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UPPER AND LOWER SOLUTIONS FOR A SECOND-ORDER
THREE-POINT SINGULAR BOUNDARY-VALUE PROBLEM

QIUMEI ZHANG, DAQING JIANG, SHIYOU WENG, HAIYIN GAO

ABSTRACT. We study the singular boundary-value problem
v’ +q(t)g(t,u) =0, te(0,1), n€ (0,1), vy>0
w(0) =0, u(1) = yu(n).
The singularity may appear at ¢ = 0 and the function g may be superlinear

at infinity and may change sign. The existence of solutions is obtained via an
upper and lower solutions method.

1. INTRODUCTION

Motivated by the study of multi-point boundary-value problems for linear sec-
ond order ordinary differential equations, Gupta [7] studied certain three point
boundary-value problems for nonlinear ordinary differential equations. Since then,
more general nonlinear multi-point boundary-value problems have been studied by
several authors using the Leray-Schauder theorem, nonlinear alternative of Leray-
Schauder or coincidence degree theory. We refer the reader to [3] [4l, [5, [@9, 12| 13 T4}
15] for some existence results of nonlinear multi-point boundary-value problems.
Recently, Ma [I4] proved the existence of positive solutions for the three point
boundary-value problem

u’ +b(t)g(u) =0, te(0,1)
u(0) =0, u(l) = au(n),

where n € (0,1), 0 < a < 1/n, b >0 and g > 0 is either superlinear or sublinear.
He applied a fixed point theorem in cones.
In this paper, we study the singular three-point boundary-value problem

u +q(t)g(t,u) =0, te€(0,1), ne€ (0,1), y>0
u(0) =0, u(l)=yu(n).

The singularity may appear at ¢ = 0, and the function g may be superlinear at
u = 0o and may change sign.

(1.1)
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Some basic results on the singular two point boundary-value problems were ob-
tain in [T, [T}, [I7], in all these papers the arguments rely on the assumption that
g(t,u) is positive. This implies that the solutions are concave. Recently, some
authors have studied the case when g is allowed to change sign by applying the
modified upper and lower solutions method; see for example [11].

The present work is a direct extension of some results on the singular two-point
boundary-value problems. As in [I1], our technique relies essentially on a modified
method of upper and lower solutions method for singular three-point boundary-
value problems which we believe is well adapted to this type of problems.

2. UPPER AND LOWER SOLUTIONS
Consider the three-point boundary-value problem

u" + f(t,u) =0, te(0,1), ne(0,1), v (0,1/n)

U(O) = A, u(l) — 'yu(n) - B. (21)

We use the following assumption:

(A1) f : (0,1] x R — R is a continuous function, there exist two functions
a, € C([0,1],R) and «(t) < B(¢), for all t € [0, 1], if there exist a function
h € C((0,1],(0,00)), such that

[f(t,u)l < h(t)  for a(t) <u < B(t), (2:2)
[Jim, t2h(t) =0, /0 th(t)dt < . (2.3)

We call a function a(t) a lower solution for (2.1)), if « € C([0, 1], R)NC?((0, 1), R),
and

o+ f(t,a) >0, forte(0,1),

a(0) <4, a(l) —ya(n) < B.
Similarly, we call a function 3(t) an upper solution for [2.1)), if 8 € C([0,1],R) N
C?((0,1),R), and

B+ f(t,8) <0, forte(0,1),

p0) = A, B(1) —~B(n) = B.
A function u(t) is said to be a solution to , if it is both a lower and an upper

solution to (2.1)).

Our first result reads as follows.

Theorem 2.1. Assume (Al) and let «, 8 be, respectively, a lower solution and an
upper solution for (2.1) such that a(t) < B(t) on [0,1]. Then (2.1) has at least one
solution u(t) such that

a(t) <u(t) < B(t), fort €[0,1].
Consider now the modified boundary-value problem

u’ + fi(t,u) =0, forte (0,1),
u(0) =4, u(l)—vu(n) = B,
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where
ft,a(t)), ifu<alt),
filt,u) = 4 f(tw), i a(t) <u<B(t),
[, 8(¢), ifu>pB(t).
Lemma 2.2. Assume that holds. Then the boundary-value problem
y' = —h(t), 0<t<I,
y(0) =4, y(1) —yy(n) =B

has a unique solution y(t) in C([0,1],]0,00)) N C?((0,1),R), which can be written
as

(2.5)

o o 1
B-Al-n), +/ G(t,s)h(s)ds, 0<t<1,
0

y(t) =A+
(t) T

where G(t, s) is Green’s function of the boundary-value problem —y"” =0, y(0) =0,
y(1) =~y(n). The function G is explicitly given by: when 0 < s <17,

8[1—t1—7(n—t)], s<t,
G(t7 5) = t[l—s—';y(Z]—s)] s>t

1-—m ’

when n < s <1,

S(lft)JrW(t*S)’ s <t
G(tv S) = t(l—s%_wn ; ¢
1 S .

Proof. Uniqueness. The proof of the uniqueness of a solution is standard and hence
omitted. Existence. Let

o o 1
y(t) = A+ wt +/ G(t, s)h(s)ds, 0<t<1;
- 0

ie.,
B—A(1 t s[1—t t
A DA, [ Dt =)
+fnwh yds + [ & 41 S)h( yds, 0<t<n,
y(t) = B—AQ s[1—t
A+#t+ﬂ+h( )ds

+ [ sy s) ds+ft“(1 h(s)ds, n<t<l.

Then we have

BA(I"/_i_ftsl'y 1)h( )d
n

+fn1 5— v(n s)h( )ds
S, 0<t<n,

BA(l n(1
1%774_[87 s)ds

b [} T h(s)ds + ! isnh(s)ds, n<t<l.

y'(t) =

and 3" (t) = —h(t) for all ¢ € (0,1). Since [, th(t)dt < oo, limy o+ [ sh(s)ds = 0;

so we have
. T1-s—9(n-s)
=A+ lim ¢ ——— ~h(s)ds.
y(0) - tir(%r /t 1—m (s)ds
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Ifbfll =) () ds < oo, then y(0) = A. If i =520 h(5)ds = oo, then by
we obtam
1K s =s) () ds

- —1
( ) A—|— lim t 1—~n ’7774‘75(7 ) A

1
= A+ lim t*h(t)

t—0+ 1/t tl0+ 1—ny
We have also
MD—WW)
n 1 _
_B-Al-y) +/““"’y )@+/1ﬂlﬁ%@@
1—777 o 1—m n l1—m
B~ A(l—~) ./"d ) /lmlﬁ
— + h(s)ds + h(s)ds) = B.
W = " T, (s) S (s)ds)
This shows that y(t) is a positive solution of (2.5), and y € C([0,1],[0,00)) N
C*((0,1),R). 0
Let us define an operator ® : X — X by
B— Al - !
(Pu)(t) = A+ 1(7777)15 + / G(t, s) f1(s,u(s))ds, (2.6)
- 0

where X = {u € C([0,1],R) with the norm ||u||} is a Banach space, with
lul| :==sup{|u(t)| : 0 <t <1}

Without loss of generality, we assume that A = B = 0.
To prove the existence of a solution to (2.4), we need the following Lemma.

Lemma 2.3. The function ® is continuous from X to X and ®(X) is a compact
subset of X.

Proof. As in the proof of Lemma from the definition of f; and from (2.6)), we
have

|(‘I’U)(t)\§/0 G(t78)|f1(8,U(8))ldSS/0 G(t,s)h(s)ds = y(t), te][0,1]. (2.7)

So we have ®u € C([0,1],R) N C?((0,1),R), and
[Pull < |ly||. (2.8)

This shows that ®(X) is a bounded subset of X.

Noting the facts that y(0) = 0 and the continuity of y(¢) on [0, 1], we have from
that for any € > 0, one can find a §; > 0 (independent with u) such that
0<d1 <1/8and

(@uﬂﬂ<i%, te0,26]. (2.9)
On the other hand, from (2.6)), since | f1(s, u(s))| < h(s), s € (0,1), we can obtain
[(@u)(t) < L, telo,1].

Let 65 = then for t1,ty € [61,1], |t2 — t1] < 2, we have

2L’

[(@u)(h) — (Pu)(te)| < Ll — ta] < 5. (2.10)

Define § = min{d1, d2}, then using (2.9), (2.10), we obtain
[(Pu)(t1) — (Pu)(t2)| < e, (2.11)
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for t1,ts € [0,1], |[t; — t2| < §. This shows that {(Pu)(t) : uw € X} is equicontinuous
on [0,1].

We can obtain the continuity of ® in a similar way as above. In fact, if u,,u € X
and ||u, — ul| = 0 as n — oo, then we have

[(Dup)(t) — (Du)(t)] < 2 /O G(t, s)h(s)ds = 2y(t), te[0,1], (2.12)

Noting the facts that y(0) = 0 and the continuity of y(¢) on [0, 1], then for any
€ > 0, one can find a §; > 0 (independent of u,,) such that 0 < §; < 1/8 and

[(Duy,)(t) — (Pu)(t)| <€, te€]0,01]. (2.13)
On the other hand, from the continuity of f1, one has

[(Qun)(t) = (Pu)(t)| = 0, t € [61,1], (2.14)
as n — oo. This together with implies that || Pu, — Pu| — 0 as n — oo.
Therefore, ® : X — X is completely continuous. The proof is complete. [

Lemma 2.4. Let u(t) be a solution to (2.4). Then a(t) < u(t) < B(t) for all
t €10,1]; i.e., u(t) is a solution to .
Proof. We first prove that u(t) < G(t) on [0,1]. Let x(¢) := u(t) — 5(t). Assume
that u(t) > B(t) for some ¢ € [0,1]. Since u(0) = 0 < (0), it follows that
2(0) <0, (1) = u(l) = B(1) < ~yuln) —6(n) = yz(n).

Let o € (0, 1] be such that x(0) = max;c[o1) z(t). Then z(o) > 0.

Case(i): o € (0,1). So there exists an interval (a, o] C (0,1) such that z(t) > 0
n (a, 0], and

z(a) =0, z(o)= e @ z(t) >0, a'(o)=0.

For t € (a, o] we have that fi(¢,u(t)) = f(t,3(t)) and therefore
u'(t) + fi(t,u(t)) =" (t) + f(t,8(t)) =0 for all t € (a,o].
On the other hand, as 3 is an upper solution for , we have
B"(t) + f(t,B(t)) <0 forall t € (a,0].

Thus, we obtain w’(t) > #”(¢) for all t € (a,0], and hence, ”'(¢) > 0. Then
x'(t) <0 on (a,1] which is a contradiction.
Case(ii): o = 1. So there exists (a, 1] C (0, 1] such that

z(a) =0, (1) = Jnax a(t),z(1) —yz(n) < 0.

In the same way as in Case(i), we can obtain that xz(t) > 0,2”(¢t) > 0,t € (a,1].
Since x(n) > %1’(1) > 0, then n > a. O
Consider the three-point boundary-value problem
2" =h(t) >0, a<t<l,
xz(a) =0, x(1)—~vz(n) =b <0.

Then this equation has a unique solution z(t) € C([a,0],[0,00)) N C?((a,1),R),
which can be represented as

(2.15)

bi(t —a)
x(t)—l_al_ p— /G[a1]ts (s)ds, a<t<1,
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where G, 11(t, 5) is the Green’s function of the boundary-value problem —y" = 0,
y(a) =0, y(1) = vyy(n), which is explicitly given by: when a < s <1,
Loalotoaton] oy
Gla(t,s) = e N
AT (t—a)[1—s—v(n—s)] .
T—a—y(n—a) @ 57 ;

when n < s <1,

(sza)A=t)+y(t=s)(n=a) o -4

1—a—vy(n—a) ’ ’
Clant:9) =\ (—an |
Toa—r(n—a)’ S > t.
Since 0 < v < % < ﬁ, then Gi,,1)(t,s) > 0, and hence z(t) < 0 on [a, 1], which

is a contradiction. In very much the same way, we can prove that u(t) > «(t) on
[0, 1].

3. MAIN RESULTS

Let g : [0,1] x (0,00) — R be a continuous function and ¢ € C((0,1],R7).
Consider the three-point boundary-value problem
v’ +q(t)g(t,u) =0, te(0,1), n€(0,1), v€(0,1]
w(0) =0, u(1) = yu(s).
Theorem 3.1. Assume that
(H1) |g(t, )| < F(z) 4+ Q(x) on [0,1] x (0,00) with F' > 0 continuous and non-
increasing on (0,00), Q > 0 continuous on [0,0), and % nondecreasing on
(07 OO);
(H2) there exist constants L > 0 and € > 0 such that g(t,x) > L for all (t,x) €
[0,1] x (0,¢], and F(z) > L, z € (0,¢];
(H3)

(3.1)

1
lim t%¢(t) = 0, / tq(t)dt < oo, (3.2)
t—0+ 0
sup ( 1 /C du
ce(0,00) 1 + % o F(u)
where by = fol rq(r)dr.

Then (3.1) has at least one solution u € C([0,1],[0,00))NC?((0,1),R) with u(t) > 0
on (0,1].

) > bo. (3.3)

From Lemma 2.2} we obtain the following result.

Lemma 3.2. There exists an unique solution W € C([0,1],[0,00)) N C%((0,1),R),
with W(t) > 0 on (0,1] to the problem

W"+4qt)=0, 0<t<l,
W(0) =0, W()=~W(n).
Choose M >0, 6 > 0 (§ < M) such that

)
1 /M du

> bg. (35)
1+% 5 Fl(u)

(3.4)

N
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Let ng € {1,2,...} be chosen so that 1/ng < min{e — m||W||,0}, where W is
the solution of (3.4), and 0 < m < min{L,e/||W||,1} is chosen and fixed. Let
N+ :{no,n0+17...}.

We first show that the boundary-value problem

u' +qt)gt,u) =0, 0<t<l,

1 1—7
u(0) = = (1) = yuln) = ——, neNt

(3.6)

has a solution u, for each n € N* with u,(t) >
We have the following Claim
Claim: Let a,(t) = mW(t) + L1, ¢t € [0,1], then a,(t) is a (strict) lower solution

for problem (3.6)).

Proof. For the choice of m and n, we have mW (t) + X < m|W| + ,%0 < g, then
from (H2),

for t € [0,1] and |ju,| < M.

1
n

g(t,mW(t) + l) >L>m foralltel01].
n

Then we obtain

a4 (t) + a(O)g(t, an(t)) = (mIV (1) + )"+ a(t)g(t,mW (1) + )

n
= mW(t) + g(t)g(t,mW (1) + )
= 4ot mW (1) + ) —m) >0, 0<t<1.
We obtain a,(0) = mW (0)+ 1 =1 and
n(1) = yan(m) = mIV (1) + -~ 5(mIW (3) + )
1-— 1-—
= m(W(1) =AW () + — = —,
Thus the proof of Claim is complete. O

To find the upper solution of (3.6, we consider the problem

M
u/’—I—q(t)F(u)(l—i—??ij;) =0, 0<t<l, .
3.7
1 1—7
= — 1 — = .
u(0) = - u(1) = yuln) = —
To show that this problem has a solution we study
M
u” + q(t)F*(u (H?’EM;):O’ 0<t<l, .
3.8
1 1—7v
- u(l) — -
u(0) = - u(1) = yuln) = =2,

where
N F(u), u>1/n,
Fouy = {F® /
Then F*(u) < F(u) for u > 0.
1

In the same way as in the Claim, we can easily prove ay,(t) = - +mW(t) is also
a (strict) lower solution of (3.8).
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By Lemma[2.2] let 39 € C([0,1],R) N C2((0,1),R) be the unique solution of the
boundary-value problem

" Q(M)
u+qt)Fla,(t)(1+ =) =0, 0<t<l,
X F(M) . (3.9)
w(0) =~ u(l) = yu() = —.
Since 3Y is a solution of this equation,
B ) Flan(®)(1+ ) =0, 0<t<1

1 1—
B0 =~ 31— = —

On the other hand, as «,, is a lower solution of (3.8)), and «,, > 1/n, we have

QM)

oy + q(t>F(an(t>)<1 + F(M)

)>0, 0<t<l1,

l-7

a,(0) = -

o an(l) —yan(n) =

~«~ 3|~

So we obtain ., (t) < B9(t) for t € [0,1]. Thus

89" + q(t)F*(B) (1 + %)
— g(t)F(an)(1 + %) L aOPE)( + %)
QM)

=qt)(1+ S—2)(F(B) — F(ay)) <0,
a)(1+ D) — Flaw) <0
so that 89 is an upper solution for problem (3.8)).

If we now take al = «,, we have that a¥ and 80 are, respectively, a lower and
an upper solution of (3.8)) with a¥(t) < 3%(#), for all t € [0,1]. So by the Lemma
we know that there exists a solution 3, € C([0,1],R) N C?((0,1),R) of (3.8)
such that

an(t) = an(t) < B,(t) < B(t), Vte[0,1].

Now we claim that ||8,|| < M. Suppose this is false; i.e., suppose ||B,| > M. Since
Bn(l)—% = V(ﬁn(n)—%) < 5,1(77)—%,5;{@) <0on (0,1) and 3, > % on [0, 1], there
exists o € (0,1) with 8/,(t) > 0 on (0,0),5,(t) <0 on (0,1) and B,(c) = ||5nl|-
Then for z € (0,1), we have
QM)

—Bn(2) < F(Bu(2))(1 + W)Q(Z)- (3.10)

Integrate from ¢t(0 < ¢t < o) to o to obtain

B() < (14 f{j‘jﬁ) / " F(Ba(2)al2)dz;

so we have
Bu(t) QM) [°
Ry < 4+ Fan) | @0
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Then integrate from 0 to ¢ to obtain

Aﬁn(a) % < (1+ %) /Og (/tUQ(Z)dZ)dt: (14,- ?%) /Ootq(t)dt.

Consequently
M 1
dy QM) /
< (1+=222) | tg(t)dt. (3.11)
s Fy) ( F(M)) 0
This contradicts (3.5) and consequently |8, < M.

It follows from the fact 8, > 1/n, we can obtain (3, is a solution of (3.7)) also.
Since F' is nonincreasing on (0, 00), similar to the proof of Lemma we can

obtain the uniqueness of solutions to ([3.7).
Next we show that 3, is an upper solution of (3.6]). Observe that

lg(t,z)] < F(x) +Q(z) on [0,1] x (0, 00).

We have
00) + ot 5,(0) < —aO)F () (1+ Z37) + aOla(t. (0
< a0 F (a0 E ) §§ﬁ§)<o te )

Thus S, is an upper solution for problem (3 .

This together with the Claim yields that «,, and 3, are, respectively, a lower
and an upper solution for with «,, < 3, for all t € [0,1]. So we conclude (3.6])
has a solution u,, € C([0,1],R) N C?((0,1),R) such that

mW (t) + % = an(t) < un(t) < Bult) < M, ¥t € [0,1].

Consider now the pointwise limit

z(t) = nll}rf un(t), Vte[0,1]. (3.12)
Let e = [a,1] C (0,1], Let t,, € (a,1) such that u},(t,) = (un(1) — un(a))/(1 — a).
We obtain

un (t) = %Zn@ —I—/t ' q(s)g(s,un(s)ds, te€e.
Since mW (t) < u,(t) < M, then we have
()] < o (14 g%;)/ o) F(mW (B)dt = C(a,1), tee. (3.13)

Set v, = maxe, |un(t)|, which implies v, is bounded. That means ], (¢) is bounded
on e.

Then, by the Ascoli-Arzela theorem, it is standard to conclude that z(t) is a
solution of (3.1]) on the interval e = [a, 1]. Since e is arbitrary, we find that

z € C((0,1],[0,00)) N C%((0,1),R), and 2"(t) 4+ q(t)g(t,2(t)) =0, t€(0,1).

Also, we have

1 1-—
z(0)= lim —=0, z(1)—~vz(n)= lim 7

n—-+oo N n—+4o0o 1N

=0.

The same argument as in [I1] works, we can prove the continuity of z(¢) at ¢ = 0
and t = 1. The proof is complete.
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By essentially the same argument as in Theorem and [2, Theorem 4.2], we
have the following result.
Theorem 3.3. Assume that

(H1*) for any r > 0 there is h, € C((0,1],(0,00)): |q(t)g(t,z)| < h,(t) for all
(t,x) € (0,1] x [r,00), such that

t—0t

1
lim t2h,.(t) =0, / thy(t)dt < +oo;
0
(H2*) there exist constants L > 0 and € > 0 such that g(t,x) > L for all (t,x) €
[0,1] x (0, ¢].

Then (3.1)) has at least one solution u € C([0,1],[0,00) N C%((0,1),R). Moreover,
if g(t,x) is non-increasing in x > 0, then the solution is unique.
4. AN EXAMPLE

Consider the singular boundary-value problem

u" + ot (u” +uf — Tsin(87t)) =0, te€(0,1)

(4.1)
u(0) =0, zu(l)=ru(n), ne(0,1),v€(01]

with0<m<2,0>0 a>0,02>0. Set

Fu)=u" Qu)=u’+1, q(t)=act™™,

1
by = /0 rq(r)dr = 5 jm'
Applying Theorem we find that (4.1]) has a positive solutions if
xa-l—l
o< (2—m) sup (4.2)

z€(0,00) (Oé + 1)(1 4 opo 4+ on_ﬂ) .

Obviously, (H1)-(H3) in Theorem are satisfied. Thus, has a solution
u € C([0,1],[0,00) N C?((0,1),R) with u > 0 on (0, 1].

We remark that if 0 < 8 < 1, then (4.1)) has at least one positive solution for all
o > 0, since the right-hand side of infinity.
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