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STABILIZATION OF SOLUTIONS FOR SEMILINEAR
PARABOLIC SYSTEMS AS |x| → ∞

ALEXANDER GLADKOV

Abstract. We prove that solutions of the Cauchy problem for semilinear par-
abolic systems converge to solutions of the Cauchy problem for a corresponding

systems of ordinary differential equations, as |x| → ∞.

1. Introduction

In this paper we consider the Cauchy problem for the system of semilinear par-
abolic equations

u1t = a2
1∆u1 + f1(x, t, u1, . . . , uk),

. . .

ukt = a2
k∆uk + fk(x, t, u1, . . . , uk),

(1.1)

subject to the initial conditions

u1(x, 0) = ϕ1(x), . . . , uk(x, 0) = ϕk(x), (1.2)

where x ∈ Rn, n ≥ 1, 0 < t < T0, T0 ≤ ∞. Put ST = Rn × [0, T ), Rk
+ = {x ∈ Rk :

xi ≥ 0, i = 1, . . . , k}. We assume that the data of problem (1.1)-(1.2) satisfy the
following conditions:

fi(x, t, u1, . . . , uk), i = 1, . . . , k are defined and locally Hölder con-
tinuous functions in Rn × [0, T0)× Rk

+ and ϕi(x), i = 1, . . . , k are
continuous functions in Rn;

(1.3)

fi(x, t, u1, . . . , uk), i = 1, . . . , k do not decrease in u1, . . . , uk; (1.4)

fi(x, t, u1, . . . , uk) → f̄i(t, u1, . . . , uk), i = 1, . . . , k, as |x| → ∞
uniformly on any bounded subset of [0, T0)× Rk

+; (1.5)

0 ≤ fi(x, t, u1, . . . , uk) ≤ f̄i(t, u1, . . . , uk), i = 1, . . . , k; (1.6)

0 ≤ ϕi(x) ≤ ci, lim
|x|→∞

ϕi(x) = ci, ci ≥ 0, i = 1, . . . , k. (1.7)

The above assumptions are satisfied, in particular, for large class problems (1.1)-
(1.2), whose solutions exist only on a finite time interval. Note also that the solution
of (1.1)-(1.2) may not be unique.
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Let us consider the Cauchy problem for the system of ordinary differential equa-
tions

g′1 = f̄1(t, g1, . . . , gk),
. . .

g′k = f̄k(t, g1, . . . , gk),

(1.8)

subject to the initial conditions

g1(0) = c1, . . . , gk(0) = ck. (1.9)

We suppose that the minimal nonnegative solution gi(t), i = 1, . . . , k, of (1.8)-(1.9)
exists on [0, T0). The main result of the paper is the following theorem.

Theorem 1.1. Let ui(x, t) be the minimal nonnegative solution of the problem
(1.1)-(1.2). Then

ui(x, t) → gi(t), i = 1, . . . , k, as |x| → ∞ (1.10)

uniformly for t ∈ [0, T ], (T < T0).

The behavior of solutions of parabolic equations as |x| → ∞ has been investi-
gated by several authors. The case of one semilinear parabolic equation on half line
has been considered in [1, 5] for nonlinearities f(x, t, u) = up and f(x, t, u) = exp u.
The same problem with general nonlinearity f(x, t, u) has been investigated in [4].
The behavior of solutions of nonlinear parabolic equations for the Cauchy problem
as |x| → ∞ has been analyzed in [2, 3, 6, 7].

The plan of this paper is as follows. In the next section, the existence of a
minimal solution for the problem (1.1)-(1.2) is proved. The proof of Theorem 1.1
is given in Section 3.

2. Existence of a minimal solution

We prove the existence of a minimal solution for (1.1)-(1.2). It is well known
that (1.1)-(1.2) is equivalent to the system

u1(x, t) =
∫

Rn

E1(x− y, t)ϕ1(y) dy

+
∫ t

0

∫
Rn

E1(x− y, t− τ)f1(y, τ, u1, . . . , uk) dy dτ,

. . .

uk(x, t) =
∫

Rn

Ek(x− y, t)ϕk(y) dy

+
∫ t

0

∫
Rn

Ek(x− y, t− τ)fk(y, τ, u1, . . . , uk) dy dτ,

(2.1)

where Ei(x, t) = (2ai

√
πt)−n exp(−|x|2/[4a2

i t]), i = 1, . . . , k, are the fundamental
solutions of the correspondent heat equations.

Let ui0(x, t) ≡ 0, i = 1, . . . , k. We define sequences of functions uim(x, t),
i = 1, . . . , k, m ∈ N, the following way

uim(x, t) =
∫

Rn

Ei(x− y, t)ϕi(y) dy

+
∫ t

0

∫
Rn

Ei(x− y, t− τ)fi(y, τ, u1(m−1), . . . , uk(m−1)) dy dτ.

(2.2)
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Obviously, the functions gi(t), i = 1, . . . , k, satisfy the integral equations

gi(t) =
∫

Rn

Ei(x− y, t)ci dy +
∫ t

0

∫
Rn

Ei(x− y, t− τ)f̄i(τ, g1, . . . , gk) dy dτ. (2.3)

Using (1.4), (1.6), (2.2) and (2.3), we have

0 ≤ ui(m−1)(x, t) ≤ uim(x, t) ≤ gi(t), i = 1, . . . , k, m ∈ N. (2.4)

By the Lebesgue theorem, and from (2.2) and (2.4), we obtain that the sequences
uim(x, t) converge to functions ui(x, t) that satisfy (2.1), which means, ones satisfy
the problem (1.1)-(1.2). Let vi(x, t), i = 1, . . . , k, be any other solution of (1.1)-
(1.2). By induction on m it is easy to prove that uim(x, t) ≤ vi(x, t), i = 1, . . . , k,
m ∈ N. Therefore, ui(x, t), i = 1, . . . , k, is the minimal nonnegative solution of this
problem. We have proved the following statement.

Theorem 2.1. There exists a minimal nonnegative solution ui(x, t), i = 1, . . . , k,
of the problem (1.1)-(1.2) in ST0 that satisfies the inequalities

0 ≤ uim(x, t) ≤ ui(x, t) ≤ gi(t), (x, t) ∈ ST0 , i = 1, . . . , k, m ∈ N. (2.5)

3. Behavior of a minimal solution as |x| → ∞

We show that for the minimal nonnegative solution of (1.1)-(1.2), property (1.10)
is satisfied. We define sequences of functions gim(t), i = 1, . . . , k, m = 0, 1, ..., as
follows

gi0(t) ≡ 0, gim(t) =
∫ t

0

f̄i(τ, g1(m−1), . . . , gk(m−1)) dτ + ci, i = 1, . . . , k, m ∈ N.

(3.1)
Obviously, the sequences gim(t) are monotonically nondecreasing, converging to
the minimal nonnegative solution gi(t), i = 1, . . . , k, of problem (1.8)-(1.9) on any
interval [0, T ], (T < T0), and

gim(t) ≤ gi(t), i = 1, . . . , k, m ∈ N. (3.2)

According to the Dini criterion on uniform convergence of functional sequences, we
have

gim(t) → gi(t), i = 1, . . . , k, as m →∞ uniformly on [0, T ]. (3.3)

It is easy to prove that gim(t), i = 1, . . . , k, m ∈ N, satisfy the following equations

gim(t) =
∫ t

0

∫
Rn

Ei(x− y, t− τ)f̄i(τ, g1(m−1), . . . , gk(m−1)) dy dτ + ci. (3.4)

Now we prove an auxiliary lemma.

Lemma 3.1. For any δ > 0, 0 < T < T0, i = 1, . . . , k, and m ≥ 0 there exists a
constant p such that if |x| > p and 0 ≤ t ≤ T , then

|uim(x, t)− gim(x, t)| < δ. (3.5)

Proof. We use induction on m. It is obviously that ui0(x, t)−gi0(t) = 0, i = 1, . . . , k.
We assume that (3.5) holds for m = l, and we shall prove the inequality for m = l+1.
By the induction assumption, for any ε1 > 0 and 0 < T < T0 there exists p1 such
that

|uil(x, t)− gil(t)| < ε1, i = 1, . . . , k, (3.6)
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if |x| > p1 and 0 ≤ t ≤ T . Put B(q) = {x ∈ Rn : |x| ≤ q}. From (2.2) and (3.4),
we have

|ui(l+1) − gi(l+1)|

≤
∣∣ ∫ t

0

∫
B(q)

Ei(x− y, t− τ)(fi(y, τ, u1l, . . . , ukl)− f̄i(τ, g1l, . . . , gkl)) dy dτ
∣∣

+
∣∣ ∫ t

0

∫
Rn\B(q)

Ei(x− y, t− τ)(fi(y, τ, u1l, . . . , ukl)− f̄i(τ, u1l, . . . , ukl)) dy dτ
∣∣

+
∣∣ ∫ t

0

∫
Rn\B(q)

Ei(x− y, t− τ)(f̄i(τ, u1l, . . . , ukl)− f̄i(τ, g1l, . . . , gkl)) dy dτ
∣∣

+
∣∣ ∫

B(q)

Ei(x− y, t)(ϕi(y)− ci) dy
∣∣ +

∣∣ ∫
Rn\B(q)

Ei(x− y, t)(ϕi(y)− ci) dy
∣∣,
(3.7)

where q will be choose later. We denote by Ij , j = 1, . . . , 5 the integrals from the
right-hand side of (3.7), respectively. Obviously, f̄i(t, u1, . . . , uk), i = 1, . . . , k, are
uniformly continuous on any compact subset of [0, T ] × Rk

+. Using this and (1.5),
(1.7), (2.4), (3.2), (3.6) for suitable ε1 and q, we get

|I2|+ |I3|+ |I5| < δ/2 if |x| > p2 (3.8)

for some p2. Since Ei(x− y, t) → 0 as |x| → ∞ uniformly on [0, T ]×B(q), we have

|I1|+ |I4| < δ/2 if |x| > p3 (3.9)

for some p3. Now (3.5) follows from (3.8), (3.9). �

Proof of Theorem 1.1. We fix a positive ε. From Lemma 3.1 and (3.3), for suitable
m and q, we have

|uim(x, t)−gi(t)| ≤ |uim(x, t)−gim(t)|+ |gim(t)−gi(t)| < ε, i = 1, . . . , k, (3.10)

if |x| > q and 0 ≤ t ≤ T . From (2.5) and (3.10) we obtain

gi(t)− ε ≤ uim(x, t) ≤ ui(x, t) ≤ gi(t), i = 1, . . . , k,

for |x| > q and 0 ≤ t ≤ T . The statement of the theorem follows immediately from
these arguments. �
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