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UPPER AND LOWER SOLUTIONS FOR A SECOND-ORDER
THREE-POINT SINGULAR BOUNDARY-VALUE PROBLEM

QIUMEI ZHANG, DAQING JIANG, SHIYOU WENG, HAIYIN GAO

Abstract. We study the singular boundary-value problem

u′′ + q(t)g(t, u) = 0, t ∈ (0, 1), η ∈ (0, 1), γ > 0

u(0) = 0, u(1) = γu(η) .

The singularity may appear at t = 0 and the function g may be superlinear

at infinity and may change sign. The existence of solutions is obtained via an

upper and lower solutions method.

1. Introduction

Motivated by the study of multi-point boundary-value problems for linear sec-
ond order ordinary differential equations, Gupta [7] studied certain three point
boundary-value problems for nonlinear ordinary differential equations. Since then,
more general nonlinear multi-point boundary-value problems have been studied by
several authors using the Leray-Schauder theorem, nonlinear alternative of Leray-
Schauder or coincidence degree theory. We refer the reader to [3, 4, 5, 9, 12, 13, 14,
15] for some existence results of nonlinear multi-point boundary-value problems.
Recently, Ma [14] proved the existence of positive solutions for the three point
boundary-value problem

u′′ + b(t)g(u) = 0, t ∈ (0, 1)

u(0) = 0, u(1) = αu(η),

where η ∈ (0, 1), 0 < α < 1/η, b ≥ 0 and g ≥ 0 is either superlinear or sublinear.
He applied a fixed point theorem in cones.

In this paper, we study the singular three-point boundary-value problem

u′′ + q(t)g(t, u) = 0, t ∈ (0, 1), η ∈ (0, 1), γ > 0

u(0) = 0, u(1) = γu(η).
(1.1)

The singularity may appear at t = 0, and the function g may be superlinear at
u = ∞ and may change sign.
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Some basic results on the singular two point boundary-value problems were ob-
tain in [1, 11, 17], in all these papers the arguments rely on the assumption that
g(t, u) is positive. This implies that the solutions are concave. Recently, some
authors have studied the case when g is allowed to change sign by applying the
modified upper and lower solutions method; see for example [11].

The present work is a direct extension of some results on the singular two-point
boundary-value problems. As in [11], our technique relies essentially on a modified
method of upper and lower solutions method for singular three-point boundary-
value problems which we believe is well adapted to this type of problems.

2. Upper and lower solutions

Consider the three-point boundary-value problem

u′′ + f(t, u) = 0, t ∈ (0, 1), η ∈ (0, 1), γ ∈ (0, 1/η)

u(0) = A, u(1)− γu(η) = B.
(2.1)

We use the following assumption:

(A1) f : (0, 1] × R → R is a continuous function, there exist two functions
α, β ∈ C([0, 1], R) and α(t) ≤ β(t), for all t ∈ [0, 1], if there exist a function
h ∈ C( (0, 1], (0,∞)), such that

|f(t, u)| ≤ h(t) for α(t) ≤ u ≤ β(t), (2.2)

lim
t→0+

t2h(t) = 0,

∫ 1

0

th(t)dt < ∞. (2.3)

We call a function α(t) a lower solution for (2.1), if α ∈ C([0, 1], R)∩C2((0, 1), R),
and

α′′ + f(t, α) ≥ 0, for t ∈ (0, 1),

α(0) ≤ A, α(1)− γα(η) ≤ B.

Similarly, we call a function β(t) an upper solution for (2.1), if β ∈ C([0, 1], R) ∩
C2((0, 1), R), and

β′′ + f(t, β) ≤ 0, for t ∈ (0, 1),

β(0) ≥ A, β(1)− γβ(η) ≥ B.

A function u(t) is said to be a solution to (2.1), if it is both a lower and an upper
solution to (2.1).

Our first result reads as follows.

Theorem 2.1. Assume (A1) and let α, β be, respectively, a lower solution and an
upper solution for (2.1) such that α(t) ≤ β(t) on [0, 1]. Then (2.1) has at least one
solution u(t) such that

α(t) ≤ u(t) ≤ β(t), for t ∈ [0, 1].

Consider now the modified boundary-value problem

u′′ + f1(t, u) = 0, for t ∈ (0, 1),

u(0) = A, u(1)− γu(η) = B,
(2.4)
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where

f1(t, u) =


f(t, α(t)), if u < α(t),
f(t, u), if α(t) ≤ u ≤ β(t),
f(t, β(t)), if u > β(t).

Lemma 2.2. Assume that (2.3) holds. Then the boundary-value problem

y′′ = −h(t), 0 < t < 1,

y(0) = A, y(1)− γy(η) = B
(2.5)

has a unique solution y(t) in C([0, 1], [0,∞)) ∩ C2((0, 1), R), which can be written
as

y(t) = A +
B −A(1− γ)

1− γη
t +

∫ 1

0

G(t, s)h(s)ds, 0 ≤ t ≤ 1,

where G(t, s) is Green’s function of the boundary-value problem −y′′ = 0, y(0) = 0,
y(1) = γy(η). The function G is explicitly given by: when 0 ≤ s ≤ η,

G(t, s) =

{
s[1−t−γ(η−t)]

1−γη , s ≤ t,
t[1−s−γ(η−s)]

1−γη , s > t;

when η < s ≤ 1,

G(t, s) =

{
s(1−t)+γη(t−s)

1−γη , s ≤ t,
t(1−s)
1−γη , s > t.

Proof. Uniqueness. The proof of the uniqueness of a solution is standard and hence
omitted. Existence. Let

y(t) := A +
B −A(1− γ)

1− γη
t +

∫ 1

0

G(t, s)h(s)ds, 0 ≤ t ≤ 1;

i.e.,

y(t) =


A + B−A(1−γ)

1−γη t +
∫ t

0
s[1−t−γ(η−t)]

1−γη h(s)ds

+
∫ η

t
t[1−s−γ(η−s)]

1−γη h(s)ds +
∫ 1

η
t(1−s)
1−γη h(s)ds, 0 ≤ t ≤ η,

A + B−A(1−γ)
1−γη t +

∫ η

0
s[1−t−γ(η−t)]

1−γη h(s)ds

+
∫ t

η
s(1−t)+γη(t−s)

1−γη h(s)ds +
∫ 1

t
t(1−s)
1−γη h(s)ds, η < t ≤ 1.

Then we have

y′(t) =



B−A(1−γ)
1−γη +

∫ t

0
s(γ−1)
1−γη h(s)ds

+
∫ η

t
1−s−γ(η−s)

1−γη h(s)ds

+
∫ 1

η
1−s
1−γη h(s)ds, 0 < t ≤ η,

B−A(1−γ)
1−γη +

∫ η

0
s(γ−1)
1−γη h(s)ds

+
∫ t

η
γη−s
1−γη h(s)ds +

∫ 1

t
1−s
1−γη h(s)ds, η < t ≤ 1.

and y′′(t) = −h(t) for all t ∈ (0, 1). Since
∫ 1

0
th(t)dt < ∞, limt→0+

∫ t

0
sh(s)ds = 0;

so we have

y(0) = A + lim
t→0+

t

∫ η

t

1− s− γ(η − s)
1− γη

h(s)ds.
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If
∫ 1

0
1−s−γ(η−s)

1−γη h(s)ds < ∞, then y(0) = A. If
∫ 1

0
1−s−γ(η−s)

1−γη h(s)ds = ∞, then by
(2.3) we obtain

y(0) = A + lim
t→0+

∫ η

t
1−s−γ(η−s)

1−γη h(s)ds

1/t
= A + lim

t↓0+
t2h(t)

1− γη + t(γ − 1)
1− γη

= A.

We have also

y(1)− γy(η)

=
B −A(1− γ)

1− γη
+

∫ η

0

sγ(1− η)
1− γη

h(s)ds +
∫ 1

η

γη(1− s)
1− γη

h(s)ds

− γ(
B −A(1− γ)

1− γη
η +

∫ η

0

s(1− η)
1− γη

h(s)ds +
∫ 1

η

η(1− s)
1− γη

h(s)ds) = B.

This shows that y(t) is a positive solution of (2.5), and y ∈ C([0, 1], [0,∞)) ∩
C2((0, 1), R). �

Let us define an operator Φ : X → X by

(Φu)(t) = A +
B −A(1− γ)

1− γη
t +

∫ 1

0

G(t, s)f1(s, u(s))ds, (2.6)

where X = {u ∈ C([0, 1], R) with the norm ‖u‖} is a Banach space, with

‖u‖ := sup{|u(t)| : 0 ≤ t ≤ 1}.
Without loss of generality, we assume that A = B = 0.

To prove the existence of a solution to (2.4), we need the following Lemma.

Lemma 2.3. The function Φ is continuous from X to X and Φ(X) is a compact
subset of X.

Proof. As in the proof of Lemma 2.2, from the definition of f1 and from (2.6), we
have

|(Φu)(t)| ≤
∫ 1

0

G(t, s)|f1(s, u(s))|ds ≤
∫ 1

0

G(t, s)h(s)ds = y(t), t ∈ [0, 1]. (2.7)

So we have Φu ∈ C([0, 1], R) ∩ C2((0, 1), R), and

‖Φu‖ ≤ ‖y‖. (2.8)

This shows that Φ(X) is a bounded subset of X.
Noting the facts that y(0) = 0 and the continuity of y(t) on [0, 1], we have from

(2.7) that for any ε > 0, one can find a δ1 > 0 (independent with u) such that
0 < δ1 < 1/8 and

(Φu)(t) <
ε

2
, t ∈ [0, 2δ1]. (2.9)

On the other hand, from (2.6), since |f1(s, u(s))| ≤ h(s), s ∈ (0, 1), we can obtain

|(Φu)′(t)| ≤ L, t ∈ [δ1, 1].

Let δ2 = ε
2L , then for t1, t2 ∈ [δ1, 1], |t2 − t1| < δ2, we have

|(Φu)(t1)− (Φu)(t2)| ≤ L|t1 − t2| <
ε

2
. (2.10)

Define δ = min{δ1, δ2}, then using (2.9), (2.10), we obtain

|(Φu)(t1)− (Φu)(t2)| < ε, (2.11)
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for t1, t2 ∈ [0, 1], |t1− t2| < δ. This shows that {(Φu)(t) : u ∈ X} is equicontinuous
on [0, 1].

We can obtain the continuity of Φ in a similar way as above. In fact, if un, u ∈ X
and ‖un − u‖ → 0 as n →∞, then we have

|(Φun)(t)− (Φu)(t)| ≤ 2
∫ 1

0

G(t, s)h(s)ds = 2y(t), t ∈ [0, 1], (2.12)

Noting the facts that y(0) = 0 and the continuity of y(t) on [0, 1], then for any
ε > 0, one can find a δ1 > 0 (independent of un) such that 0 < δ1 < 1/8 and

|(Φun)(t)− (Φu)(t)| < ε, t ∈ [0, δ1]. (2.13)

On the other hand, from the continuity of f1, one has

|(Φun)(t)− (Φu)(t)| → 0, t ∈ [δ1, 1], (2.14)

as n → ∞. This together with (2.13) implies that ‖Φun − Φu‖ → 0 as n → ∞.
Therefore, Φ : X → X is completely continuous. The proof is complete. �

Lemma 2.4. Let u(t) be a solution to (2.4). Then α(t) ≤ u(t) ≤ β(t) for all
t ∈ [0, 1]; i.e., u(t) is a solution to (2.1).

Proof. We first prove that u(t) ≤ β(t) on [0, 1]. Let x(t) := u(t) − β(t). Assume
that u(t) > β(t) for some t ∈ [0, 1]. Since u(0) = 0 ≤ β(0), it follows that

x(0) ≤ 0, x(1) = u(1)− β(1) ≤ γu(η)− γβ(η) = γx(η).

Let σ ∈ (0, 1] be such that x(σ) = maxt∈[0,1] x(t). Then x(σ) > 0.
Case(i): σ ∈ (0, 1). So there exists an interval (a, σ] ⊂ (0, 1) such that x(t) > 0

in (a, σ], and
x(a) = 0, x(σ) = max

t∈[0,1]
x(t) > 0, x′(σ) = 0.

For t ∈ (a, σ] we have that f1(t, u(t)) = f(t, β(t)) and therefore

u′′(t) + f1(t, u(t)) = u′′(t) + f(t, β(t)) = 0 for all t ∈ (a, σ].

On the other hand, as β is an upper solution for (2.1), we have

β′′(t) + f(t, β(t)) ≤ 0 for all t ∈ (a, σ].

Thus, we obtain u′′(t) ≥ β′′(t) for all t ∈ (a, σ], and hence, x′′(t) ≥ 0. Then
x′(t) ≤ 0 on (a, 1] which is a contradiction.

Case(ii): σ = 1. So there exists (a, 1] ⊂ (0, 1] such that

x(a) = 0, x(1) = max
t∈[0,1]

x(t), x(1)− γx(η) ≤ 0.

In the same way as in Case(i), we can obtain that x(t) > 0, x′′(t) ≥ 0, t ∈ (a, 1].
Since x(η) ≥ 1

γ x(1) > 0, then η > a. �

Consider the three-point boundary-value problem

x′′ = h(t) > 0, a < t < 1,

x(a) = 0, x(1)− γx(η) = b1 ≤ 0.
(2.15)

Then this equation has a unique solution x(t) ∈ C([a, σ], [0,∞)) ∩ C2((a, 1), R),
which can be represented as

x(t) =
b1(t− a)

1− a− γ(η − a)
−

∫ 1

a

G[a,1](t, s)h(s)ds, a ≤ t ≤ 1,
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where G[a,1](t, s) is the Green’s function of the boundary-value problem −y′′ = 0,
y(a) = 0, y(1) = γy(η), which is explicitly given by: when a ≤ s ≤ η,

G[a,1](t, s) =


(s−a)[1−t−γ(η−t)]

1−a−γ(η−a) , s ≤ t,

(t−a)[1−s−γ(η−s)]
1−a−γ(η−a) , s > t;

when η < s ≤ 1,

G[a,1](t, s) =


(s−a)(1−t)+γ(t−s)(η−a)

1−a−γ(η−a) , s ≤ t,

(t−a)(1−s)
1−a−γ(η−a) ; s > t.

Since 0 < γ < 1
η < 1−a

η−a , then G[a,1](t, s) ≥ 0, and hence x(t) ≤ 0 on [a, 1], which
is a contradiction. In very much the same way, we can prove that u(t) ≥ α(t) on
[0, 1].

3. Main results

Let g : [0, 1] × (0,∞) → R be a continuous function and q ∈ C((0, 1], R+
0 ).

Consider the three-point boundary-value problem

u′′ + q(t)g(t, u) = 0, t ∈ (0, 1), η ∈ (0, 1), γ ∈ (0, 1]

u(0) = 0, u(1) = γu(η).
(3.1)

Theorem 3.1. Assume that
(H1) |g(t, x)| ≤ F (x) + Q(x) on [0, 1]× (0,∞) with F > 0 continuous and non-

increasing on (0,∞), Q ≥ 0 continuous on [0,∞), and Q
F nondecreasing on

(0,∞);
(H2) there exist constants L > 0 and ε > 0 such that g(t, x) > L for all (t, x) ∈

[0, 1]× (0, ε], and F (x) > L, x ∈ (0, ε];
(H3)

lim
t→0+

t2q(t) = 0,

∫ 1

0

tq(t)dt < ∞, (3.2)

sup
c∈(0,∞)

( 1

1 + Q(c)
F (c)

∫ c

0

du

F (u)

)
> b0, (3.3)

where b0 =
∫ 1

0
rq(r)dr.

Then (3.1) has at least one solution u ∈ C([0, 1], [0,∞))∩C2((0, 1), R) with u(t) > 0
on (0, 1].

From Lemma 2.2, we obtain the following result.

Lemma 3.2. There exists an unique solution W ∈ C([0, 1], [0,∞))∩C2((0, 1), R),
with W (t) > 0 on (0, 1] to the problem

W ′′ + q(t) = 0, 0 < t < 1,

W (0) = 0, W (1) = γW (η).
(3.4)

Choose M > 0, δ > 0 (δ < M) such that

1

1 + Q(M)
F (M)

∫ M

δ

du

F (u)
> b0. (3.5)
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Let n0 ∈ {1, 2, . . . } be chosen so that 1/n0 < min{ε − m‖W‖, δ}, where W is
the solution of (3.4), and 0 < m < min{L, ε/‖W‖, 1} is chosen and fixed. Let
N+ = {n0, n0 + 1, . . . }.

We first show that the boundary-value problem

u′′ + q(t)g(t, u) = 0, 0 < t < 1,

u(0) =
1
n

, u(1)− γu(η) =
1− γ

n
, n ∈ N+

(3.6)

has a solution un for each n ∈ N+ with un(t) ≥ 1
n for t ∈ [0, 1] and ‖un‖ < M .

We have the following Claim
Claim: Let αn(t) = mW (t) + 1

n , t ∈ [0, 1], then αn(t) is a (strict) lower solution
for problem (3.6).

Proof. For the choice of m and n, we have mW (t) + 1
n ≤ m‖W‖ + 1

n0
< ε, then

from (H2),

g(t, mW (t) +
1
n

) > L > m for all t ∈ [0, 1].

Then we obtain

α′′n(t) + q(t)g(t, αn(t)) = (mW (t) +
1
n

)′′ + q(t)g(t, mW (t) +
1
n

)

= mW ′′(t) + q(t)g(t, mW (t) +
1
n

)

= q(t)(g(t,mW (t) +
1
n

)−m) > 0, 0 < t < 1.

We obtain αn(0) = mW (0) + 1
n = 1

n , and

αn(1)− γαn(η) = mW (1) +
1
n
− γ(mW (η) +

1
n

)

= m(W (1)− γW (η)) +
1− γ

n
=

1− γ

n
.

Thus the proof of Claim is complete. �

To find the upper solution of (3.6), we consider the problem

u′′ + q(t)F (u)(1 +
Q(M)
F (M)

) = 0, 0 < t < 1,

u(0) =
1
n

, u(1)− γu(η) =
1− γ

n
.

(3.7)

To show that this problem has a solution we study

u′′ + q(t)F ∗(u)(1 +
Q(M)
F (M)

) = 0, 0 < t < 1,

u(0) =
1
n

, u(1)− γu(η) =
1− γ

n
,

(3.8)

where

F ∗(u) =

{
F (u), u ≥ 1/n,

F ( 1
n ), u < 1/n.

Then F ∗(u) ≤ F (u) for u > 0.
In the same way as in the Claim, we can easily prove αn(t) = 1

n +mW (t) is also
a (strict) lower solution of (3.8).
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By Lemma 2.2, let β0
n ∈ C([0, 1], R)∩C2((0, 1), R) be the unique solution of the

boundary-value problem

u′′ + q(t)F (αn(t))(1 +
Q(M)
F (M)

) = 0, 0 < t < 1,

u(0) =
1
n

, u(1)− γu(η) =
1− γ

n
.

(3.9)

Since β0
n is a solution of this equation,

β0
n
′′

+ q(t)F (αn(t))(1 +
Q(M)
F (M)

) = 0, 0 < t < 1,

β0
n(0) =

1
n

, β0
n(1)− γβ0

n(η) =
1− γ

n
.

On the other hand, as αn is a lower solution of (3.8), and αn ≥ 1/n, we have

αn
′′ + q(t)F (αn(t))(1 +

Q(M)
F (M)

) ≥ 0, 0 < t < 1,

αn(0) =
1
n

, αn(1)− γαn(η) =
1− γ

n
.

So we obtain αn(t) ≤ β0
n(t) for t ∈ [0, 1]. Thus

β0
n
′′

+ q(t)F ∗(β0
n)(1 +

Q(M)
F (M)

)

= −q(t)F (αn)(1 +
Q(M)
F (M)

) + q(t)F (β0
n)(1 +

Q(M)
F (M)

)

= q(t)(1 +
Q(M)
F (M)

)(F (β0
n)− F (αn)) ≤ 0,

so that β0
n is an upper solution for problem (3.8).

If we now take α0
n ≡ αn, we have that α0

n and β0
n are, respectively, a lower and

an upper solution of (3.8) with α0
n(t) ≤ β0

n(t), for all t ∈ [0, 1]. So by the Lemma
2.4, we know that there exists a solution βn ∈ C([0, 1], R) ∩ C2((0, 1), R) of (3.8)
such that

αn(t) = α0
n(t) ≤ βn(t) ≤ β0

n(t), ∀t ∈ [0, 1].

Now we claim that ‖βn‖ < M . Suppose this is false; i.e., suppose ‖βn‖ ≥ M . Since
βn(1)− 1

n = γ(βn(η)− 1
n ) ≤ βn(η)− 1

n , β′′n(t) ≤ 0 on (0,1) and βn ≥ 1
n on [0, 1], there

exists σ ∈ (0, 1) with β′n(t) ≥ 0 on (0, σ), β′n(t) ≤ 0 on (σ, 1) and βn(σ) = ‖βn‖.
Then for z ∈ (0, 1), we have

−β′′n(z) ≤ F (βn(z))(1 +
Q(M)
F (M)

)q(z). (3.10)

Integrate from t(0 < t ≤ σ) to σ to obtain

β′n(t) ≤ (1 +
Q(M)
F (M)

)
∫ σ

t

F (βn(z))q(z)dz;

so we have
β′n(t)

F (βn(t))
≤ (1 +

Q(M)
F (M)

)
∫ σ

t

q(z)dz .
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Then integrate from 0 to σ to obtain∫ βn(σ)

1
n

dy

F (y)
≤

(
1 +

Q(M)
F (M)

) ∫ σ

0

( ∫ σ

t

q(z)dz
)
dt =

(
1 +

Q(M)
F (M)

) ∫ σ

0

tq(t)dt.

Consequently ∫ M

δ

dy

F (y)
≤

(
1 +

Q(M)
F (M)

) ∫ 1

0

tq(t)dt. (3.11)

This contradicts (3.5) and consequently ‖βn‖ < M .
It follows from the fact βn ≥ 1/n, we can obtain βn is a solution of (3.7) also.

Since F is nonincreasing on (0,∞), similar to the proof of Lemma 2.4, we can
obtain the uniqueness of solutions to (3.7).

Next we show that βn is an upper solution of (3.6). Observe that

|g(t, x)| ≤ F (x) + Q(x) on [0, 1]× (0,∞).

We have

β′′n(t) + q(t)g(t, βn(t)) ≤ −q(t)F (βn(t))
(
1 +

Q(M)
F (M)

)
+ q(t)|g(t, βn(t))|

≤ q(t)F (βn(t))
(Q(βn(t))

F (βn(t))
− Q(M)

F (M)

)
≤ 0, t ∈ (0, 1).

Thus βn is an upper solution for problem (3.6).
This together with the Claim yields that αn and βn are, respectively, a lower

and an upper solution for (3.6) with αn ≤ βn for all t ∈ [0, 1]. So we conclude (3.6)
has a solution un ∈ C([0, 1], R) ∩ C2((0, 1), R) such that

mW (t) +
1
n

= αn(t) ≤ un(t) ≤ βn(t) ≤ M,∀t ∈ [0, 1].

Consider now the pointwise limit

z(t) := lim
n→+∞

un(t), ∀t ∈ [0, 1]. (3.12)

Let e = [a, 1] ⊂ (0, 1], Let tn ∈ (a, 1) such that u′n(tn) =
(
un(1) − un(a)

)
/(1 − a).

We obtain

u′n(t) =
un(1)− un(a)

1− a
+

∫ tn

t

q(s)g(s, un(s)ds, t ∈ e.

Since mW (t) ≤ un(t) ≤ M , then we have

|u′n(t)| ≤ 2M

1− a
+

(
1 +

Q(M)
F (M)

) ∫ 1

a

q(t)F (mW (t))dt := C(a, 1), t ∈ e. (3.13)

Set vn = maxt∈e |u′n(t)|, which implies vn is bounded. That means u′n(t) is bounded
on e.

Then, by the Ascoli-Arzela theorem, it is standard to conclude that z(t) is a
solution of (3.1) on the interval e = [a, 1]. Since e is arbitrary, we find that

z ∈ C((0, 1], [0,∞)) ∩ C2((0, 1), R), and z′′(t) + q(t)g(t, z(t)) = 0, t ∈ (0, 1).

Also, we have

z(0) = lim
n→+∞

1
n

= 0, z(1)− γz(η) = lim
n→+∞

1− γ

n
= 0 .

The same argument as in [11] works, we can prove the continuity of z(t) at t = 0
and t = 1. The proof is complete.
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By essentially the same argument as in Theorem 3.1 and [2, Theorem 4.2], we
have the following result.

Theorem 3.3. Assume that
(H1*) for any r > 0 there is hr ∈ C((0, 1], (0,∞)): |q(t)g(t, x)| ≤ hr(t) for all

(t, x) ∈ (0, 1]× [r,∞), such that

lim
t→0+

t2hr(t) = 0,

∫ 1

0

thr(t)dt < +∞;

(H2*) there exist constants L > 0 and ε > 0 such that g(t, x) > L for all (t, x) ∈
[0, 1]× (0, ε].

Then (3.1) has at least one solution u ∈ C([0, 1], [0,∞) ∩ C2((0, 1), R). Moreover,
if g(t, x) is non-increasing in x > 0, then the solution is unique.

4. An example

Consider the singular boundary-value problem

u′′ + σt−m(u−α + uβ − T sin(8πt)) = 0, t ∈ (0, 1)

u(0) = 0, zu(1) = γu(η), η ∈ (0, 1), γ ∈ (0, 1]
(4.1)

with 0 ≤ m < 2, σ > 0, α > 0, β ≥ 0. Set

F (u) = u−α, Q(u) = uβ + 1, q(t) = σt−m,

b0 =
∫ 1

0

rq(r)dr =
σ

2−m
.

Applying Theorem 3.1, we find that (4.1) has a positive solutions if

σ < (2−m) sup
x∈(0,∞)

xα+1

(α + 1)(1 + xα + xα+β)
. (4.2)

Obviously, (H1)-(H3) in Theorem 3.1 are satisfied. Thus, (4.1) has a solution
u ∈ C([0, 1], [0,∞) ∩ C2((0, 1), R) with u > 0 on (0, 1].

We remark that if 0 ≤ β < 1, then (4.1) has at least one positive solution for all
σ > 0, since the right-hand side of (4.2) is infinity.
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