functions uηi
and ϕηi

obtained
in Lemmas 4.2 and 4.3, for i = 1, 2. Let t ∈ [0, T ]. Using (4.27) we obtain

‖v1(s)− v2(s)‖V

≤ C (‖η1(s)− η2(s)‖V +
∫ t

0

‖v1(r)− v2(r)‖V dr), a.e. s ∈ [0, T ].
(4.28)
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We integrate the (4.28) on the [0, T ] with a fixed t and using a Gronwall-type
argument, we obtain∫ t

0

‖v1(s)− v2(s)‖V ds ≤ C

∫ t

0

‖η1(s)− η2(s)‖V ds, ∀t ∈ [0, T ]. (4.29)

Using the definition (4.27) for η1 and η2 we obtain

(Λη1(t), w)V = aµ(u1(t), w) + a∗e(ϕ1(t), w) ∀w ∈ V, t ∈ [0, T ], (4.30)

(Λη2(t), w)V = aµ(u2(t), w) + a∗e(ϕ2(t), w) ∀w ∈ V, t ∈ [0, T ]. (4.31)

From (4.30)–(4.31) we can write

‖Λη1(t)− Λη2(t)‖V ≤ C(‖u1(t)− u2(t)‖V + ‖ϕ1(t)− ϕ2(t)‖W ). (4.32)

On the other hand, (4.5) and arguments similar as those used in the proof of (4.10)
yield

‖ϕ1(t)− ϕ2(t)‖W ≤ c‖u1(t)− u2(t)‖V . (4.33)
Using (4.25), (4.26), (4.32) and (4.33) we obtain

‖Λη1(t)− Λη2(t)‖V ≤ C

∫ t

0

‖η1(s)− η2(s)‖V ds, ∀t ∈ [0, T ]. (4.34)

Keeping in mind the defintion of ‖·‖κ, Lemma 4.5 follows from the previous inequal-
ity, after using a fixed-point argument similar to that presented Lemma 4.4. �

Now we have all the ingredients to prove Theorem 4.1.

Existence. Let η∗ ∈ L∞(0, T ;V ) be the unique fixed point of the operator Λ and
let u and ϕ be the solutions of Problems PV1

ηξ and PV2
ηξ respectively with η = η∗,

i.e. u = uη∗ and ϕ = ϕη∗ . Clearly, equalities (3.33)–(3.35) hold from PV1
ηξ and

PV2
ηξ. Let uη∗ ∈ W 1,2(0, T ;V ) be the function defined by the relation (4.25) for

η = η∗. We have u̇η∗ = vη∗ and from (4.27), it follows that

aθ(u̇η∗(t), v − u̇η∗(t)) + j(St(u̇η∗), v)− j(St(u̇η∗), u̇η∗(t))

≥ (f(t), v − u̇η∗(t))V − (η∗(t), v − u̇η∗(t))V , ∀v ∈ V, a.e. t ∈ [0, T ].
(4.35)

The inequality (3.33) follows now from (4.35) and (4.26), using the fact that η∗ is
the fixed point of the operator Λ. From the definition (4.25) implies uη∗(0) = u0

so that (3.35) is fulfilled. We conclude now that uη∗ is a solution to Problem PV.
The regularity of the solution expressed in (4.1) follows from Lemmas 4.2 and 4.3.
We conclude that (u, ϕ) is a solution of Problem PV and it satisfies (4.1).

Uniqueness. The uniqueness of the solution follows from the uniqueness of the
fixed point of Λ combined with the unique solvability of previous Problems, guar-
anteed by Lemmas 4.2–4.4.
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