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POSITIVE SOLUTIONS FOR NONLINEAR SECOND-ORDER
m-POINT BOUNDARY-VALUE PROBLEMS

JIQIANG JIANG, LISHAN LIU

Abstract. By constructing a special cone and applying the fixed index theory

in the cone, we prove the existence of positive solutions for a class of singular
m-point boundary-value problems.

1. Introduction

This paper considers the existence of positive solutions for the second-order m-
point boundary-value problem

(p(t)x′(t))′ − q(t)x(t) + f(t, x(t)) = 0, t ∈ (0, 1), (1.1)

ax(0)− bp(0)x′(0) =
m−2∑
i=1

αix(ξi), cx(1) + dp(1)x′(1) =
m−2∑
i=1

βix(ξi), (1.2)

where a, c ∈ [0,+∞), b, d ∈ (0,+∞) with ac + ad + bc > 0, ξi ∈ (0, 1), αi, βi ∈
[0,+∞) for i ∈ {1, 2, . . . ,m − 2} are given constants, p ∈ C1([0, 1], (0,+∞)), q ∈
C([0, 1], (0,+∞)) and f ∈ C((0, 1) × (0,+∞), [0,+∞)), f(t, x) is allowed to be
singular at t = 0, t = 1 and x = 0.

If p ≡ 1, q ≡ 0, αi, βi = 0, (for i = 1, 2, . . . ,m − 2), then (1.1)-(1.2) reduces to
the two-point boundary-value problem

x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1), (1.3)

ax(0)− bx′(0) = 0, cx(1) + dx′(1) = 0, (1.4)

which has been intensively studied; see [5, 6].
In [7], by using the fixed index theory in a cone, positive solutions were obtained

for differential systems

−x′′(t) = f(t, y), t ∈ (0, 1),

−y′′(t) = g(t, x), t ∈ (0, 1),

α1x(0)− β1x
′(0) = γ1x(1) + δ1x

′(1) = 0,
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α2y(0)− β2y
′(0) = γ2y(1) + δ2y

′(1) = 0,

where αi, βi, γi, δi ≥ 0 and ρi = αiγi + αiγi + γiβi > 0 (i = 1, 2), f(t, y) and g(t, x)
may be singular at t = 0, t = 1 and x = 0, y = 0, respectively.

In recent years, singular multi-point boundary-value problems have been exten-
sively studied and many optimal results have been obtained, see [6, 11, 12, 13, 14]
and references therein. In addition, many papers investigated the existence of
solutions for the nonsingular multi-point boundary-value problems, for example,
[1, 4, 5, 10].

Recently, Ma [8], Ma and Thompson [9] obtained excellent results about the
existence of positive solutions for the more generalm-point boundary-value problem
(1.1)-(1.2), but in the above papers there are no studies for singularity of the
nonlinearity f(t, x) at the point x = 0. Recently, by using Nonlinear Alternative
of Leray-Schauder with the properties of the associated vector field at the (u, u′)
plane, Galanis and Palamides [2] studied the problem

−[φp(u′)]′ = q(t)f(t, u(t)), 0 < t < 1

subject to
u(0)− g(u′(0)) = 0, u(1)− βu(η) = 0,

or to
u(0)− αu′(η) = 0, u(1) + g(u′(1)) = 0,

where f(t, u) is allowed to have singularity at u = 0, the obtained solutions remains
away from the origin and avoid the singularity of the nonlinear term at u = 0.

Motivated by the above mentioned papers, we consider the existence of positive
solutions for (1.1)-(1.2). Here we allow f(t, x) to have a singularity at t = 0, 1, and
at x = 0. As far as we know, there were only a few works when f has singularities
at t = 0, 1 and x = 0. This paper attempts to fill part of this gap in the literature.

This work is organized as follows. In section 2, we present some lemmas that are
used to prove our main results. Then in section 3, the existence of positive solution
for (1.1)-(1.2) will be established by using the fixed point theory in the cone, which
we state here for the convenience of the reader.

Lemma 1.1 ([3]). Let P be a cone of the real Banach space E, Ω be a bounded open
subset of E with θ ∈ Ω and T : Ω ∩ P → P is a completely continuous. Suppose
that Tu 6= λu, for all u ∈ ∂Ω ∩ P , λ ≥ 1, then i(T,Ω ∩ P, P ) = 1.

Lemma 1.2 ([3]). Let P be a cone of the real Banach space E, Ω be a bounded open
subset of E with θ ∈ Ω and T : Ω ∩ P → P is a completely continuous. Suppose
that

(i) infu∈P∩∂Ω ‖Tu‖ > 0
(ii) Tu 6= λu, for all u ∈ ∂Ω ∩ P , λ ∈ (0, 1],

then i(T,Ω ∩ P, P ) = 0.

2. Preliminaries

Let E = C[0, 1] be a real Banach space, with the norm ‖x‖ = maxt∈[0,1] |x(t)|
for x ∈ C[0, 1]. Let P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}. Clearly P is a cone in E.

The function x is said to be a positive solution of (1.1)-(1.2) if x(t) is positive
solution on (0, 1) and satisfies the differential equation (1.1) and the boundary
conditions (1.2).

The following lemmas play an important role when proving our main results.
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Lemma 2.1 ([8, 9]). Assume
(H1) p ∈ C1([0, 1], (0,+∞)), q ∈ C([0, 1], (0,+∞)).

Let ψ and φ be the solutions of the linear problems

(p(t)ψ′(t))′(t)− q(t)ψ(t) = 0, t ∈ (0, 1), (2.1)

ψ(0) = b, p(0)ψ′(0) = a, (2.2)

and

(p(t)φ′(t))′(t)− q(t)φ(t) = 0, t ∈ (0, 1), (2.3)

φ(1) = d, p(1)φ′(1) = −c, (2.4)

respectively. Then
(i) ψ is strictly increasing on [0, 1], and ψ(t) > 0 on [0, 1];
(ii) φ is strictly decreasing on [0, 1], and φ(t) > 0 on [0, 1].

As in [9], set

∆ = det
(
−
∑m−2
i=1 αiψ(ξi) ρ−

∑m−2
i=1 αiφ(ξi)

ρ−
∑m−2
i=1 βiψ(ξi) −

∑m−2
i=1 βiφ(ξi)

)
, ρ = p(t) det

(
φ(t) ψ(t)
φ′(t) ψ′(t)

)
.

Then, by Liouville’s formula, we have

ρ = p(0) det
(
φ(0) ψ(0)
φ′(0) ψ′(0)

)
= constant.

Define

G(t, s) =
1
ρ

{
φ(t)ψ(s), 0 ≤ s ≤ t ≤ 1,
φ(s)ψ(t), 0 ≤ t ≤ s ≤ 1.

(2.5)

It is easy to see that

0 ≤ G(t, s) ≤ G(s, s), 0 ≤ s, t ≤ 1. (2.6)

Remark 2.2. By (2.5) and Lemma 2.1, for any t ∈ [0, 1], we have

G(t, s)
G(s, s)

=

{ φ(t)
φ(s) , 0 ≤ s ≤ t ≤ 1,
ψ(t)
ψ(s) , 0 ≤ t ≤ s ≤ 1,

≥

{
d

φ(0) , 0 ≤ s ≤ t ≤ 1,
b

ψ(1) , 0 ≤ t ≤ s ≤ 1.

Let γ = min{ d
φ(0) ,

b
ψ(1)}, then G(t, s) ≥ γG(s, s), for t, s ∈ [0, 1].

Remark 2.3. Since γ = min{ d
φ(0) ,

b
ψ(1)}, according to the monotonicity of ψ(t),

we have γ ≤ b
ψ(1) = ψ(0)

ψ(1) ≤
ψ(t)
ψ(1) , so ψ(t) ≥ γψ(1), for t ∈ [0, 1]. Similarly, by the

monotonicity of φ(t), we have γ ≤ d
φ(0) = φ(1)

φ(0) ≤
φ(t)
φ(0) , so φ(t) ≥ γφ(0), for t ∈ [0, 1].

Lemma 2.4 ([8, 9]). Assume (H1) and that ∆ 6= 0. Then for any y ∈ L[0, 1], the
problem

(p(t)x′(t))′(t)− q(t)x(t) + y(t) = 0, t ∈ (0, 1), (2.7)

ax(0)− bp(0)x′(0) =
m−2∑
i=1

αix(ξi), cx(1) + dp(1)x′(1) =
m−2∑
i=1

βix(ξi), (2.8)

has a unique solution

x(t) =
∫ 1

0

G(t, s)y(s)ds+A(y)ψ(t) +B(y)φ(t), (2.9)
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where

A(y) =
1
∆

det

(∑m−2
i=1 αi

∫ 1

0
G(ξi, s)y(s)ds ρ−

∑m−2
i=1 αiφ(ξi)∑m−2

i=1 βi
∫ 1

0
G(ξi, s)y(s)ds −

∑m−2
i=1 βiφ(ξi)

)
(2.10)

B(y) =
1
∆

det

(
−
∑m−2
i=1 αiψ(ξi)

∑m−2
i=1 αi

∫ 1

0
G(ξi, s)y(s)ds

ρ−
∑m−2
i=1 βiψ(ξi)

∑m−2
i=1 βi

∫ 1

0
G(ξi, s)y(s)ds

)
. (2.11)

Lemma 2.5 ([8, 9]). Assume (H1) and

(H2) ∆ < 0, ρ−
∑m−2
i=1 αiφ(ξi) > 0, ρ−

∑m−2
i=1 βiψ(ξi) > 0.

Then for y ∈ L[0, 1] with y ≥ 0, the unique solution x of (2.7)-(2.8) satisfies
x(t) ≥ 0, for t ∈ [0, 1].

Let Q = {x ∈ P : x(t) ≥ γ‖x‖}. It is obvious that Q is a subcone of P . With
Lemma 2.4, Problem (1.1)-(1.2) has a positive solution x = x(t) if and only if
x ∈ Q\{θ} is a solution of the nonlinear integral equation

x(t) =
∫ 1

0

G(t, s)f(s, x(s))ds+A(f(s, x(s)))ψ(t) +B(f(s, x(s)))φ(t), (2.12)

where f satisfies the condition
(H3) f ∈ C((0, 1) × (0,+∞), [0,+∞)) and there exist h ∈ C((0, 1), [0,+∞)),

g ∈ C((0,+∞), [0,+∞)) satisfying that for any t ∈ (0, 1), u ∈ (0,+∞)
implies

f(t, u) ≤ h(t)g(u), t ∈ (0, 1), u ∈ (0,+∞),

0 <
∫ 1

0

G(s, s)h(s)ds < +∞.

Define an operator T : Q\{θ} → P by

(Tx)(t) =
∫ 1

0

G(t, s)f(s, x(s))ds+A(f(s, x(s)))ψ(t) +B(f(s, x(s)))φ(t). (2.13)

It is easy to prove that the existence of solutions to (1.1)-(1.2) is equivalent to the
existence of solutions to (2.12). That is, the existence of a fixed point of operator
T .

To overcome the singularity, we consider the following approximating equation
of (2.13) with the boundary conditions (1.2).

(Tnx)(t) =
∫ 1

0

G(t, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(t) +B(fn(s, x(s)))φ(t),

(2.14)
where n is a positive integer and

fn(t, x) = f(t,max{ 1
n
, x}). (2.15)

Remark 2.6. By (H3), there exists τ ∈ (0, 1
2 ) such that

0 <
∫ 1−τ

τ

G(s, s)h(s)ds < +∞.

Lemma 2.7. Assume (H1)-(H3). Then Tn : P → P is completely continuous for
any fixed natural number n.
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Proof. First it is easy to see that Tn maps P into P . Then we prove that Tn maps
bounded sets into bounded sets.

Suppose D ⊂ P is an arbitrary bounded set. Then there exists a constant
M1 > 0 such that ‖x‖ ≤M1 for any x ∈ D. By (H1), for any x ∈ D and s ∈ [0, 1],
we have

|(Tnx)(t)| =
∫ 1

0

G(t, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(t) +B(fn(s, x(s)))φ(t)

≤
∫ 1

0

G(s, s)h(s)g
(
max{ 1

n
, x(s)}

)
ds

+A
(
h(s)g

(
max{ 1

n
, x(s)}

))
ψ(1)

+B
(
h(s)g

(
max{ 1

n
, x(s)}

))
φ(0)

≤M2

[ ∫ 1

0

G(s, s)h(s)ds+A (h(s))ψ(1) +B (h(s))φ(0)
]

≤M2(1 +Aψ(1) +Bφ(0))
∫ 1

0

G(s, s)h(s)ds,

where M2 = supx∈[ 1
n ,

1
n +M1] g(x),

A =
1
∆

det
(∑m−2

i=1 αi ρ−
∑m−2
i=1 αiφ(ξi)∑m−2

i=1 βi −
∑m−2
i=1 βiφ(ξi)

)
, (2.16)

B =
1
∆

det
(
−
∑m−2
i=1 αiψ(ξi)

∑m−2
i=1 αi

ρ−
∑m−2
i=1 βiψ(ξi)

∑m−2
i=1 βi

)
. (2.17)

Therefore, Tn(D) is uniformly bounded.
Now we show that Tn(D) is equicontinuous on [0, 1]. For any ε > 0, since

G(t, s), ψ(t) and φ(t) are uniformly continuous on [0, 1]×[0, 1] and [0, 1], respectively.
There exists δ > 0 such that for any t1, t2 ∈ [0, 1], |t1 − t2| < δ implies that

|G(t1, s)−G(t2, s)| <
εmin0≤s≤1G(s, s)

3M2

∫ 1

0
G(s, s)h(s)ds

,

|ψ(t1)− ψ(t2)| <
ε

3M2A
∫ 1

0
G(s, s)h(s)ds

,

|φ(t1)− φ(t2)| <
ε

3M2B
∫ 1

0
G(s, s)h(s)ds

.

Consequently, for any x ∈ D, t1, t2 ∈ [0, 1], |t1 − t2| < δ, we have

|Tnx(t1)− Tnx(t2)|

≤
∫ 1

0

|G(t1, s)−G(t2, s)|fn(s, x(s))ds

+A(fn(s, x(s)))|ψ(t1)− ψ(t2)|+B(fn(s, x(s)))|φ(t1)− φ(t2)|

≤
∫ 1

0

|G(t1, s)−G(t2, s)|h(s)g
(
max{ 1

n
, x(s)}

)
ds

+A
(
h(s)g

(
max{ 1

n
, x(s)}

))
|ψ(t1)− ψ(t2)|
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+B
(
h(s)g

(
max{ 1

n
, x(s)}

))
|φ(t1)− φ(t2)|

≤M2

∫ 1

0

|G(t1, s)−G(t2, s)|h(s)ds

+A(h(s)M2)|ψ(t1)− ψ(t2)|+B(h(s)M2)|φ(t1)− φ(t2)|

≤M2

∫ 1

0

|G(t1, s)−G(t2, s)|h(s)ds

+M2A|ψ(t1)− ψ(t2)|
∫ 1

0

G(s, s)h(s)ds

+M2B|φ(t1)− φ(t2)|
∫ 1

0

G(s, s)h(s)ds

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus, Tn(D) is equicontinuous on [0, 1]. According to Ascoli-Arzela Theorem,
Tn(D) is a relatively compact set.

In the end, we show Tn is continuous. Suppose xm, x ∈ D,xm → x (m→ +∞).
Then there exists a constant M3 > 0 such that ‖x‖ ≤ M3, ‖xm‖ ≤ M3 (m =
1, 2, . . . ). Since fn(t, x) is uniformly continuous on [0, 1]×D for any fixed natural
number n, hence,

lim
m→+∞

fn(t, xm(t)) = fn(t, x(t)), uniformly on t ∈ [0, 1].

According to the Lebesgue dominated convergence theorem,

lim
m→+∞

∫ 1

0

G(s, s)|fn(s, xm(s))− fn(s, x(s))|ds = 0.

Thus for the above ε > 0, there exists a natural number M , such that m > M
implies that∫ 1

0

G(s, s)|fn(s, xm(s))− fn(s, x(s))|ds <
ε

1 +Aψ(1) +Bφ(0)
. (2.18)

From (2.18), we obtain that for m > M ,

‖Tnum − Tnu‖

= max
0≤t≤1

[ ∫ 1

0

G(t, s)fn(s, xm(s))ds+A(fn(s, xm(s)))ψ(t) +B(fn(s, xm(s)))φ(t)

−
∫ 1

0

G(t, s)fn(s, x(s))ds−A(fn(s, x(s)))ψ(t)−B(fn(s, x(s)))φ(t)
]

≤
∫ 1

0

G(s, s)|fn(s, xm(s))− fn(s, x(s))|ds

+A
(
|fn(s, xm(s))− fn(s, x(s))|

)
ψ(1)

+B(|fn(s, xm(s))− fn(s, x(s))|)φ(0)

≤
(
1 +Aψ(1) +Bφ(0)

) ∫ 1

0

G(s, s)|fn(s, xm(s))− fn(s, x(s))|ds < ε.

Therefore, Tn : P → P is continuous. Thus Tn : P → P is a completely continuous
operator. �
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Lemma 2.8. Tn(Q) ⊂ Q.

Proof. For any x ∈ Q, (H2) and (H3) imply (Tnx)(t) ≥ 0. From (2.6), (2.14) and
the monotonicity of ψ(t) and φ(t), we have

(Tnx)(t) ≤
∫ 1

0

G(s, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(1) +B(fn(s, x(s)))φ(0),

which implies

‖Tnx‖ ≤
∫ 1

0

G(s, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(1)+B(fn(s, x(s)))φ(0). (2.19)

By Remarks 2.2 and 2.3, we have

(Tnx)(t) =
∫ 1

0

G(t, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(t) +B(fn(s, x(s)))φ(t)

≥ γ

∫ 1

0

G(s, s)fn(s, x(s))ds+A(fn(s, x(s)))γψ(1) +B(fn(s, x(s)))γφ(0)

≥ γ
[ ∫ 1

0

G(s, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(1) +B(fn(s, x(s)))φ(0)
]
.

(2.20)
Then, (2.19) and (2.20) yield

(Tnx)(t) ≥ γ‖Tnx‖.

Hence Tnx ∈ Q. �

3. Main results

In this section, we present our main results as follows.

Theorem 3.1. Suppose that (H1)–(H3) hold and there exist numbers R > 0 and
L > 0 such that ∫ 1

0

G(s, s)h(s)ds <
R

M̃(1 +Aψ(1) +Bφ(0))
, (3.1)

Lγ2

∫ 1−τ

τ

G(s, s)ds > 1, lim inf
x→+∞

min
τ≤t≤1−τ

f(t, x)
x

> L. (3.2)

Then (1.1)-(1.2) has at least one positive solution, where M̃ = maxu∈[γR,1+R] g(u),
γ is defined in Remark 2.2 and A,B are defined by (2.16) and (2.17), respectively.

Proof. Firstly, we shall prove that when n is sufficiently large, we have

Tnx 6= λx, x ∈ ∂QR, λ ≥ 1, (3.3)

where QR = {x ∈ Q : ‖x‖ < R} for R > 0. In fact, if there exists x0 ∈ ∂QR,
and λ0 ≥ 1 such that λ0x0 = Tnx0, then x0(t) ≤ Tnx0(t) for t ∈ [0, 1] and any n.
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Choose a sufficiently large n satisfying n > 1
γR . Then we have

x0(t) ≤ (Tnx0)(t)

=
∫ 1

0

G(t, s)fn(s, x0(s))ds+A(fn(s, x0(s)))ψ(t) +B(fn(s, x0(s)))φ(t)

≤
∫ 1

0

G(s, s)fn(s, x0(s))ds+A(fn(s, x0(s)))ψ(1) +B(fn(s, x0(s)))φ(0)

≤ (1 +Aψ(1) +Bφ(0))
∫ 1

0

G(s, s)fn(s, x0(s))ds

≤ (1 +Aψ(1) +Bφ(0))
∫ 1

0

G(s, s)h(s)g
(
max{ 1

n
, x0(s)}

)
ds

≤ (1 +Aψ(1) +Bφ(0))M̃
∫ 1

0

G(s, s)h(s)ds < R.

(3.4)
Therefore, by (3.4) we have ‖x0‖ < R, which is a contradiction to x0 ∈ ∂QR. So
applying Lemma 1.1, i(Tn, QR, Q) = 1.

Next, according to (3.2), there exists R1 such that x > R1 implies

f(t, x) > Lx, t ∈ [τ, 1− τ ]. (3.5)

Choose R′ > {R, γ−1R1}. When n being sufficiently large we can claim that

Tnx 6= λx, ∀x ∈ ∂QR′ , λ ∈ (0, 1], (3.6)

where Q′R = {x ∈ Q : ‖x‖ < R′}. Suppose (3.6) is not true, then there exist
x1 ∈ ∂QR′ and λ′ ∈ (0, 1] such that λ′x1 = Tnx1. Similarly, we choose sufficiently
large n satisfying that n > 1

γR′ . Therefore, by (3.5) we have

x1(t) ≥ (Tnx1)(t)

=
∫ 1

0

G(t, s)fn(s, x1(s))ds+A(fn(s, x1(s)))ψ(t) +B(fn(s, x1(s)))φ(t)

≥
∫ 1

0

G(t, s)fn(s, x1(s))ds

≥ γ

∫ 1−τ

τ

G(s, s)fn(s, x1(s))ds

≥ Lγ

∫ 1−τ

τ

G(s, s)x1(s)ds

≥ LR′γ2

∫ 1−τ

τ

G(s, s)ds.

This is a contradiction to x1 ∈ ∂QR′ . Consequently, (3.6) holds. Furthermore, for
each x ∈ ∂QR,

‖Tnx‖ ≥
∫ 1

0

G(t, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(t) +B(fn(s, x(s)))φ(t)

≥
∫ 1

0

G(t, s)fn(s, x(s))ds
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≥ γ

∫ 1−τ

τ

G(s, s)fn(s, x(s))ds

≥ Lγ

∫ 1−τ

τ

G(s, s)x(s)ds

≥ LR′γ2

∫ 1−τ

τ

G(s, s)ds.

So infx∈∂QR′ ‖Tnx‖ > 0. Thus from Lemma 1.2, i(Tn, QR′ , Q) = 0.
By the additivity of fixed point index, we know that

i(Tn, QR′ \QR, Q) = i(Tn, QR′ , Q)− i(Tn, QR, Q) = −1.

As a result, there exist xn ∈ QR′ \ QR satisfying Tnxn = xn provided that n is
sufficiently large.

Without loss of generality, suppose Tnxn = xn, n ≥ n0. Let D = {xn}n≥n0 be
the sequence of solutions to (2.14). It is not difficult to prove that D is uniformly
bounded. Next we show {xn}n≥n0 is equicontinuous on [0, 1]. It is obvious that
we only need to prove limt→0+(xn(t) − xn(0)) = 0, limt→1−(xn(t) − xn(1)) = 0
uniformly with respect to n ≥ n0 and D is equicontinuous on [σ, 1− σ] ⊂ (0, 1) for
σ ∈ (0, 1/2).

Now we prove that

lim
t→0+

(xn(t)− xn(0)) = 0, uniformly with respect to n ≥ n0. (3.7)

According to (2.12),∣∣xn(t)− xn(0)
∣∣

=
∣∣∣ ∫ 1

0

G(t, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(t) +B(fn(s, x(s)))φ(t)

−
∫ 1

0

G(0, s)fn(s, x(s))ds−A(fn(s, x(s))ψ(0)−B(fn(s, x(s))φ(0)
∣∣∣

=
1
ρ
φ(t)

∫ t

0

ψ(s)fn(s, x(s))ds+
1
ρ
(ψ(t)− ψ(0))

∫ 1

t

φ(s)fn(s, x(s))ds (3.8)

− 1
ρ
φ(0)

∫ t

0

ψ(s)fn(s, x(s))ds+A(fn(s, x(s)))(ψ(t)− ψ(0))

+B(fn(s, x(s)))(φ(t)− φ(0))

≤ 1
ρ
φ(t)

∫ t

0

ψ(s)h(s)g
(
max{ 1

n
, x(s)}

)
ds

+
1
ρ
(ψ(t)− ψ(0))

∫ 1

t

φ(s)h(s)g
(
max{ 1

n
, x(s)}

)
ds

− 1
ρ
φ(0)

∫ t

0

ψ(s)h(s)g
(
max{ 1

n
, x(s)}

)
ds

+A
(
h(s)g

(
max{ 1

n
, x(s)}

))
(ψ(t)− ψ(0))

+B
(
h(s)g

(
max{ 1

n
, x(s)}

))
(φ(0)− φ(t))

≤ 1
ρ
M4φ(t)

∫ t

0

ψ(s)h(s)ds+
1
ρ
M4(ψ(t)− ψ(0))

∫ 1

t

φ(s)h(s)ds
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+
1
ρ
φ(0)M4

∫ t

0

ψ(s)h(s)ds+AM4(ψ(t)− ψ(0))
∫ 1

0

G(s, s)h(s)ds

+BM4(φ(0)− φ(t))
∫ 1

0

G(s, s)h(s)ds.

Since {xn(t)}n≥n0 is uniformly bounded, it follows that {g(xn)}n≥n0 is bounded.
Therefore, there exists a constant M4 such that ‖g(xn)‖ < M4 for n ≥ n0. This
together with (H3) and (3.8) show that we need to prove only that

lim
t→0+

1
ρ
φ(t)

∫ t

0

ψ(s)h(s)ds = 0, (3.9)

lim
t→0+

1
ρ
φ(0)

∫ t

0

ψ(s)h(s)ds = 0, (3.10)

lim
t→0+

1
ρ
(ψ(t)− ψ(0))

∫ 1

t

φ(s)h(s)ds = 0, (3.11)

lim
t→0+

(ψ(t)− ψ(0)) = 0, lim
t→0+

(φ(0)− φ(t)) = 0. (3.12)

Since ψ(t) and φ(t) are continuous on [0, 1], (3.12) holds. For all ε > 0, by the
absolutely continuity of integral function and (H3), there exists δ1 ∈ (0, 1

2 ) such
that t1, t2 ∈ [0, 1], |t1 − t2| < δ1 implies∣∣ ∫ t2

t1

G(s, s)h(s)ds
∣∣ < ε. (3.13)

Therefore, from (2.5) and (3.13), we have

1
ρ
φ(t)

∫ t

0

ψ(s)h(s)ds ≤
∫ t

0

G(s, s)h(s)ds < ε, t ∈ (0, δ1],

1
ρ
φ(0)

∫ t

0

ψ(s)h(s)ds ≤ φ(0)
φ(δ1)

∫ t

0

G(s, s)h(s)ds < ε, t ∈ (0, δ1];

i.e., (3.9) and (3.10) hold.

1
ρ
(ψ(t)− ψ(0))

∫ 1

t

φ(s)h(s)ds

≤ 1
ρ
ψ(t)

∫ δ1

t

φ(s)h(s)ds+
1
ρ
(ψ(t)− ψ(0))

∫ 1

δ1

φ(s)h(s)ds

≤
∫ δ1

t

G(s, s)h(s)ds+
ψ(t)− ψ(0)

ψ(δ1)

∫ 1

δ1

G(s, s)h(s)ds ≤ 2ε.

That is, (3.11) holds. By (3.9)-(3.12), (3.7) holds. Since

|xn(t)− xn(1)|

=
∣∣∣ ∫ 1

0

G(t, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(t) +B(fn(s, x(s)))φ(t)

−
∫ 1

0

G(1, s)fn(s, x(s))ds−A(fn(s, x(s))ψ(1)−B(fn(s, x(s))φ(1)
∣∣∣

≤ 1
ρ
(φ(t)− φ(1))

∫ t

0

ψ(s)fn(s, x(s))ds+
1
ρ
ψ(t)

∫ 1

t

φ(s)fn(s, x(s))ds
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− 1
ρ
φ(1)

∫ 1

t

ψ(s)fn(s, x(s))ds+A(fn(s, x(s)))(ψ(t)− ψ(1))

+B(fn(s, x(s)))(φ(t)− φ(1))

≤ 1
ρ
M4(φ(t)− φ(1))

∫ t

0

ψ(s)h(s)ds+
1
ρ
M4ψ(t)

∫ 1

t

φ(s)h(s)ds

+
1
ρ
φ(1)M4

∫ t

0

ψ(s)h(s)ds+AM4(ψ(1)− ψ(t))
∫ 1

0

G(s, s)h(s)ds

+BM4(φ(t)− φ(1))
∫ 1

0

G(s, s)h(s)ds,

similar to the above, we can easily prove that

lim
t→1−

(xn(t)− xn(1)) = 0, uniformly with respect to n ≥ n0. (3.14)

Next we prove that D is equicontinuous on [σ, 1 − σ] for any σ ∈ (0, 1/2). In
fact, for n ≥ n0, t1, t2 ∈ [σ, 1− σ] with t2 > t1, we have

|xn(t2)− xn(t1)|

=
∣∣∣ ∫ 1

0

G(t2, s)fn(s, x(s))ds+A(fn(s, x(s)))ψ(t2) +B(fn(s, x(s)))φ(t2)

−
∫ 1

0

G(t1, s)fn(s, x(s))ds−A(fn(s, x(s)))ψ(t1)−B(fn(s, x(s)))φ(t1)
∣∣∣

≤ 1
ρ
(φ(t2)− φ(t1))

∫ t1

0

ψ(s)fn(s, x(s))ds+
1
ρ
φ(t2)

∫ t2

t1

ψ(s)fn(s, x(s))ds

+
1
ρ
(ψ(t2)− ψ(t1))

∫ 1

t2

φ(s)fn(s, x(s))ds−
1
ρ
ψ(t1)

∫ t2

t1

φ(s)fn(s, x(s))ds

+A(fn(s, x(s)))(ψ(t2)− ψ(t1)) +B(fn(s, x(s)))(φ(t2)− φ(t1)).
(3.15)

By (2.5) and the monotonicity of ψ(t) and φ(t), we have

1
ρ

∫ t1

0

ψ(s)h(s)ds ≤ 1
d

∫ 1

0

G(s, s)h(s)ds, (3.16)

1
ρ

∫ 1

t2

φ(s)h(s)ds ≤ 1
b

∫ 1

0

G(s, s)h(s)ds, (3.17)

1
ρ
φ(t2)

∫ t2

t1

ψ(s)h(s)ds ≤
∫ t2

t1

G(s, s)h(s)ds, (3.18)

1
ρ
ψ(t1)

∫ t2

t1

φ(s)h(s)ds ≤
∫ t2

t1

G(s, s)h(s)ds. (3.19)

By (3.15)-(3.19), we have

|xn(t2)− xn(t1)|

≤M4(
1
b

+A)(ψ(t2)− ψ(t1))
∫ 1

0

G(s, s)h(s)ds

+M4(
1
d

+B)(φ(t1)− φ(t2))
∫ 1

0

G(s, s)h(s)ds+ 2M4

∫ t2

t1

G(s, s)h(s)ds.
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By the above inequality, (H3), (3.9)-(3.12), and continuity of ψ(t), φ(t), D is
equicontinuous on [σ, 1− σ].

From the above proof, we can know D is equicontinuous on [0, 1]. It follows
from Ascoli-Arzela’s theorem that the sequence {xn}n≥n0 has a subsequence which
uniformly converges on [0, 1]. Without loss of generality, we assume that {xn} itself
uniformly converges to x on [0, 1]. According to the Lebesgue’s dominated theorem,
we know that x is the positive solution of (1.1)-(1.2). �
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