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EXPONENTIAL ATTRACTORS FOR A NONCLASSICAL
DIFFUSION EQUATION

YONG-FENG LIU, QIAOZHEN MA

ABSTRACT. In this article, we prove the existence of exponential attractors for
a nonclassical diffusion equation in H2(2) N HE(€2) when the space dimension
is less than 4.

1. INTRODUCTION

Let © be an open bounded set of R® with smooth boundary 9€2. We consider
the equation

up — Aug — Au+ f(u) = g(z), in Q xRy, (1.1)
u=20, on 0Q, (1.2)
u(z,0) =up, z€Q. (1.3)

This equation is a special form of the nonclassical diffusion equation used in fluid
mechanics, solid mechanics and heat conduction theory [I, 4]. Existence of the
global attractors for problem — was studied originally by Kalantarov in
[3] in the Hilbert space H}(2). In recent years, many authors have proved the
existence of global attractors under different assumptions, [3} 6l [7, @] in the Hilbert
space H}(Q), and [5, §] in the Hilbert space H2(2) N H}(Q). In this paper, we
study the existence of exponential attractors in the Hilbert space H2(2) N H ().
In this article the nonlinear function satisfies the following conditions:

(G1) There exists [ > 0 such that f'(s) > —I for all s € R;
(G2) there exists k1 > 0 such that f/(s) < k1(1 + |s|?) for all s € R;
(G3) liminf|y_ o F(s)/s? > 0, where

s
F(s)= [ fr)dr
0
(G4) there exists k2 > 0 such that
.. . 8f(s) — koF(s
lim inf M > 0.
|s|—oc0 S
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The main results of this paper will be stated as Theorem [3.10] below.

2. PRELIMINARIES

Let H = L?(Q), Vi = HL(Q) , Vo = H*(Q) N H (2). We denote by (-,-) denote
the scalar product, and || - || the norm of H. The scalar product in V; and V5 are
denoted by

((w,v)) = / VuVudz, Vu,ve Vi,
Q

[u,v] = / AuAvdz, Yu,v e Va.
Q

The corresponding norms are denoted by || - ||y, || - |l5- It is well known that the
norm || - ||, is equivalent to the usual norm of V; for s = 1,2. Let X be a separable
Hilbert space and % be a compact subset of X, {S(¢) }+>0 be a nonlinear continuous
semigroup that leaves the set # invariant and &/ = Ny~ S(t) A, that is, & is a
global attractor for {S(¢)};>0 on A.

Definition 2.1 ([2]). A compact set & C .# C 2 is called an exponential attractor
for (S(¢), #) if:
(1) A has finite fractal dimension;
(2) A is a positive invariant set of S(t) : S(t).# C ., for all t > 0;
(3) A is an exponentially attracting set for the semigroup {S(¢)}+>0; i.e. there
exist universal constants «,3 > 0 such that

dist x (S(t)u, #) < ae™P', Yuec B, t>0,
where dist denotes the nonsymmetric Hausdorff distance between sets.

A sufficient condition for the existence of an exponential attractor depends on a
dichotomy principle called the squeezing property; we recall this property as follows.

Definition 2.2 ([2]). A continuous semigroup of operators {S(t)};>o is said to
satisfy the squeezing property on £ if there exists ¢, > 0 such that S, = S(t.)
satisfies that there exists an orthogonal projection operator P of rank Ny such
that, for every v and v in 4, either

(I = P)(S(t)ur — S(ta)ug)||x < [[P(S(t)ur — S(ta)us)||x, or
I(t.us = (e Jualx < Gl = wallx.

Definition 2.3 ([2]). For every u, v in the compact set A, if there exists a local
bounded function I(¢) such that
15w = S(t)vllx <U(t)u —vl|x,

then S(t) is Lipschitz continuous in %. Here I(t) does not depend on u or v.

3. EXPONENTIAL ATTRACTOR IN V5

Lemma 3.1 ([§]). Assume that g € V, (s = 1,2). Then for each ug € Vi the
problem (1.1)-(1.3) has a unique solution u = u(t) = u(t;ug) with u € C1([0,7), Vs)
on some interval [0,7). Also for each t fized, u is continuous in ug.
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Lemma 3.2 ([3]). Assume that g € H, then for any R > 0, there exist positive
constants E1(R), p1 and t1(R) such that for every solution u of problem (L.1)-(L.3)),

flullp < E1(R), t>0,
flullh < p1, t>ti(R),

provided ||upll1 < R.

Lemma 3.3 ([8]). Assume g € Vi, then for any R > 0, there exist positive constants
E5(R), p2 and ta(R) such that for every solution u of problem (1.1)-(1.3),

lull2 < E2(R), t>0,
lull2 < p2, t>ta2(R),

provided ||ugll2 < R.

Remark 3.4. From the proof of Lemma [8 Theorem 3.2], we obtain

t+1
/ (el + Juel2) < m,
t

where m is a positive constant.
According to Lemmas [3.2] and [3-3] we have
Bo = {u € Va :|[Vull < py, [|Aul| < po} (3.1)

is a compact absorbing set of a semigroup of operators {S(t)}:>0 generated by
(1.1)-(L.3). Namely, for any given ug € Va, there exists T' = T'(ug) > 0 such that
[IS(®)uo|| < p, for all ¢ > T. Hence

B = UOStSTS(t)QO
is a compact positive invariant set in V5 under S(¢).
Lemma 3.5 ([8]). Assume that f € C?(R;R) and satisfies (G1)—(G4) with f(0) =
0, g € Vi. Then the semigroup S(t) generated by (L.1)—(1.3) possesses a global
attractor of in V.

Lemma 3.6. Assume that f satisfies (G1)—(G4), u(t),v(t) are two solutions of
(1.1)—(1.3) with initial values ug,vo € B, then

lu(t) = v ()2 < e u(0) — v(0)]l2 (3.2)
Proof. Setting w(t) = u(t) — v(t), we see that w(t) satisfies

wy — Awy — Aw + f(u) — f(v) =0. (3.3)
Taking the inner product with —Aw of , we obtain

1d

5 77 (1AWl + [1Vwl®) + [|Awlf? + (f(u) = f(v), —Aw) = 0. (3-4)
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Using Hg(2) € L5(Q) and (G2), it follows that

| [ ()= o) Awal

< / |f/(Ou+ (1 — 0)v)||w||Aw|dx (0 <6 < 1)
Q
c/(1+ luf2 + [o]?)|w]|Aw| dz (3.5)
Q

< c/ \w||Aw|dm—|—c/ \u|2|w||Aw|dx—|—c/ |v|?|w|| Aw| da
Q Q Q
< dlw|||Awl| + cllull§[[wlls || Aw] + cllo][§]wlls]| Awl.
Since £ is a bounded absorbing set given by (3.1)), ug,vo € £, from (3.5 we get

Aw|? ¢«
[0 - senswasl < dvulisu) < 225 - Spwup, o)
where ¢; is dependent on p; and ps. Combining (3.4) with (3.6]), we deduce that
d
%(IIA@UH2 +[[Vl?) + [[Aw|* < e[V (3.7)
This yields
d
Z([Aw]? + [[Vw]?) < ex([Vw]]* + [ Aw]?). (3.8)

By the Gronwall Lemma, we get
[Aw@®)? + [Vw@)I* < e (|Aw(0)]* + [Vw(0)]).
d
Lemma 3.7. Under the assumptions of Lemma[3.5, there exists L > 0 such that
sup;_g luc(®)|l2 < L, Vt>0.

U €
Proof. Differentiating (1.1) with respect to time and denoting v = wu;, we have
— Avy — Av = — f'(u)v (3.9)

Multiplying the above equality by —Awv and using (G1),

1d

2dt(HVsz + [[A0?) + [ Av]? < 1|Vl (3.10)
This inequality and Remark by the uniform Gronwall lemma, complete the
proof. ([

Lemma 3.8. Under the assumptions of lemma[3.8, for every T > 0, the mapping
(t,u) — S(t)u is Lipschitz continuous on [0,T] x A.

Proof. For uy, us € B and t1, t2 € [0,T] we have
[S(t)ur — S(E2)uzllz < [|S(t)ur — S(tr)uzllz + 1S (t1)uz — S(t2)uzf2 - (3.11)
The fist term of the above inequality is handled by estimate (3.2). For the second

term, we have

to
lu(tr) — u(t2)l2 < I/ l[ue(y)ll2dy| < Lty — ta. (3.12)
t1
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Hence
[S(t1)ur — S(t2)uzll2 < L{[t1 — ta| + [Jur — uzl2]. (3.13)
for some L = L(T) > 0. O

Lemma 3.9. Assume that [ satisfies (G1)-(G4), u(t),v(t) are two solutions of
problem (1.1)—(1.3)) with initial values ug, vy € A, then the semigroup S(t) generated

from (L.1)—(1.3|) satisfies the squeezing property; i.e., there exist t, and N = Ny =
N(t.) such that
[(I = P)(S(t)uo — S(ts)vo)ll2 > [[P(S(te)uo — S(tx)vo)ll2
then )
15(t)uo = S(tvollz < glluo = voll2.

Proof. We consider the operator A = —A. Since A is self-adjoint, positive operator
and has a compact inverse, there exists a complete set of eigenvectors {w;}5°; in
H, the corresponding eigenvalues {\; }$2, satisfy

Aw; = w;, 0< A <A< <N <= 400, 1 — 400,

We set Hy = span{wi,ws,...,wn}. Py is the orthogonal projection onto Hy, and
QN = I — Py is the orthogonal projection onto the orthogonal complement of Hy,
w = Pyw + QNw = p+ g. Assume that ||Pyvw(t)]] < [|@nw(t)], taking the inner
product of (3.3)) with —Agqg, we obtain

1 d
) dt(||A¢IH2 +1IVall?) + 1 Aql* + (f(u) = f(v), ~Aq) = 0. (3.14)
Similar to , it leads to
’/ v))Agdz| < c/ |w||Aq|da:—|—c/ lu|?|w||Aq| d

(3.15)
e / [of2 ||| Ag dz.
Q

Since
/Q|U|2|w||AQ| da < Jul| % lwll| Aql

and by the Agmon inequality: |[ulloc < c||Vu|'/?||Aul/*/?, and (1), from (3.15)
we obtain
||AQ||

| (7w = Fo)Aqds] < clul Ad] <

where ¢y depends on p; and ps. Combining (3.14)) and (3.16)), we deduce that

|| [ (3.16)

d
S (12dl” + [IVal®) + Ag|* < es ] (3.17)

Furthermore, by lemma [3.6] and the Poincaré inequality, we have
[Aq|?

AN1 |
2 2

Va[* < callwl|* < e2lp + g
< 2ealal” < 2eM3, IVl (315,
= C3)‘N+1||A7UH2

< 03)\N+1eclt||Aw(0)H2.

d
S 1Al + [Val?) + 150 +
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Since A1 < Ant1,

[Aq|®
2

d A o
S 1A + IValP) + 155 + 2Vl < ed et JAwO) (3.19)

Let ¢4 = min{%, %} Then

d - c
%(”AQHQ +1Val?) + ca(lAql® + [ Vall*) < esA e [Aw(0)[*. (3.20)
By the Gronwall Lemma, we conclude that
[Ag@®1” + VeI < e ([Aq0)]* + [Va(0)[[?) + esAy’y e | Aw(0)?
< cgle 4 + 67)\5,3_166”)||Aw(0)|\2.
Hence
[Aw(®)]* < 2| Ag(®)[|* < es(e™™" + cory? ™) | Aw(0)12. (3.21)
Choose t, > 0, such that cge= %t < 1/128, and then let ¢, be fixed, and N large
enough , such that 0809)\;\,11601’5* < 1/128. We obtain

8w(t)| < glAw ).
(]

Theorem 3.10. Assume that f € C?(R;R) and satisfies (G1)-(G4) with f(0) =0,
g € V1. Then there exists an exponential attractor M C Vay for the semigroup of

operators {S(t) }+>0 generated by (1.1))—(1.3).

Proof. From Lemma S(t.) satisfies the squeezing property for some ¢, > 0. Ac-

cording to [2, Theorem 2.1}, there exists an exponential attractor .#, for (S(t.), A)

and we set

M= | St)..
0<t<t.

By Lemma (t,u) — S(t)u is Lipschitz continuous from [0, 7] x & to Z. Then as

in the proof of [2, Theorem 3.1], .# is an exponential attractor for ({S(¢)}i>0, #).
O
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