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SOLUTIONS TO SECOND ORDER NON-HOMOGENEOUS
MULTI-POINT BVPS USING A FIXED-POINT THEOREM

YUJI LIU

ABSTRACT. In this article, we study five non-homogeneous multi-point bound-
ary-value problems (BVPs) of second order differential equations with the one-
dimensional p-Laplacian. These problems have a common equation (in differ-
ent function domains) and different boundary conditions. We find conditions
that guarantee the existence of at least three positive solutions. The results
obtained generalize several known ones and are illustrated by examples. It
is also shown that the approach for getting three positive solutions by using
multi-fixed-point theorems can be extended to nonhomogeneous BVPs. The
emphasis is on the nonhomogeneous boundary conditions and the nonlinear
term involving first order derivative of the unknown. Some open problems are
also proposed.

1. INTRODUCTION

Multi-point boundary-value problems (BVPs) for second order differential equa-
tions without p-Laplacian have received a wide attention because of their potential
applications and BVPs are fascinating and challenging fields of study, one may
see the textbook by Ge [I4]. There are four classes of such BVPs (including their
special cases) studied in known papers:

2(0) + F(t,2(0),2/ (1) =0, € (0,1),

2(0)= Y ain(e), o)=Y fale) -y

2(0) + f(t,2(t),2/ (1) =0, € (0,1),

2'(0) = Z ax' (&), (1) = Zﬂix(&),
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2" (t) + f(t,z(t),2'(t)) =0, t € (0,1),

2(0) =Y aia(e), /(1) =3 g (&), (13)
i=1 i=1
and
2" (t) + f(t,z(t),2'(t)) =0, te€(0,1),
(1.4)

2(0) =Y aa'(&), 2/(1)=>_ Bu'(&),
=1 =1

where 0 < & < -+ < &n <1, a;,0; € R and f is a continuous function. The main
methods to get solutions or multiple positive solutions of these BVPs are as follows:

(i) fixed point index theory [I7, [I8], [63, [64], or fixed point theorems in cones in
Banach spaces [B] [7, [15] [35] [41], [42] 4], such as the Guo-Krasnoselskii’s fixed-point
theorem [3, 44, 48, 52, B3, B7); Leggett-Williams theorems [33] 86l (0], the five-
functional fixed point theorem [2]; the fixed point theorem of Avery and Peterson
[26], etc.

(ii) Mawhin’s continuation theorem [I0] 19} 27, 28], B3] 34, (38| [39, [40] 42];
(iii) the shooting methods [29] [51];

(iv) upper and lower solution methods and monotone iterative techniques [11 4]
[67]; upper and lower solution methods and Leray-Schauder degree theory [23] [24]
[25, [47], or the approach of a combination of nonlinear alternative of Leray-Schauder
with the properties of the associated vector field at the (z,z") plane [12];

(v) the critical point theory and variational methods [30];

(vi) topological degree theory [13], [14]; the Schauder’s fixed point theorem in
suitable Banach space [36, [41], [42] [43] [49].

In all the above papers, the boundary conditions (BCs) are homogeneous. How-
ever, in many applications, BVPs consist of differential equations coupled with
nonhomogeneous BCs, for example

1
y' =50 +y?)%, te(ab),

yla) = aa, y(b)=p
and

R0
EEETCE N

yla) =, yb) =4

which are very well known and were proposed in 1690 and 1696, respectively. In
1964, the BVPs studied by Zhidkov and Shirikov [66] and by Lee [3I] are also
nonhomogeneous.

There are also several papers concerned with the existence of positive solutions
of BVPs for differential equations with non-homogeneous BCs. Ma Ruyun [45]
studied existence of positive solutions of the following BVP consisting of second
order differential equations and three-point BC

2"(t) +a(t) f(z(t)) =0, te(0,1),

2(0) =0, =x(1)—ax(n) =b, (1.5)
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Kwong and Kong [29] studied the BVP
y'(t) = —f(ty(t), 0<t<L,
sin 0y (0) — cos 0y’ (0) = 0,

m—2

y(1) = > aiy(&) =b>0,

i=1

(1.6)

where &; € (0,1),a; > 0,60 € [0,37/4], f is a nonnegative and continuous function.
Under some assumptions, it was proved that there exists a constant b* > 0 such
that: has at least two positive solutions if b € (0, b*); has at least one
solution if b = 0 or b = b*; has no positive solution if b > b*.

Palamides [[51]], under superlinear and/or sublinear growth rate in f, proved the
existence of positive solutions (and monotone in some cases) of the boundary-value

problem
y'(t) =—f(ty®),y' 1), 0<t<l,
, w2 (1.7)
ay(0) = By'(0) =0, y(1) = > (&) =b>0,
i=1

where a > 0, 8 > 0, the function f is continuous, and f(t,y,y’) > 0, for all ¢t € [0, 1],
y >0,y € R. The approach is based on an analysis of the corresponding vector
field on the face-plane and on Kneser’s property for the solution’s funnel.

Sun, Chen, Zhang and Wang [53] studied the existence of positive solutions for
the three-point boundary-value problem

o (t) +a(t)f(ut) =0, 0<t<1,

3]

m

W) =0, w()— 3 aulE) =b>0,

i=1

(1.8)

where & € (0,1), a; > 0 are given. It was proved that there exists b* > 0 such
that has at least one positive solution if b € (0,b*) and no positive solution
if b > b*. To study the existence of positive solutions of BVPs , , ,
, the Green’s functions of the corresponding problems are established and play
an important role in the proofs of the main results.

In recent papers, using lower and upper solutions methods, Kong and Kong
[23, 24, 25] established results for solutions and positive solutions of the following
two problems

() + F(t(t), 2 (1) =0, te(0,1),

P(0) = Y i (6) =M, a(1) = Y fra(e) = Ao )
and
2 (t) + f(t,z(t),2'(t)) =0, te(0,1),
(1.10)

z(0) — Z%ﬂﬁi) =X, (1) - Zﬁi$<fi) = Mg,

respectively. We note that the boundary conditions in [23] [24] are two-parameter
non-homogeneous BCs. There, the existence of lower and upper solutions with
certain relations are assumed.
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In recent years, there have been many exciting results concerning the existence
of positive solutions of BVPs of second order differential equations with p-Laplacian
subjected to different multi-point boundary conditions:

(")) + f(t, x(t),2'(t)) =0, t€(0,1),

2(0) = Yl all) = 3 (6. .
(B’ (1)) + f(t,2(1),2'(t) =0, t€(0,1),
, ., “ (1.12)
20) =Y (&), 2(1)=>_ Bix&),
=1 i=1
B’ (1)) + f(t,2(1),2'(£) =0, te€(0,1),
(1.13)

z(0) = Zaifﬂ(fz‘)a (1) = Zﬁifﬂ/(@‘)-

These results, can be found in [ 8, 0 [0, [T, 13, 20, 21, 22, B7, 54, 55, 56, 583,
59, 60, 611, [62] [65]. In above mentioned papers, to obtain positive solutions, two
kinds of assumptions are supposed. The first one is imposed on «;, 3;, the other
one called growth conditions is imposed on the nonlinearity f. To define a cone P
in Banach spaces and to define the nonlinear operator T': P — P are important
steps in the the proofs of the results.

It is easy to see that

2"(t)=-2, te(0,1),
z(0)=z(1)=0
has unique positive solution x(t) = —t2 + ¢, but the BVP
2'(t) = -2, te(0,1),
z(0)=A4, z(1)=1B

has positive solution z(t) = —t?+ (B — A+ 1)t + A if and only if A > 0 and B > 0.
It shows us that the presence of nonhomogeneous BCs can induce nonexistence of
positive solutions of a BVP.

Motivated by the facts mentioned above, this paper is concerned with the more
generalized BVPs for second order differential equation with p-Laplacian coupled
with nonhomogeneous multi-point BCs; i.e.,

[p(" W) + [t x(t),2'(t)) =0, t€(0,1),

'(0) = zm;aix’(gi) +A, 2(1) = igix(gi) + B, (1.14)
[qb(w’z(;))]’ + [t 2(t),2'() = Oj_lt € (0,1),
2(0) = zmjaix(gi) +A, 2(1)= zm:gix/(&) 4B (1.15)
[cﬁ(xj(j))]’ + f(t,z(t), 2" (t) = 02,:1 te(0,1),
(1.16)

2(0) = az’(0) + A, z(1) =) Bix(&)+ B,

i=1
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[6(2' (1) + f(t,z(t),2'(t) =0, te(0,1),
Z (&) + A, x'(l):Zﬂix'(&HB, (1.17)

—1
and

(")) + f(t, 2(t),2'(t)) =0, t€(0,1),
0) = Z%’I(ﬁz’) +A4, (1) =) Bw(&) + B,

=1
where 0 < & < -+ <£m<1 ABeR o;>0,aa>0,8 >0foralli=1,.
f is continuous and nonnegative, ¢ is called p-Laplacian, ¢(z) = |z|P~2x for T
and ¢(0) = 0 with p > 1, its inverse function is denoted by ¢! () with ¢—1(x
|z|972x for  # 0 and ¢~1(0) = 0 with 1/p+ 1/q = 1.

The purpose is to establish sufficient conditions for the existence of at least three
positive solutions for 7. The results in this paper are new since there
exists no paper concerned with the existence of at least three positive solutions of
these nonhomogeneous multi-point BVPs even when ¢(x) = x. Maybe it is the first
time to use the multi-fixed-point theorem to solve these kinds of BVPs.

The remainder of this paper is organized as follows: The main results are pre-
sented in Section 2 (Theorems [2.10} 2.16] 2-21] [2.25] [2.30). Some examples to show
the main results are given in Section 3.

(1.18)

1 o“

75
)

2. MAIN RESULTS

In this section, we first present some background definitions in Banach spaces
and state an important three fixed point theorem. Then the main results are given
and proved.

Definition 2.1. Let X be a semi-ordered real Banach space. The nonempty convex
closed subset P of X is called a cone in X if ax € P for all z € P and a > 0 and
rz € X and —z € X imply z = 0.

Definition 2.2. A map 9 : P — [0,+00) is a nonnegative continuous concave or
convex functional map provided 1 is nonnegative, continuous and satisfies

Y(te + (1 —t)y) = t(x) + (1 = 1)v(y),
Yt + (1= t)y) < t(x) + (1= )Y(y),
for all z,y € P and t € [0, 1].

Definition 2.3. An operator T; X — X is completely continuous if it is continuous
and maps bounded sets into relative compact sets.

Definition 2.4. Let a,b,c,d,h > 0 be positive constants, «, 1 be two nonneg-
ative continuous concave functionals on the cone P, «, 3,60 be three nonnegative
continuous convex functionals on the cone P. Define the convex sets:

={zxeP:|z| <c},
P(y,a;a,¢) ={x € P:a(z) > a, v(z) <c},
P(v,0,a5a,b,¢) ={x € P: ax) > a, 0(x) <b, v(z) < c},
Q(Y.B;,d,c) ={z € P: B(z) <d, y(z) < c},
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Q(y,B,¢sh,d,c) ={z € P:¢(x) = h, B(z) < d, y(z) < c}.

Lemma 2.5 ([2]). Let X be a real Banach space, P be a cone in X, o, be two
nonnegative continuous concave functionals on the cone P, v, 3,0 be three nonneg-
ative continuous convex functionals on the cone P. There exist constant M > 0
such that

alz) < B(x), x| < My(z) forallz € P.

Furthermore, Suppose that h,d,a,b,c > 0 are constants withd < a. LetT : P, — P,
be a completely continuous operator. If
(C1) {y € P(v,0,a;a,b,0)|a(z) > a} # 0 and o(Tx) > a for every x in
P(77 07 a; a, b7 C);
(C2) {y € Q(v,0,¢;h,d,c)|B(x) < d} # 0 and B(Tx) < d for every z in
Q(v,0,v¢;h,d, c);
(C3) a(Ty) > a fory € P(y,w;a,c) with 0(Ty) > b;
(C4) B(Tz) < d for each x € Q(v, B;,d, c) with ¥(Tx) < h,

then T has at least three fixed points y1, yo and y3 such that

Blyr) <d, aly2)>a, Blys)>d, ays) <a
Choose X = C1[0,1]. We call z <y for z,y € X if 2(t) < y(t) for all t € [0,1],

define the norm |[|z|| = max{max;c(o ) |z(t)], max,cjo 1 |x’(t)\} It is easy to see
that X is a semi-ordered real Banach space.
Choose k € (0,1/2), let 09 = min{k,1 — k} = k. For a cone P C X of the
Banach space X = C*[0, 1], define the functionals on P : P — R by
Y(y) = max [y'(t)], y € P, Bly) = max |y(t)], y € P,
te[0,1] te[0,1]
0(y) = t P, = i t P
(v) e @), y P a(y) o ()], y € P,

- t P.
¥(y) teglgllgk]\y()l,ye

It is easy to see that o, are two nonnegative continuous concave functionals on
the cone P, 7, 3,0 are three nonnegative continuous convex functionals on the cone
P and a(y) < B(y) for all y € P.

Lemma 2.6. Suppose that x € X, z(t) > 0 for all t € [0,1] and 2'(t) is decreasing
on [0,1]. Then
x(t) > min{t, 1 — t} max z(t), t € [0,1]. (2.1)
te(0,1]
Proof. Suppose x(tp) = max.ep,1]x(t). If t € (0,%9), we get that there exist 0 <
n <t <€ <ty such that

z(t) —x(0)  x(to) —2(0) _  tlx(to) — z(t)] — (to — O)[z(t) — 2(0)]

t—0 to -0 ttO
_Hto — B)a'(§) — (to — t)ta’ ()
tto
o o= t)2'(n) = (to — )ta’(n) _
= tto '

Then
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Similarly z(t) > (1 — t)x(to), for ¢t € (to,1). It follows that x(t) > min{¢t,1 —
t} max,ep,1] (t) for all £ € [0,1]. The proof is complete. O

2.1. Positive Solutions of (1.14)). First, we establish an existence result for three
decreasing positive solutions of (|1.14]). We use the following assumptions:

(H1) f:]0,1] x [h,+00) x (—00,0] — [0, +00) is continuous with f(¢,c+h,0) Z 0
on each sub-interval of [0,1], where h = %;

(H2) A<0,B>0;

(H3) o; >0, 8; > O satisfy D" a; <1, >0, 3 < 1,

(H4) h:[0,1] — [0,+00) is a continuous function and h(t) # 0 on each subinter-
val of [0,1].

Consider the boundary-value problem

6/ )] +h) =0, 1€ (0,1),
YO =Y o/ (6) = A y(1) ~ 3 A(e) =0, 2

Lemma 2.7. Suppose that (H2)—(H4) hold. If y is a solution of (2.2)), then y is
decreasing and positive on (0,1).

Proof. Suppose y satisfies (2.2)). It follows from the assumptions that y’ is decreas-
ing on [0, 1]. Then the BCs in (2.2)) and (H3) imply

y'(0) = Zaiy’(&) + A< Zaiy’(()) + A.
i=1 i=1

It follows that y'(0) < A(1 -1, ozi)_l < 0. We get y/(t) <0 for t € [0,1]. Then

y(1) = Zﬂiy(&) 2 Zﬂiy(1)~
i=1 i=1

So y(1) > 0. Then y(t) > y(1) > 0 for t € (0,1) since y'(¢) < 0 on [0, 1]. The proof
is complete. (I

Lemma 2.8. Suppose that (H2)—(H4) hold. If y is a solution of (2.2), then

y(t) = Bn + /Ot ¢! (Ah - /OS h(u)du)ds,
with
67N (An) = Yo (4, - 0 h(s)ds) + A, (2.3)

and
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where a = ¢ (ﬁ) and
ES RN
b= = — — h(s)ds.
d)( 1— Zi:l a; ) 1— ¢(1+Z%:1 ai) o (5) S

Proof. 1t follows from that
t s
= oy (0)) = [ h(uw)du)ds,
) =50+ [ 07 (o' (0) = [ hu)au)as

and BCs in (2.2)) imply that

0) = izm;awl(cé(y’(())) - /0& h(s)ds) + A, (2.4)
and
y(0) = 1_21@15[—/01 ¢‘1(¢(y’(0))—/05 h(u)du>ds
+§;ﬁl/ v¢’1(¢(y’(0))*/sh( )du)ds}
Let

It is easy to see that

G(a) =G(¢(1_£laz))
e e (i) A

On the other hand, one sees that

) 5 n(s)ds A
¢rl(b>_1_;ai¢ (- )_dfl(b)
e S h(s)ds
—1—i_21oéz¢ (1— A(rTT, o) o(UEEe )
- ¢( Y A )_1 L )fO
B A
B ALy ¢ 1+
¢ 1(¢( (172;';1%-)>_1 5,(1*2 ))IO )
VA T e AR S DY
21‘;%“5 (1+ (S ) T+ o
2 1—2710‘@:0

=1- o
Z 1+Zl 10@ 1+Zz 1(11
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Hence G(b) < 0. It is easy to know that % is continuous and decreasing on

(—00,0) and continuous and increasing on (0,4o0c), Hence G(a) > 0 and G(b) <0
and

. G(o) . Gl -
Jim ooy =teo Jlim omrs=1-) >0,

we get that there exists unique constant A, = ¢(y'(0)) € [b, a] such that (2.3]) holds.
The proof is completed. O

Note h = B/(1 = Y"1", ), and let 2:(t) — h = y(t). Then (1.14) is transformed

into the boundary-value problem

(o' () + f(t,y(t) + h,y/ (1) =0, te(0,1),
fzaiy'(&) =A Z y(&) =0, 25)

Let

P = {y € X :y(t) >0 for all t € [0,1], v'(t) < 0 is decreasing on [0, 1],
y(t) > min{t, (1 — )} max y(t) for all t € [0, 1]}.
te0,1]
Then P; is a cone in X. Since
t)| = |Zl 1 ﬂz (&) — 271 Biy(1) ‘
Zz 151
- 11— ZZ’;I B;  te[0,1]
S Bi(1-&)

= 1 _ ZZZI ﬁi ’7<y)7
we obtain s &)
i ﬁz 7
tfél[g)ﬁ ly(t)] < W’Y(y)

It is easy to see that there exists a constant M > 0 such that ||y|| < M~(y) for all
Yy € Pl.
Define the nonlinear operator 77 : P, — X by

t s
@0 =By + [ 07 (4, = [ fwy + by @)d)ds, e P
where A, satisfies
m &
=2 o (A= | Jsu() Hhy(9)ds) 4 (26
i=1

and B, satisfies

By:1_5721@(_/01¢—1(Ay—/Osf(u,y(u)+h,y’(u))du)ds

+ iﬂi /0g o7 (A, - /Osf(u,y(u) oy (w)du ) ds)
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Then for y € Py,

(T =~ [ (4, " Ftwsatw) + /() au) s

_ 1511152 i B; /; ot (Ay _ /OS fu,y(u) + h, y’(u))du) ds.

Lemma 2.9. Suppose that (H1)—-(H3) hold. It is easy to show that
(i) the following equalities hold:
[D((Tay)' )] + F(ty(t) + b,y () =0, t€(0,1),

(Tvy)'( Zaz (Twy)' (&) = A, (Tw)(1) - Zﬁi(le)(fi) =0;
i=1
(ii) Thy € Py for each y € Py;
(iii) = is a solution of (L.14)) if and only if x = y+ h and y is a solution of the
operator equation y = Tyy in Py;
(iv) Ty : Py — Py is completely continuous.

Proof. The proofs of (i), (ii) and (iii) are simple. To prove (iv), it suffices to prove
that T3 is continuous and T} is compact. We divide the proof into two steps:
Step 1. Prove that T is continuous about y. Suppose y, € X and y, — yg € X.
Let A,, be decided by corresponding to y, for n =0,1,2,.... We will prove
that A, — Ay, as n tends to infinity.

Since y, — yo uniformly on [0,1] and f is continuous, we have that for e = 1,
there exists N, when n > N, for each ¢ € [0, 1], such that

0 < f(t,yn(t) +h,yn (1) < 1+ f(tyo(t) +h,yp(t)) < 1+tlen[g>1<] F(tyo(t) +h,yp(t)).

Hence Lemma implies that A,, is an element in the interval

(b( +ZL 1041

AL+, i)
[¢( 1->" o )_1

(=g a)
1437070 oy

c [¢<A§1_+§§%1afi)> - f((b(Hngl 2) (1 + mae f(tyolt) + . yg(t))),

¢(@§4@)}-

It follows that {A,,} is bounded. If {A,, } does not converge to A,,, then there
exist two subsequences {A}Mk} and {Agnk} of {4, } with

—¢(1+Z~°“ /fsyn )+ byl ()ds,

Al oy, A2

Yny, Yny,

_>027 k_)+OO, C] #CQ

By the construction of A, ,

m

A = 200 (4, - / £ () + o (5))ds) + A
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Since f(t,yn(t) + h,y,(t)) is uniformly bounded, by Lebesgue’s dominated conver-
gence theorem, letting £ — 400, we get

1) = Z it (01
i=1

Since A, satisfies

&
F(s,90(s) + b, yg(s))ds) +A

0

Zaz(b yo / f 3 y()( )+h yO( ))ds) + A,

Lemma implies that A,, = C;. Similarly, we can prove that A4,, = Cy. This
contradicts to C1 # Ca. Therefore for each y,, — 3o, we have A, — A, . It follows
that A, is continuous about y. So the continuity of 1} is obvious.

Step 2. Prove that T is compact. Let 0 C P; bet a bounded set. Suppose that
QC{ye P :|y|l| <M} Fory e Q, we have

0</fsy )+ h,y'(s))ds < ft,u,v) =: D.

t€[0,1],uelh M bl ve[—M,M]
It follows from the definition of T} and Lemma [2.8] that

[(Tay)(2)]

:"/1¢_1 Ay—/Sf(u,y(w+h,g/(u)>du)ds

1= 6 Z@/ Y- / S (s y(u) + by () du ) ds|

i=1 &
S/Ol o (o2 1(1_;:%_1—;04)) +- ¢(¢1(+12+7zta:a7 / Flu,y(u) + b,y (u)du

+ /S Flu,y(u) + h,y'(u))du)ds
T4+ 0
s DR

1€_b(;(+i§zjojal / Fuyy(u) + b,y (u) du+/ F(usy(u) + by (u ))du>d
<o (o~ 1(122_1 éfi)> I ¢>(1‘?22))
PR TR )
-0 )+ Bl )
(T (1)
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§¢>‘1(¢< AT 1O‘Z)>

1->"
¢(1+ZL 1(11

1¢(%/f“y )+ hyy(u d“+/fuy +hy())du)d

<07 (o 1(1}?1341%)) 1—¢(1fzé“"))

AT+ ) ) N D

-2 1 - p( iz

For the uniform continuity of ¢ on the interval [—E, E], for each € > 0, there exists
a p > 0 such that

o7 (Y1) — o' (Yo)| <€, Y1,Ya€[-E,E], |Yi—Ys|<p.

E=o(-

Put
Yi = 6(A,)— / ' Fluy() by (w)du, Ya = g(A,)— / (s () iy (w)

Since Y1 — Y3| = |f ) + h,y/(u))du| < Dlty — to], it is easy to see that
there exists § > 0 (1ndependent of € ) such that |Y7 — Y3| < p for all ¢1,ts with
|t1 — ta] < 6. Hence there is § > 0 (independent of €) such that

(Ty)'(t1) = (Ty) (t2)| = ¢~ (Y1) — ¢~ (Y2)| <€,

whenever t1,t2 € [0,1] and |1 —t2| < d. This shows that (T'y)(t) is equi-continuous

n [0,1]. The Arzela-Askoli theorem guarantees that T'(2) is relative compact,
which means that T is compact. Hence the continuity and the compactness of T
imply that T is completely continuous. 0

Theorem 2.10. Suppose that (H1)—(H3) hold and there exist positive constants
€1,€2,C,

_ ' -1 ¢(1+ZZ‘Z10‘1’) s | ds
L= o (”¢<2>—¢<1+2;’11ai>+ )d

1 Ui 1 1 ¢(1+Z£10‘1)
*1—221@-;/3/5? <+<z>(2> S+ ) 0]

Q= min {o(5). )

¢(2)—o(1+7, i)
() F = ﬂ
(aofkl (s —k)ds’ ¢(L)
such that

1+

c2§—%>e2>%>el>0, qub( 1(_2%:1;10[)), Q> Ww.

If
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(A1) f(t,u,v) <@ forallt €[0,1],u € [h,c+ h],v € [—¢,¢];
(A2) f(t,u,v) > W forallt € [k,1—k],u € [ex + h,ea/05 + h],v € [—¢,c];
(A3) f(t,u,v) < E for allt € [0,1],u € [h,e1/00 + h],v € [—¢,];

then (1.14) has at least three decreasing positive solutions x1,xa,x3 such that
$1(0)<61+h, 1‘2(1—]{?)>€2+h, .’L‘3(0)>€1+h, .7;3(1—k’)<62+h.

Remark 2.11. In paper [23], sufficient conditions are found for the existence of
solutions of based on the existence of lower and upper solutions with certain
relations. Using the obtained results, under some other assumptions, the explicit
ranges of values of A\; and Ay are presented with which has a solution, has a
positive solution, and has no solution, respectively. Furthermore, it is proved that
the whole plane for A\; and Ay can be divided into two disjoint connected regions
AE and AN such that ( . ) has a solution for (Ag, )\2) € AE and has no solution for
(M, A2) € AN. When applying Theoremnto , it shows us that (| . ) has at
least three decreasing positive solutions under the assumptlons A <0,X >0and
some other assumptions.

Remark 2.12. Consider the case A < 0 and B < 0, when (H3) and (H4) hold,
we can prove similarly that Lemma and Lemma are valid. Define the
same operator T on the cone P;. Theorem shows that has at least
three decreasing and positive solutions y1,ys2,y3. Hence has at least three
decreasing solutions z1 = y1 + h, x93 = y2 + h and z3 = y3 + h, which need not be
positive since h = ﬁ < 0. Incases A > 0,B<0and A > 0,B < 0, the
author could not get the sufficient conditions guaranteeing the existence of multiple

positive solutions of ([1.14]).

Proof of Theorem[2.10 To apply Lemmal[2.5] we prove that its hypotheses are sat-
isfied. By the definitions, it is easy to see that «, 1) are two nonnegative continuous
concave functionals on the cone P, «, 3,6 are three nonnegative continuous convex
functionals on the cone P; and a(y) < B(y) for all y € Py, there exist constants
M > 0 such that ||y|| < My(y) forally € P;. Lemma implies that © = z(t)
is a positive solution of if and only if x(t) = y(¢t) + h and y(¢) is a solution
of the operator equation y = Tyy and T, : P, — Py is completely continuous.
Corresponding to Lemma

c=c¢, h=ogey, d=e;, a=ey b= e
0o
Now, we prove that all conditions of Lemma hold. One sees that 0 < d < a.
The remainder is divided into four steps.
Step 1. Prove that Ty : P, — Pi.; For y € Pi., we have |y|| < ¢. Then
0<y(t) <cfortel0,1] and —c <y/(t) < cfor all t € [0,1]. So (A1) implies that

flty) +h,y' (1) <Q, tel0,1].
It follows from Lemma [2.9] that Tyy € P;. Then Lemma [2.§ implies
0 < (Tvy)(t)

:_/tl = Ay—/sf(u,y(u)+h,y'(u))du)ds

m

H@Z@/

i=1 &

Yy = [ st + b/ )i
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v —AT+ Y o p(HEm
S/O ’ 1<¢( 1_2511;1‘ ))+1(¢(”2ng”)”)

< [ ) + ey )dut [ syt + b)) ds

s st 3o [ (o)

+1¢((;(+i;zlia / Flusy(u) + h,y' (u) du+/fuy w) + hyy (u ))du)d
[ o ) e 2
s s 3o [ o (o)
g e AT
§/01¢1(Q+1 <;(*§ng )Q+Qs>ds

1437 o
+1£m;ﬂi/& ¢*1(Q+ 1i¢<¢(1+212)Q+QS)
el [t o1+ o)
= ¢ (Q)[/O ¢ <1+¢(2)_¢(1+Z:-'11ai> +S)ds

;m _ ! -1 ¢(1+22110‘i)
ey I R R ertins s m ALY

<ec.

Similarly to the above discussion, we have from Lemma 2.7 that

4,0 < [ “_*Z%l;fl))— 1_¢(1j25=1%) [ vt + oy i

Then

(Tvy)' (2)]
< [(Tay) (0)] = o~ (A,
1

<o (g o) gy | e o)

< ¢_1(¢(_Al(1_‘%:§;;;1_;;“)> + - ¢(1+12;"1a) Q)
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$(2)
9(2) — 925(1 + 2
It follows that || T1y| = max{max;c(o 1] |(T1y)(t)|, max,cpoq1] [(T1y)'(t)|[} < c¢. Then
T1 . Plc — Plc-
Step 2. Prove that
e
{y € P](’Y797O[;G/, b,C)‘Ot(y) > Cl} = {y S Pl(FYaeaa;eQa 2 70)‘04(3/) > 62} 7é @

0o

<o (Q+ )Q)Sc.

and a(Thy) > ey for every y € Py ('y, 0, a;eq, %,c).
Choose y(t) = 52 for all t € [0,1]. Then y € P, and
€2 €2 €2
== Oly) = — < —= =0<ec
aly) =5, - > e 0y =5 - =< = y)=0<c

It follows that {y € Pi(v,0,a;a,b,¢) : a(y) > a} # 0. For y € Pi(v,0,a;a,b,c),
one has

. €2 12
= t) > 0(y) = )<= = t) <e.
a(y) te[I}Icl,llllk]y()_GQ’ () ter[gf}{k]y()_ao, 7(y) tgl[gff]ly()\_c
Then
2 Sy) < 5, telk1-H (@)l <e
0

Thus (A2) implies
fEy@®) +hlyO) =W, nelk1- k]
Since

Tiy) = min (Tyy)(t) > Tyy)(t
o(Tiy) = _min  (Tiy)(t) = oo max (Tiy)(t),

we get

a(Tvy) > o9 [ N /01 ¢! (Ay _ /0 flu,y(u) + h, y'(u))du)ds
- 12111151 éﬂz /; ¢71 (Ay o /OS fu,y(u) + h7y'(u))du)ds}

> 09 [ - /01 ¢! (Ay - /O fu,y(u) + h, y’(U))dU)dS}

sl [0 (o (1o )+ [ fnt 4 i)
s [0 (o (o ) + [ St + ) s

1-k
> Uo/k ¢ (W(s—k))ds
= €2.

This completes Step 2.
Step 3. Prove that {y € Q(v,0,v¢;h,d,c) : B(y) < d} which is equal to {y €
Q(7,0,¢;00e1,e1,¢) : B(y) < e} is not empty, and

B(Try) < er for every y € Q(v,0,v;h,d,c) = Q(v,0,¢;00e1,e1,¢);
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Choose y(t) = gpey. Then y € Py, and
P(y) = ooe1 > h, PB(y) =0(y) =ope1 <er=d, ~(y)=0<c

It follows that {y € Q(~,0,v;h,d,c)|8(y) < d} # 0.
For y € Q(v,0,v;h,d,c), one has

Yly) = min y(t) 2 h=eo0, Oy) = max y(t)<d=ey,

= <ec.
1Y) = max y' () <c
Hence 0 < y(t) < & and —c < y/(t) < ¢, for t € [0,1]. Then (A3) implies
fty@® +hly @) <E, telo1].
So

B(Tvy)

— Toy)(t
tren[gﬁ]( 1y)(t)

_ /01 ¢! (Ay _ /OS flu, y(u) + h,y’(u))du) ds
_ 1_5711@ ; 0; /; ¢! (Ay — /Os fu,y(u) + h, y'(u))du) ds

. /01 ¢1(¢(_Al(1_%2;ni{1;iai)) + " js(;Zi;lO:a / f(u,y(u) + h,y' (w))du

+ /OS Flu,y(u) + h,y'(u))du)ds
crsma e

¢(1+Z 10‘
1—

¢(1+271'1 /fuy )+ Dy (u d“+/fuy +hy())du>d

1 . o 4300 ai
[ 2

. . ~A(L+0
ey Iy R Cl (Lrkme))

14577 oy
¢( 1+22m 2“ E+Es)d5
L-o(=57)

1 1+ZZ7;10‘1
g/ o (E+ il - 3 E+ Es)ds
0 - g(==5=)

+

1 m 1 B ¢(1+27;1041)
+#E@/¢1E+ 2 — _E+Es)ds
1_21':1@' P & ( 1,¢(%) )
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—1 ! —1 D1 Qi
=¢ (E){/O ¢ (1+¢(2) (lJr(1+Zi_)1ai)+s)ds

Doy
525/ (1 ¢><2>( ST )1az>“>d5}

1

—€1—d.

This completes Step 3.

Step 4. Prove that a(Tiy) > a for y € Pi(y,a5a,¢) with 0(Tyy) > b; For
y € Pi(v,5a,¢) = Pi(y,5€2,¢) with 0(Thy) > b = 2, we have that a(y) =
minger1—x Y(t) > ez and y(y) = maxepoq) [y(t)| < ¢ and max,ep 1k (T1y)(t) >
£2 Then
o0

. €9
o(fy) = min (Tiy)(t) 2 00f(Ty) > 00— = €2 =a

This completes Step 4.
Step 5. Prove that 8(Tyy) < d for each y € Q(v,0;d,c) with ¥(Ty) <
For y € Q(v,B;d,c) with (Try) < d, we have y(y) = maxejo,1) [y(t)] < ¢ nd

|
B(y) = maxyco1yy(t) < d = er and P(T1y) = mingep,1— k](le)( ) < h = eio0.
Then
B(Ty) ma (Thy)(t) < ! min (Thy)(t) < 16 e1=d
= X — —ej0g=€1 =d.
1Y tetod] 1Y o0 telhl k] 1Y o0 100 1

This completes the Step 5.
Then Lemma implies that T} has at least three fixed points y1, y2 and ys
such that

Bly) <er, a(y2)>e2, B(ysz) >er, oays) <ea.

Hence (1.14]) has three decreasing positive solutions z1,x2 and z3 such that

max z1(t) < ey + h, min  x9(t) > ez + h,

te[0,1] telk,1—k]
max z3(t) > ey + h, min xz3(t) < eg + h.
te[0,1] te[k,1—k]

Hence 21(0) < e1 + h, x2(1 — k) > ea + h, x3(0) > e; + h, 23(1 — k) <ea +h. O

2.2. Positive Solutions of (1.15). Now we prove the existence of three positive
increasing solutions of (1.15). We use the assumptions:

(H5) f:]0,1]x[0,+00) % [0, +00) — [0, +00) is continuous with f(t c+h,0) £ 0
on each sub-interval of [0,1] for all ¢ > 0, where h = T'

(H6) A>0,B>0;
(H7) a; >0, B; > 0 satisfy 30" a; <1, 0 6 < 1

Consider the boundary-value problem

B O +h(t) =0, te(0,1),
Y awle) =0, v~ A6 = B 27)

Lemma 2.13. Suppose that (H4), (H6), (H7) hold. Ify is a solution of (2.7)), then
y 1s increasing and positive on (0,1).
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Proof. Suppose y satisfies (2.7). It follows from the assumptions that y’ is decreas-
ing on [0, 1]. Then the BCs in (2.7)) and (H4) imply

=> By (&)+B=> /(1)
i=1 i=1

It follows that /(1) > 0. We get that y/(¢) > 0 for ¢ € [0,1]. Then

= aiyl(&) = 3 awy(0)
i=1 =1

It follows that y(0) > 0. Then y(t) > y(0) > 0 for t € (0,1) since y'(¢) > 0 for all
€ [0,1]. The proof is complete. O

Lemma 2.14. Suppose that (H4), (H6), (H7) hold. Ify is a solution of (2.7)), then

y(t) :Bh+/0t ¢‘1(Ah+/sl h(u)du)ds,

with
m 1
:Zﬁiqb’l(Ah—F/ h(s)ds)+B, (2.8)
i=1 &
and
! v i} A 1h du)d
Bi=——— > i | ¢ :
) 12;110%;“/0 o~ (At [ nwdu)is
where

a:¢(1—£’.’ilﬁi)’

_(BO+ YL 8) p(ET By
b_¢( =" 5 >+1_¢(1+225w)/ h(s)ds.

Proof. 1t follows from that
t 1
+ [ (o) + [ nwan)as,
0 s
and the BCs in imply

= i_n:ﬂiaﬁl (¢(y'(1)) + /1 h(S)d8> + B,

i

m

y(0) = oS Zai ) ot <¢(y’(1)) + /51 h(u)du)ds

i=1 Qi i1 0
Let

60 =670 =380 e [ yis) -

i
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= 0.
On the other hand, one sees that

GOB) N i, Jahe)dsy B
s = ok () - e

- f;, h(s)ds
=1-> Bio ' (1+ R A —
; ( s B(1+xr, 6:) N (=) [ h(s)d
1-3772, B 1o (=) o §)as
B

T elamme)y , e(FDRs
o (o)) + Aty ) o)

. 17¢M _ym o
21,Zﬂi¢*1(1+ ¢(1(+Z;_?ﬂ> )> 1+§i1§1 =0

Hence G(b) > 0. It is easy to know that f%c()c) is continuous and decreasing on
(—00,0) and continuous and increasing on (0, 4+00), Hence G(a) < 0 and G(b) > 0
and

i=1

, G(c) , G(c) U
lim ——*~ = o0, lim =1- B; > 0.
e—0- ¢~ 1(c) e==00 ¢~ (c) z::
Then there exists unique constant A, = ¢(y'(1)) € [a, b] such that (2.8) holds. The
proof is complete. O

Note h = ﬁ, and z(t) — h = y(t). Then (1.15]) is transformed into the
=17
boundary-value problem

oy ) + f(t.y(@®) + h,y' (1)) =0, te(0,1),
Z%Mrf,ym*Z@ﬂsz

=1

(2.9)

Let

Py={ye X :y(t)>0forallte|0,1],y(t) is decreasing on [0, 1],

) >
y(t) > min{t, (1 —¢)} m[ax] y(t) for all ¢ € [0,1]}.

Then P, is a cone in X. Since
1-— Z e
NS NS
it O )] = 2= Sy

- 1727;1 «; t€[0,1] 1*ZL 10517
we have
> 1 i
< == 2 .
O < 25t

It is easy to see that there exists a constant M > 0 such that [|y|| < M~(y) for all
RS Pl.
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Define the nonlinear operator T : P, — X by

(Txy)(t) = By + /Ot ¢‘1(Ay + /S1 fu,y(u) + hvy’(U))dU)dsa y € P,

where A, satisfies

m 1
67 (A,) = Y B! (Ay ROk h,y’<s>>ds) B, (210
i=1 i
and B, satisfies

m &
- 1_5711% ;az/o ot (Ay + /81 Fuyl) + h,y’(u))ds) i,

Then for y € Py,

(Tay)(t) = /Ot ¢71(Ay + /Sl f(u, y(u) + h,y/(u))du)ds

1 Liis & . 1 /
+1—Z?110%;ai/0 ¢ (Ay—i-/s f(u,y(u)—kh,y(u))ds) ds .

Lemma 2.15. Suppose that (H5), (H6), (H7) hold. Then
(i) the following equalities hold:

[D(Tay) ()] + (£, y(t) + h,y' (1)) =0, t€(0,1),

By

(T2y)(0) — Zai(Tw)(gi) =0, (Tay)(1)— Zﬁi(ﬂy)/(fi) = B;
(ii) Toy € Ps for each y € Pa;

(iii) = is a solution of (L.15|) if and only if x = y + h and y is a solution of the
operator equation y = Toy in cone Ps;
(iv) Ty : P, — Py is completely continuous.

The proofs of the above lemma is similar to that of Lemma[2.9]and it is omitted.

Theorem 2.16. Suppose that (H5)—(HT) hold and there exist positive constants
€1,€2,C,

o ¢(%)
L:/O b 1(1+1_¢(1+2Z§le)+(1—s))ds

1 n & ¢(M)
ﬂ_zrgla;a/() 6 (1+1_¢(1+222m)+(1—s))ds,
: ¢(C) €9
Q=min{¢ (=), . W=¢ - :
{ <L) 1+¢(2)¢(f(+2)2:"1,6i)} <‘70fk1 k¢1(1k8)d8>
E=6(F).

such that

€2 €1 B(l +ZZ1 @)
> = — 0, > (—,ﬁ) w.
0_08>62>00>61> Q>0 =5 5 Q >
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If (A1), (A2) and (A3) from in Theorem[2.10] hold, then (L.15) has at least three

increasing positive solutions x1, s, x3 such that
z1(1) <ex+h, zo(k)>ex+h, x3(l)>e1+h, z3(k)<ex+h.

Proof. To apply Lemma we prove that all its conditions are satisfied. By the
definitions, it is easy to see that «, 1 are two nonnegative continuous concave func-
tionals on the cone P, v, 3,60 are three nonnegative continuous convex functionals
on the cone P, and a(y) < B(y) for all y € Py, there exist constants M > 0 such
that ||y|| < M~y(y) for all y € P,. Lemma implies that 2 = 2(t) is a positive
solution of if and only if 2(t) = y(t) + h and y(t) is a solution of the operator
equation y = Toy and T : P, — P5 is completely continuous.
Corresponding to Lemma
c=c¢, h=o0pe;, d=e;, a=eo, b:e—2.
0o
Now, we prove that all conditions of Lemma [2.5 hold. One sees that 0 < d < a.
The remainder is divided in four steps.
Step 1. Prove that Ts : P, — Ps;
For y € Py, we have |ly|| <c. Then 0 < y(t) <cfort € [0,1] and —c <y'(t) < ¢
for all t € [0,1]. So (A1) implies that

fty) +hy' (1) <Q, telo1].
It follows from Lemma that Toy € P,. Then Lemma implies

0 < (Toy)(1)

< [ (s [ st + hynan)as

+ 1_2177;1%. Zm: oy /051' o1 (Ay + /1 flu, y(u) + h,y’(u))du>ds

' DN
S/O ¢_1(¢( gl_""g_;ﬁ?l)) _|_1 ¢;(1+le& / fu,y(u) + hyy' (u))du
+/1f(u,y(U) —l—h,y'(u))du)ds

—1 1+, 5)
e G
1 ¢(;(+iizt6:ﬁl / flu,y(u) + b,y (u ))du_|_/51 f(u’y(“)+h,y/(u))du)ds

o (1+X",6) ¢(M)
1 i=1 2 _
S/o i (¢< 1=32020 6 > " _¢(1+Z§llﬁi)Q+Q(1 5))ds

- S 1 Bi
+1£Z1ai;ai/o ) 1(¢(B§1+2§?111@ ))

] o )
G

+

Q+Q(L—s))ds
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v ¢(1+27=15)
s/o ) 1(Q+1_¢(H%M)Q+Q(l—s)>ds

+%;ai/o o <Q+1¢(W)Q+Q(l—s))ds

_s@f [ o ¢(M>
— 1(@)[/0 o7 (14 -

2

+(1- 5))ds

( 143", Bi )

i
iz:ozl/ ¢(1+221”16z) —l—(l—s))ds]

<ec.

Similarly to above discussion, from Lemma [2.14] we have

(Tay)' (1)

1
< () 0) =67 (A, + [ @)+ hoy/(w)iu)
(b( +Z@ 1/31

§¢1<¢(B§1+Zzi“zlﬂ€i))+1 qs(”E 151 /fuy )+ oy ()

+ [ s + )

RYNEDY) 1
< 1 1=1 -
=0 <¢< 1=370 B ) * 1— ¢(1+Eé=15i)Q>
-1 9(2)
< s enm) =
It follows that || Toy| = max{max;c(o 1] |(T2y)(t)], max.epo1] [(T2y) (t)|} < c¢. Then
T2 . PQC — PQC.
Step 2. Prove that

{y S PQ(’y,G,a;a,b, c)|a(y) > CL} = {y € P2(779704;62; 2_72’6> : O[(y) > 62} 7& (Z)
0

and a(Thy) > ey forevery y € PQ(’)/,G,OZ;GQ,%,C); Choose y(t) = ;720 for all
t €10,1]. Then y € P, and
€2
=_-—> oy) = =2 <2 =0<ec
a(y) 20 > % (y) = 200 < 7(y) c
It follows that {y € Py(7,0,a;a,b,c)|a(y) > a} # 0.
For y € Py(v,0,a;a,b,c), one has

a(y) = min y(t) > e, Oy)= max y(t) <=, A(y) = max |[y'(t) <c

telk,1—k| telk,1—k] ~ oo’ te[0,1]
Then .
e <yt)< 5, telk1-k, )l <c
0
Thus (A2) implies f(t,y(t) + h, |y (t)]) > W, t € [k,1 —k]. Since
Toy) = i Toy)(t) > Toy)(t
a(Tzy) te[rlgl’llllk]( 2y)(t) = oo tren[gﬁ]( 29)(1),



EJDE-2008/96 SOLUTIONS TO SECOND ORDER BVPS 23

from Lemma [2.14] we have

a(Tay) > 09 max (Toy)(t)
te[0,1]

= ao[/ol ot (Ay + /51 f(u,y(u) —|—h,y’(u))du>ds

1 & 1 /
+W;“ ¢ 1(Ah+/s f(uay(U)+h,y(u))ds>ds}

2ol [ ‘1’1(@3(1—23}1& + / ") + .y ()du) s
B
z 10‘1;%/ *Z?;lﬁi)
+/1f u) + h,y' (u ))ds)ds}
oo / g (¢(1 - 5@ ) / syl + h,y’<u>>du) ds

w [ o / ) + by () ds

w [ o / 7 s + by )du) s

1-k
> oo/k dP W~k —s))ds = es.

v

v

\%

This completes Step 2.

Step 3. Prove that the set {y € Q(v,0,v;h,d, c)|f(y) < d} which is equal to {y €
Q(’y,&,w;ooel,el,c) : B(y) < e1} is not empty, and B(Try) < e; for every y €
Q(v,0,v;h,d, c) = Q(% 0,v;00€1, €1, c). Choose y(t) = oger. Then y € Py, and

Y(y) = ooer > h, By) =0(y) =ooe1 <e1=d, ~(y)=0<c

It follows that {y € Q(~,0,v;h,d,c) : B(y) < d} # 0.
For y € Q(~,6,¢; h,d, c), one has

Y(y) =, min y(t) 2 h=eoy, Oy)= max yt)<d=e,

= < c.
Y(y) = fgl[gfl y'(t) <c

Hence we have 0 < y(t) < & and —c < y/(t) < c for ¢t € [0,1]. Then (A3) implies

= oo

fy(t) +hly'@)) < B, ¢ €[0,1]. So that

B(Try) = m[ax](sz)( )

- / (gt [t + oy )i as
m ” Zal/ (Ay + /S1 flu,y(u) + h,y/(u))du)ds
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< /O g (o(H iljzzg%gfi) )

¢(1+Z 1ﬁ7
+— ¢(M /fuy )+ o ()
+ / f(u,y(U)+h,y’(u))du)ds
& BI+ZZ”1@)
e yars ZZC“/ )
- ¢( /fuy )+ by (w)du

. ¢(1+z;wq
# [ syt )i

mooa. 14300, B
< /01¢—1(¢<B§1+ T, f;(l&i:lgi)“m —9)ds

ZOM,/ ¢ = 1+Zzz lgﬂl))
=1~
¢(1+21:1ﬁ1

2 )E+E1— d
1 o(FZEy ( s))s

< /01¢1(E+ 1 MHZ}%% E+EQ —s))ds

+

_gb(w)
1 Ui S Qg(%)
T i E + _ E+E(1—s))ds
1_3—10‘1‘;@/0 o 1— (Bt (1-9)

- ¢—1(E)[/01¢_1<1 + ‘_b(;ﬁ;;;g) +(1-5))ds

LE s BB
1_2110[;0@/0 ¢1(1+1—¢(1+2Z§W)+(15))d8]

:elzd.

This completes Step 3.

Step 4. Prove that a(Thy) > a for y € Py(y,a5a,¢) with 8(Tay) > b; For
y € Pa(v,5a,¢) = Pa(7y,a5€2,¢) with 0(Toy) > b = 22, we have that a(y) =
mingefk,1-4 Y(t) = ez and ¥(y) = maxeo1) [y(¢)| < ¢ and maxep, 14 (T2y)(t) >
2. Then

. €9
o(Tay) = min (Toy)(t) 2 00B(Toy) > 00 = €2 = a

This completes Step 4.
Step 5. Prove that 3(Thy) < d for each y € Q(v, B;d,c) with ¥(Tey) < h.
For y € Q(v,8:;d,c) with ¢(Tzy) < d, we have v(y) = max;cp,1) [y(t)] < ¢ and



EJDE-2008/96 SOLUTIONS TO SECOND ORDER BVPS 25

B(y) = maxecpo y(t) < d = ey and P(Toy) = mingep1—x(T1y)(t) < h = e100.
Then

1 1
< mi 1 t) < — =e; =d.
B(Tay) = tlen[a”f](b y)(t) < o0 te[k’illk]( 2y)(1) 006100 e1

This completes the Step 5.
Then Lemma implies that T3 has at least three fixed points y1, y2 and y3 in
P, such that

Bly1) <e1, aly2) >ea, Bys) >e1, alys) <ea.
Hence (|1.15]) has three increasing positive solutions z1, z2 and x3 such that

max x1(t) < ey + h, min  xs(t) > ey + h,

te[0,1] telk,1—k]
max x3(t) > eq + h, min  z3(t) < ey + h.
t€[0,1] telk,1—k]

Hence
:vl(l) <e +h, xg(k) > e+ h, .%'3(1) >e;+h, &C3(/€) < ey +h.
The proof is complete. O

Remark 2.17. For , when A < 0,B > 0, we can also get the existence
results for three increasing solutions of similarly, but the solutions need not
be positive. By the way, it is interesting to establish sufficient conditions guarantee
the existence of positive solutions of when B < 0.

2.3. Positive Solutions of (|1.16). Now we prove an existence result for three

positive solutions of - We use the following there conditions:

(H8) f:1]0,1] X [h, +0) X R — [0, +00) is continuous with f(t ¢+ h,0) #Z0 on
each sub-interval of [0,1] for all ¢ > 0, where h = T

1[37
(H9) A>0,B > 0;
(H10) a >0, 3; > O satisfy >/ 3; < 1and A > 5

Consider the following boundary-value problem

[0y (1)) +h(t) =0, t€(0,1),
, - (2.11)
y(0) —ay'(0) =D, y(1) =Y Biy(&) =0,
i=1

Z;n 1 ﬁl

Lemma 2.18. Suppose that (H4), (H10) hold and D > 0. If y is a solution of
(2.11), then y is positive on (0,1).

Proof. Suppose y satisfies (2.11). It follows from assumption (H4) that ¢’ is de-
creasing on [0, 1].
If y'(1) > 0, the BCs in (2.11)) and (H4) imply ¢'(t) > 0 for all ¢ € [0,1]. Then

= Zﬁiy(fi) < Zﬁiy(l)

Then y(1) < 0. On the other hand, y(0) = ay’(0) + D > 0. This is a contradiction
since y'(t) > 0.



26 Y. LIU EJDE-2008/96

If y'(1) <0 and y'(0) < 0, then we get that y'(t) < 0 for all ¢ € [0,1]. The BCs
in (2.11) and (H4) imply

m

y(1) = Zﬂi@/(ﬁi) > ‘ Biy(1).

It follows that y(1) > 0. Then y(t) > y(1) > 0 for all ¢t € [0,1]. (H4) implies
y(t) > 0 for all ¢t € (0,1).

If (1) <0 and 3/(0) > 0, then y(0) = ay’'(0) + D > 0. It follows from
and (H4) that

y(1) = Biy(&) > Y Bimin{y(0), y(1)}.
i=1 i=1
If y(1) < y(0), then y(1) > >, By(1) implies that y(1) > 0. If y(1) > y(0), then
y(1) > 0 since y(0) > 0. It follows from (H4) that y(¢) > min{y(0),y(1)} > 0.
Then y is positive on (0,1). The proof is complete. O

Lemma 2.19. Assume (H4), (H10) hold and D > 0. If y is a solution of (2.11)),
then

t 1
y(t):Bh+/0 ¢*1<Ah+/s h(u)du>7 teo,1],
where Ay, € [b,0],

oot (4 + /: h(uydu) +D| (1~ z:ﬁ)
= —(1 - i&) /01 ¢_1(Ah + /: h(u)du)ds
_ iﬁz /; (bfl (Ah 4 /Sl h(u)du)dS,

B, = a¢p™ ! (Ah + /; h(u)du) + D,

b= —/01 h(u)du — ¢(D<1 R ﬂi)),

a

m

m
a=1 —I—a(l - Zﬁz) - Bik.
i=1 i=1
Proof. From ([2.11)) it follows that

)=o)+ [ o (o (1) + / (wdu) ds,
yo(1-308) = - / ot (s ) + / ) ds

m

+ Zﬁi /0E ¢‘1(¢(y’(1)) + /51 h(u)du)ds,
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y(0) = agp™" (¢(y’(1)) + /01 h(u)du> + D.

Thus
o™ (o) + [ ntwyi) + 0] (1-3-2)
= /01 ¢! (¢(y'(1)) + /S1 h(u)du)ds
+§;@- /: ¢1(¢(y/(1))+/81h(u)du)d3,
Let

m

G(e) = [ozqﬁ_l (c—l— /01 h(u)du) + D} (1 — Zﬁ,)
+ /01 ot <c+ /81 h(u)du)ds
1 1

m

+§;ﬂi /51 ¢1(C+/sl h(“MU)ds

It is easy to see that G(c) is increasing on (—oo, 4+00), G(0) > 0. Since

a= 1+a(1 _iﬂi) —iﬁifu
i=1 i=1
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< oo (o(ZEE) )
o) [l (R,
+iﬂf/;¢1<—¢<D<1‘§“i>>>ds:o,

i

-7 51‘)
we get ¢(y'(1)) > — fo <() = b. The proof is complete. [

a
Let
={ye X :y(t)>0forallte|0,1],y(¢) is decreasing on [0, 1],
y(t) > min{t, (1 —¢)} tren[éa’)%] y(t) for all ¢ € [0,1]}.

Then P; is a cone in X. Since, for y € P3, we have
ly(®)] = ly(®) —y(1) +y(1)]
<y (O =)+ [y(1)]
‘Zz VBiy(&) =208, Biy(1)

< ma I/t 1= 6
S Bl =&)
< (H—l—lZZ’;lﬁi )fél[%)f ly' (t)]
_ S Bl =&)
= (1+—1_12£1 5 )7,
we get
PNV
Jnax, ly(t)] < (1 + W)v@)-

It is easy to see that there exists a constant M > 0 such that ||y|| < M~(y) for all
[IES Pg.
Suppose that (H10) holds. Let x(t) — h = y(¢). Then (1.16]) is transformed into

(6" ()] + f(t,y(t) +hy' (1) =0, te(0,1),

B
—of(0)=A— ——

- Zﬁiy(ﬁi) =0,
Define the nonlinear operator 13 : P3; — X by

@0 =8+ [ 67 (a4 [ v +hy )i, e

where

[aqﬁ_l (Ay + /01 f(usy(u) + h, y’(U))dU) +4 1_571@] (1 - Zﬁ)

i=1
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_<1 — éﬂz) /01 ot (Ay + /Sl flu,y(u) + h,y'(u))du)ds
N gﬁi /; ¢! (Ay + /31 fu,y(u) + h, 2/(u))clu>ds7

and
1 ! B
By = agp™ A+/ u,y(u) + h,y (v))dun) + A — —
n= a0 Ay |Gy + by )due) +4 - o
For y € Ps, the definition of A, implies
1 ' B
p— - !/ R
(T)(®) = o™ (4, + [ (@) + hoy/()iu) + 4 s

+/Ot</>‘1(Ay+/:f(u,y(U>+h,y’(u))du>d8
1 1
— [ (4 / £ y() + By (w)du ) ds
s o 7 (e [ s+ )

Lemma 2.20. Suppose that (H8)—(H10) hold. Then
(i) Tsy € P3 for each y € Ps;
(ii) = is a solution of if and only if x =y + h and y is a solution of the
operator equation Tsy =y in Ps;
(iii) T3 : P3 — P3 is completely continuous;
(iv) the following equalities hold:

[D(Tsy)' ()] + f (£, y(t) + hyy' (1)) =0, t€(0,1),

(T)(0) - a(Tsp) (6) = A - {5
(T5y)(1) — Z Bi(T3y) (&) = 0;
i=1

The proof of the above lemma is similar to that of Lemma[2.9] so it is omitted.

Theorem 2.21. Suppose that (H8)—(H10) hold and that there exist positive con-
stants ey, ea,c,

e 6!
L=¢"1(2)+ s 1@2& &)
Q=minfo(; »@},
W = E =
¢(00 kl k —1(s—k)ds (b

suchthatcz%>eg>%>el>0,
0 0

(A_1 Z;”lﬁl)( Z Z1 Bi)
1+a- Zizlﬁzgi

QZ¢( ), Q>W.
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If (A1)~(A3) in Theorem[2.10] hold, then (1.16) has at least three positive solutions

T1,Ta,x3 such that

max z1(t) < e + h, min  x2(t) > e2 + h,
te[0,1] te(k,1—k]

min x3(t) > e; + h, min  x3(t) < ez + h.
telk,1—k] telk,1—k]

The proof of the above theorem is similar to that of Theorem [2.10] so it is
omitted.
Assume the following three conditions:
(H11) f:[0,1] x [h,+00) x R — [0, +00) is continuous with f(¢,c+ h,0) # 0 on
each sub-interval of [0,1] for all ¢ > 0, where h = A;
H12) A>0,B > 0;
(H13) >0, 3; > 0 satisfy >./*, 3; <1 and B > A(l - ﬁi);
Consider the boundary-value problem

[6(y' ()] + h(t) =0, te(0,1),

y(0) — ay/(0) =0, y(1)— Zﬂiy(&) _D. (2.12)

Lemma 2.22. Assume (H4), (H13) and D > 0. If y is a solution of (2.12)), then
y is positive on (0,1).

Proof. Suppose y satisfies . It follows from the assumptions that 3’ is de-
creasing on [0, 1].

If 4/(0) < 0, the BCs in and (H4) imply that y'(t) < 0 for all ¢ € [0,1] and
y(0) < 0. Then

y(1) = Zﬁiy(&) +D> Z&-y(l) +D.

Then y(1) > TD_lﬁz It follows from D > 0 that y(1) > y(0), a contradiction to
y'(t) <0 for all t € [0,1].

If ¥'(0) > 0 and ¥/(1) > 0, we get that y/'(¢t) > 0 for all ¢ € [0,1]. The BCs
in (2.12) and (H4) imply that y(0) = ay/(0) > 0. Then y(t) > y(0) > 0 for all
t € 10,1].

If 4/(0) > 0 and (1) < 0, then y(0) = ay’(0) > 0. It follows from that

y(1) = Biy(&) + D > B min{y(0),y(1)}.

i=1 i=1
If y(1) < y(0), then y(1) > > B;y(1) implies that y(1) > 0. If y(1) > y(0), then
y(1) > 0 since y(0) > 0. It follows that y(t) > min{y(0),y(1)} > 0. Then y is
positive on (0,1). The proof is complete. O

Lemma 2.23. Assume (H4), (H13), D > 0. If y is a solution of (2.12)), then
1 s
o0 =B [ o7 (a0 [ i), te o,
t 0

where Ap, € [a,b],

g (Ah - /0E h(u)du) (1 - i@)
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+ (1—53@) /Olqz)l(Ah—/Os h(u)du)ds
+§@/¥¢*(Ah—/jh(u)du)ds—Dzo,

and
€
By = a0 (60/(©0) = [ hw)au)
1

Proof. Tt follows from that
y(t) = (1) - / o (o)) - / h(w)du)ds,
y(l)(liﬂz)— Zﬂ /;qs 1(¢ / du)ds+D

1
y(l)—/olq’) 1<¢ /Oh du ds = ay'(

Thus

1S 8) ([ o (ot @) — [ hwpdu)ds + oy (0)
i=1 0 0
-3 | o7 (6~ [ hlwu)ds + D.

It follows from the proof of Lemma“ 2.22| that y'(0) > 0. Let

G(c)—( / /h ds+a iﬁi)¢_l()
+Zﬂ/7 ( /Oh( )du)ds D.

It is easy to see that G(c) is increasing on (—oo, +00) and G(a) = G (¢(£)) < 0.
Since

+a(1 - _ijﬂi)w(as(f) + /01 h(u)du)
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m m
> (1—2/31) +a(1—2/3z) +Zﬁ 1—5z -
=0,
we get a < ¢(y'(0)) < ( ) + fo u)du. The proof is complete. O
Suppose that (H13) holds. Let z(t) — h = y(t). Then is transformed into
[ ()] + f(ty(t) +hy (1) =0, te(0,1),
y(0) — ay/(0) =0,

- A
- iy(&i) =B - —=m——7 > 0.
;ﬂy(ﬁ) e
Let

Pi={ye X :y(t) >0 forall t € [0,1],y() is decreasing on [0, 1],
y(t) > min{¢, (1 — 1)} m[go%] y(t) for all ¢t € [0,1]}.
t€o,

Then Pj is a cone in X. Since, for y € Pj, we have

ly(t)] < ly(t) — y(0)| + [y(0)] < Jnax ly' (1) +«a Jnax ' ()] = (1 4+ a)v(y),

we get maxyejo,1) [y(t)] < (14 a)y(y). It is easy to see that there exists a constant
M > 0 such that ||y|| < M~y(y) for all y € Pj.
Define the nonlinear operator T4 : P, — X by

(T3y)(t) = By — /t1 ¢! (Ay - /O flu,y(u) + h, y’(U))dU)d& y € P,

where

(1 - iﬂz) (/01 ot (Ay - /0S f(u,y(u) + h, y’(u))du)ds + aqs*l(Ay))

_ —i_ilﬁi [ (= [ o) + ) B -

and
1 S
w /0 o (- /0 F (s y(w) + by (w)du )ds + ag™ (A,).
Then

@0 = [ 67 (4 [ Hvt + n/@)in)as + a6 4,
_ /tl oL (Ay — /OS flu, y(u) + h,y’(u))du)ds

= [ (4 [ v+ hy s + a5 4, ve P

Lemma 2.24. Assume (H11)-(H13). Then the following holds:
(i) T4y € P} for each y € Pi;
(ii) x is a solution of (1.16)) " if and only if x = y+ h and y is a solution of the
operator equation T4y =y in Pj;
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(iii) T4 : P{ — P} is completely continuous;
(iv) the following equalities hold:

[D(T3y)' (@) + f(t.y(t) + h,y' (1)) =0, t€(0,1),
(T3y)(0) — a(Ty)(€) = 0,

(T3y Zﬂz TBy (&)= (1 - Zﬁz)

The proof of the above lemma is similar to that of Lemma[2.9] so it is omitted.

Theorem 2.25. Suppose that H11)-(H13) hold and there exist positive constants
€1,€2,C,

o c LOMN
Q_mln{¢(f0 12— s)ds+ agp~! ()>7 b
es

W:(b( T—k

oomin{fl_kqﬁ_l(l—k—s)ds, . (b—l(s—k‘)ds});

e1
<f $=1(2 — s)ds + ag- <>)'

such that
A
02%>e2>ﬂ>61> o (B_ 3 ))
" " a(l X ﬁi) +1-30 Bi& 1=>20 B
and

B(1+Y ", 8)
Q= o( S5

If (A1)~(A3) defined in Theorem [2.1(] hold, then (L.16) has at least three positive
solutions x1, s, 3 such that

), Q>W.

max z1(t) < e + h, min  x3(t) > ez + h,

te[0,1] te(k,1—k]

min x3(t) > e1 + h, min  x3(t) < ez + h.
telk,1—k] te(k,1—k]|

The proof of the above theroem is similar to that Theorem and it is omitted.

Remark 2.26. Kwong and Wong [29], Palamides [51] studied the existence of
positive solutions of (I.6) and 1-) (the main results may be seen in Section 1).
When applying Theorem :|t0 , we get three positive solutions if 6 € (0, 7 /2]
and the other assumptions in Theorem [2:21] hold.

2.4. Positive Solutions of . We prove existence results for three positive
solutions of . The following assumptions are used in this sub-section.
(H14) f:]0,1] % [0, +00) x [0, +00) — [0, +00) is continuous with f(¢,c+h,0) Z 0
on each sub-interval of [0,1] for all ¢ > 0, where h = A;
(H15) a; >0, 3; > O satisfy D" oy < 1, Y im B < 1
(H16) A >0,B >0 with B > 1—2%5
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Suppose that (H4)—(H16) hold and consider the boundary-value problem

[p(y' ()] +h(t) =0, te(0,1),
- / ! - !/ (213)
y(0) — Zaiy (&)=0, y'(1) - Zﬂz‘y (&) =D,

Lemma 2.27. Assume (H4), (H15), (H16) and D > 0. Ify is a solution of (2.13)),
then y is positive on (0,1).

Proof. Suppose y satisfies (2.13). It follows from the assumptions that y’ is de-
creasing on [0,1]. Then the BCs in (2.13) and (H4) imply

y'(1) = Z/Biyl(&) +D > Zﬂiy/(l)-
i=1 i=1
It follows that /(1) > 0. We get y'(¢) > 0 for t € [0, 1].
y(0) =Y aiy(&) = > aiy(0).
i=1 i=1

It follows that y(0) > 0. Then y(t) > y(0) > 0 for t € (0,1) since y'(¢) > 0 for all
t € [0,1]. The proof is complete. O

Lemma 2.28. Assume (H4)-(H16). If y is a solution of (2.13), then

y(t) = By, + /Ot ¢—1(Ah + /sl h(u)du)ds

and there exists unique Ap, € [a,b] such that

o1 (A) = im-l (a0 [ 1 sy ) 4 D. (2.14)

(3

and

By, = iamﬁfl (Ah + /1 h(u)du)7
i=1

“:¢<1—£f’115i>’

DO+Xr, B)y | o(HEEE)
"= h(s)ds.
¢< 1=372, B )+1_¢(1+Zgllﬁi)/o (s)ds

Proof. 1t follows from that
t 1

t) = y(0 -1 ‘(1 h(u)du)d

) =90)+ [ o7 (ot )+ [ hiuyd)ds
The BCs in imply

m 1
M= BGip? "(1)+ [ h(s)ds)+ D,
V1) =3 o™ (o0 1) | noyis)

b0 = Y™ (/) + [ i)
i=1

i
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Let

G(e) Z@ et /1()ds)—D.

i

It is easy to see that

_Zz NG Zﬁz ( (—5711@)—’—/5 h(s)ds) - D

i=1 i

G(a) =

< 1—21 e Zﬂll—zz D0

On the other hand, .
iy (e Ly -
=1-) Bio”"! (1 + Je h(s)j; . )
o(AZEd) + 2l g s
B D
oot (o(HEHER) + Lty 1 heos)

m - 1_(;5(%) 1_21': /61
Sl—;ﬁ@ 1(1—|— (b(@) )_14—2;11@:0.

Hence G(b) > 0. It is easy to know that ,§ ()) is continuous and decreasing on

(—00,0) and continuous and increasing on (0 +00), Hence G(a) <0 and G(b) > 0
and

Gl -
lim = 400, =1- 8; > 0.
c—0— ¢ ( ) c——00 (b Z g
Then there exists unique constant A; = (b(y( )) € [a,b] such that (2.14) holds.
The proof is complete. O

Suppose (H16) holds. Let x(¢t) — A = y(t). Then (1.17) is transformed into
@ O]+ f(ty(®) +h,y'(5) =0, t€(0,1),

> /(&) =0,
i=1

m ) B - A

(2.15)

Let

Py={ye Xy
y(t) >

> 0 for all £ € [0,1],4/(¢) is decreasing on [0, 1],
ty(1) for all ¢t € [0,1]}.
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Then P, is a cone in X. For y € Py, since

[y(®)] = ly(®) = y(0)] + [y(0)] < (1+ Zaz) ma /()] = (143 ac)7(0).

€[0,1]

we get
m

< (1 i)
max ly(t \_( +;a 1(y)

It is easy to see that there exists a constant M > 0 such that ||y|| < M~(y) for all
y € Pr.
Define the operator Ty : P, — X by

@O =+ [ 67 (a4 [ v+ ny )i, yep,

where

- - ' / A
and
m 1
By =) i <Ay +/ f(u,y(u) + h,y’(u))du) .
i=1 &
Then

(Tuy)(t Z a;p” ( /; S, y(u) + h, y’(ﬂ))dU)

t 1
" / o7 (A [ fCy) + oo/ (0)du) s
0 s
It follows from Lemma [2.28] that

¢<<B‘1—z?mm>)§Ay

_Zglﬁi
_ A NC?
= G 121M_ffz)m(11; 2ima ))
1+E“61
+1¢(¢(1+E 1 /fuy )+ hyy (u))du.

Lemma 2.29. Suppose that (H14)-(H16). Then
(i) the following equalities hold:

[O((Tuy)' )] + f(t,y(t) + h,y' (1)) =0, te(0,1),
(Tay)(0) — Z ai(Tay)' (&) = 0,

A
T (T2 (6) = B — —or—
(Tay)'( ;ﬂ w) () =B ;5w

(ii) Tyy € Py for each y € Py;
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(iii) = is a solution of (L.17)) if and only if xt =y + h and y is a solution of the
operator equation y = Tyy in Py;
(iv) Ty : Py — Py is completely continuous.

The proof of the above lemma is similar to that of Lemma SO we omit it.

Theorem 2.30. Suppose that (H14)—-(H16) hold, and there exist positive constants
e1,e2,¢, and
1 4>, B
Ly, o)
L:/¢1(1—|— 2 __ +1—s)ds
0 1— ¢(1+Zé;:1 /B’L)

m - é 43", Bi
+Zaz’¢ 1(1+ 1_(¢<1+2Zén—1;’7) +1*§i),

@=mnin{o(5), ——29 )
+ B(2)—p(1+7, Bi)
€9 €1
W = ;o E=o¢(—).
¢<aofl’“ ¢1(1ks)ds> o7
suchthatc>52>eg> L>e >0,
B— ) 1+ X0 6i)
P TS I
i=1Pi

If (A1)—(A3) in Theorem hold, then (1.17)) has at least three increasing positive
solutions x1, xo, 3 such that

max x1(t) < ey + h, min _z5(t) > ez + A,

te[0,1] te(k,1—k]

min x3(t) > e; + h, min x3(t) < ea + h.
te(k,1—k] telk,1—k]|

The proof of the above theorem is similar to that of Theorem [2 Therefore, it
is omitted.

2.5. Positive Solutions of (1.18). Finally, we prove an existence result for three
positive solutions of ([1.18]). The following assumptions will be used in the proofs
of all results in this subsection.

(H17) f:[0,1] x [h,+00) x R — [0, +00) is continuous with f(t ¢+ h,0) # 0 on
each sub-interval of [0,1] for all ¢ > 0, where h = W
(H18) a; >0, B; > O satisfy Y ir o <1, Db i <1;
(H19) A>0,B >0 with B > %A
Consider the boundary-value problem

[¢(y' (1)) + h(t) =0, te(0,1),
- Zaly(gl) =0, Z/Bly El = 7

Lemma 2.31. Assume (H4), (H18), (H19). If y is a solution of (2.17)), then y is
positive on (0,1).

(2.17)
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Proof. Suppose y satisfies (2.17)). It follows from the assumptions that y’ is decreas-

ing on [0,1]. Then the BCs in (2.17) and (H4) imply that y(¢) > min{y(0),y(1)}
for all t € [0,1]. Then

0) >~ a; min{y(0),y(1)}. (2.18)
i=1
Similarly, we get
Z ; min{y(0),y(1)}. (2.19)

It follows from ([2.18)) and (2.19| th:at
miny(0).y(1)} > min {3 ar. 3 4 minfy(0). y(1)}.
i=1 i=1

Then (H18) implies that min{y(0),y(1)} > 0. So y(¢t) > min{y(0),y(1)} > 0 for all
t € [0,1]. The proof is complete. O

Lemma 2.32. Assume (H4), (H18), (H19). If y is a solution of (2.17), then there
exists unique Ay, € [0,b] such that

1_%;:15; iai /51‘ ¢! (Ah - /03 h(u)du)ds

i=1

1 0
i /01 o7 (4n - /O h(u)du)ds
_ iﬁi /051‘ ot (Ah _ /OS h(u)du> ds — B = 0.

where

b:/olh( )du+¢ ) a_Zalfz (1—§5i)+§;@(1_gi),

Proof. From ([2.17)) it follows that

1) =50+ [ 07 (o' (0) = [ hu)du)as
The BCs in implies

0) ia + ia / o (40 - / *h(u)du) s

and
y(0) + /01 o1 <¢(y’(0)) — /05 h(u)du) ds
0) iﬂi + iﬁi /Ogi o1 (gb(y'(())) - /OS h(u)du) ds + B.
Then

] i o [ o (oo~ [ nwan)as
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- /0 o7 (4y/(0) - /O h(u)du)ds
mor .
[ (oo [ heias -5 =0
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Let

o "z i / (e /Osh(u)dU)ds
/ / w)du)ds
Zm; / ( /Ogh(U)du)ds_B
SRS [ e [
H-3o) [l (e [
+§ﬁ"/@1¢_1(0—/jh<u)du s B

It is easy to see that G(c) is increasing on (—oo, +00) and

R [ (e
-1 Zﬂ)/ (/O h(u )du)ds
_;Bi/& - /Oh“du)dS—B<0,

and

60 =6( [ nwau+o(2))

1 5162 / / du)d

+( _Z@)/ (o f)+/slh(u)du>d5
+Zﬂ/ ol §)+/1h( )du)ds — B

R [ ()

39
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m i B B
+ (1—2@)/0 é 1<¢(a))ds
m 1 B
+ ; —1( = )d —B=0.
>0 /&qb o(2) ) ds

a

Then G(0) < 0, G(b) > 0 and that G(c) is increasing on (—oc, 4+00) imply that
Ap = ¢(y'(0)) € [0,b] and Ay, satisfies

= %Enigl Zi_n;ozi /Ogi qS*l(Ah — /OS h(u)du)ds

+/01¢1(Ah—/08h(u)du)ds
_éﬂi/jd)1(Ah_/osh(u)du)ds—3—o.

(]
Let z(t) — h = y(t). Then is transformed into
[6(y" ()] + F(t,y(t) + h,y'(8)) =0, t€(0,1),
- y(&) =0,
; a;y(&) 2.30)

- _Zv 1/874
i§=15y<£> 5" a

Let

Ps={ye X :y(t)=>0foralltel0,1],y(t) is decreasing on [0, 1],
y(t) > min{t,1 — ¢} nax y(t) for all ¢ € [0,1]}
Then Ps is a cone in X. For y € Ps, since

ly(t)] = [y(t) — y(0) + y(0)]
< |y'(0)t + [y(0)]

moay(&) =Sy (0
S max |y |+|Zz:1ay(€) mszlay< )|
te[0,1] 1->00 o
27‘210@@‘
< (14 L=l 50
_( + 1—2?;1%)1521[6&)%] ()]
2@10@&
— (1 4 L=l MG
( +1—Z?i1ai)7(y)’

we get
E Tril Ozlfi
nax ly(t)] < ( +tio ST 7(y)

It is easy to see that there exists a constant M > 0 such that [|y|| < M~(y) for all
Yy e P5.
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Define the operator 75 : Ps — X by

@0 =8, + [ 67 (4 [ s + hy/ya)is, ver,

where
_\m S & s
=1 =1
1 s
+/o ¢! (Ay - /0 fu,y(u) + h,y'(u))du)ds
- Em:ﬂi /& ¢! (A - /s flu,y(u) +h y’(u))du) ds— B =0.
P 0 Y o 9 9
and
m &i s
By = 15@11@2@% ¢’1(Ay —/0 (s y(u) +h,y’(u))du)ds.
=10 45—

Lemma 2.33. Assume (H17), (H18), (H19). Then
(i) the following equalities hold:

[D(Tsy) () + f(t.y(t) + hyy' (1)) =0, t€(0,1),

m

(T5y)(0) — Z ai(T5y) (&) = 0,

(Tsy)(1) — ;@(Tsy)(&) =B- L%ﬁig

(ii) Tsy € Ps for each y € Ps;
(iii) = is a solution of (L.18)) if and only if xt = y+ h and y is a solution of the

operator equation y = Tsy;
(iv) Ts : Ps — Ps5 is completely continuous.

A >0

The proof is similar to that of Lemma therefore, it is omitted.

Theorem 2.34. Suppose that (H17), (H18), (H19) hold, and that there exist posi-
tive constants ey, es, C,

_ ! -1 ¢(1+Z;115i) _s)ds
L‘A¢ (U Sm—a iyt

1 ! -1 ¢(1 + 21":1 ﬂi)
—_—— ; 1 = 1—s]ds,
Jrl_Zi:lai; /i¢ ( +¢(2)_¢(1+Z¢:15i) i )
i Lo € () .
@ = min {$(3), s ) b
6(2)—o (1437, 8:)

W = 2 ;. E= e—l.
¢(Uofklk ¢~ (1 —k—s)ds> ¢(L)

m
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suchthatcz%>eg>§—1>el>0,
) 0

B(I-FZZZ /61)
ezo(TTgig ) 97w

If (A1)—(A3) in Theorem [2.10 hold, then (L.18) has at least three positive solutions
1, T, x3 Ssuch that

max z1(t) < e + h, min  x3(t) > ez + h,

te[0,1] te(k,1—k]

min _x3(t) > e1 + h, min  x3(t) < ez + h.
te(k,1—k] te(k,1—k]|

The proof of the above theorem is similar to that of Theorem [2.10f it is omitted.
For , we have the following assumptions:
(H19) f:[0,1] x [h,+00) X R — [0, +00) is continuous with f(t ¢+ h,0) #Z 0 on
each sub-interval of [0,1] for all ¢ > 0, where h = m
(H20) o; >0, 3; > O satisfy >0 oy < 1, Y im B < 1
(H21) A >0, B>0w1thB<%A
Consider the boundary-value problem

[6(y'(£)]" + h(t) =0, t € (0,1),
“ (2.21)

- Z%‘y(&) =4, y()- Zﬁw(ﬁi) =0,

Lemma 2.35. Assume (H4), (H20), (H21). If y is a solution of (2.21)), then y is
positive on (0,1).

The proof of the above lemma is similar to that of Lemma it is omitted.
Lemma 2.36. Assume (H4), (H20), (H21). If y is a solution of (2.21)), then

y(t) = B — /t1 ¢! (Ah + /Sl h(u)du)ds.

- % iﬂ L ot (An+ / h(w)du) ds

_/01¢1<Ah +/Slh(u)du>ds

where
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Proof. Tt follows from (2.21) that
1

y(t) =y(1)_/t1 ¢_1(¢(y/(1))+/8 h(u)du)ds.
The BCs in implies

w o 1
v =y 30320 [ 07 (o) + [ hiwgan)a
and
o)~ [ 6 (o) + [ hiagan)as
=y(1)§:ai —ia ;qbl(qi)(y (1))+/S1 ( )du)ds+A
Then ) )
SRS [ o (s + [ nan)as
- [ (own+ [ nwan)as
+ éai /; ot (¢(y'(1)) + /S1 h(u)du)ds —A=0.
Let

Gle) = — 1= E =1 % Zﬁ/ ( /lh(u)du>d5

It is easy to see that G( is decreasing on (—oo, +00) and

)
1 % —1% Z@/;qsl(/:h(u)du)ds
. (1—20@) /Olqb_l(/:h(u)du)ds

G(0) =

43
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- i - h(u)du)ds — A <0,
;a/o 1) (/S (u) u) s <0
and

G /Olh du—qb(g)

Z:ﬁ az ! 1
= Z:iﬁ”:1@6¢ /h )du — ¢(= d
(1—;%) /01¢—1(_/()3h(u)du—¢(‘:))ds

Zai/: p! —/Shw)duw(é))ds%
SRR R )

(- %) /01¢-1(¢<A>)ds
+Za:/ Jds—4=0.

Then G(0) < 0, G(b) > 0 and that G(c) is decreasing on (—oo,+00) imply that
Ap =o¢(y'(1)) € [b,0] and Ay, satisfies

17 1225/ (Ath/:h(u)du)ds
_/01¢—1(Ah+/: h(u)du)ds

+§:a2/ Ah—i-/lh(u)du)ds—A:O.
Let z(t) — h = y(t). Then is transformed into
[’ () + f(t y(t) +h y'(t)) =0, te(0,1),

Zz 1%
Zaly = o S (2.22)

- Zﬁiy(fi) =0,
i=1

Let
Ps={ye X :y(t)>0foralltel0,1],y(¢) is decreasing on [0, 1],
y(t) > min{¢, 1 —t} m[aa}i] y(t)for all ¢ € [0,1]}
te(o,
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Then Pj is a cone in X. For y € Fg, since
t)| = |Zz 1 ﬁzy(gz) - ZT 1 Biy(1) ‘

— Y ie Bi
diea ﬂz’( )

< [ tren[gvf]l y'(t)]
_ X Bl —&)
) By),
we get
Z’L ﬁl( ’L)
E%]' y(t)| < ﬁ’ﬂy)

45

It is easy to see that there exists a constant M > 0 such that |ly|| < M~(y) for all

Y € Pﬁ.
Define the operator Ty : Ps — X by

(Tn)(®) = B, ~ [ o (4,4 / ) + .y )du)ds, g€ By,

where Ay, € [b, 0] satisfies

Die 12‘;;@/1 (Ah+/:h(u)du>ds

_/01 ¢_1 Ah+/ h(u)du)ds
+Zaz/ Ah+/ h(u)du)ds — A =0,

and B;, satisfies

B s gﬁ / o (st + [ nwpan)as

Lemma 2.37. Suppose that (H19)-(H21) hold. Then
(i) the following equalities hold:

[6((Tey)' ()] + f (ty(t) + 1,y () =0, € (0,1),

(Toy)(0) — Z%’(Tﬁy)(fi) =A— %B >0,
(Toy)(1) — Z Bi(Tey)(&) = 0;

(ii) Ty € Ps for each y € Ps;

(iii) = is a solution of (L.18)) if and only if x =y + h and y is a solution of the

operator equation y = Tgy;
(iv) Ts : Ps — P is completely continuous.

The proof of the above lemma is similar to that of Lemma we omit it.



46 Y. LIU EJDE-2008/96

Theorem 2.38. Suppose that (H19)—(H21) hold and that there exist positive con-
stants ey, ea, ¢,

L=/01¢‘1(1+ (2¢(1+Zz 1) +1—s)ds

) (1+ 0, 8)
; o o o1+ 5)
1—211%; 1/1-(25 (1+¢(2)_¢(1+Z£1ﬁi)

Q=min{o(5), —— AL},

m

+1 —s)ds,

s(143°7, 8,)
1+ B(2)—o(1+37, B;)
€2 €1
W =2¢ — i E=o¢(—).
(aof,j kqﬁl(l—k—s)ds) 2
such that ¢ > ;—zz > eq > ff—; >e; >0,
B(IJFZ?; 51‘)
ezé(TTgig ) 9

If (A1)—(A3) in Theorem [2.10 hold, then (L.18) has at least three positive solutions
T1,X2,x3 such that

max z1(t) < ey + h, min  x2(t) > ez + h,

te(0,1] te(k,1—k]

min _x3(t) > e + A, min _z3(t) < ez + h.
te[k,1—k] te[k,1-k]

The proof of the above theorem is similar to that of Theorem [2:10} it is omitted.

Remark 2.39. In papers [23] 25], sufficient conditions are found for the existence
of solutions of . It was proved that the whole plane is divided by a “con-
tinuous decreasing curve” I' into two disjoint connected regions AE and AN such
that has at least one solution for (A1, A2) € I, has at least two solutions for
(A, A2) € AE\ T, and has no solution for (A1, A2) € AN. The explicit subregions
of AE where has at least two solutions and two positive solutions, respec-

tively. When applying Theorem “ to , it shows us that - has at least
three positive solutions under the assumptlons )\2 > 12711@)\1 and some other

assumptions. When applying Theorem [2.34 “ to , it shows us that ( - ) has

at least three positive solutions under the assumptlons A > 1_%%/\2 and some
i=1

other assumptions.

Remark 2.40. In paper [58], the authors studied the existence of multiple posi-
tive solutions of under the assumption a; < 3; for all i = 1,...,m and other
assumptions, when we apply Theorem and Theorem @ to , the as-
sumptions a; < f3; for all i = 1,...,m are deleted. So Theorem [2.34] and Theorem
2.38| generalize and improve the theorems in [58].

Remark 2.41. The existence problem on multiple positive solutions of ([L.18]) is
solved in the case A > 0, B > 0, but such problems remains unsolved in the cases
A>0,B<0,A<0,B>0and A<0,B<0.
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3. EXAMPLES

Now, we present three examples, whose three positive solutions can not be ob-
tained by theorems in known papers, to illustrate the main results.

Example 3.1. Consider the boundary-value problem
2(t) + [t (1), (1)) =0, t€(0,1),
1 1
z'(0) = Zm’(l/él) -2, z(1)= Zx(l/Q) + 1.
Corresponding to (1.14]), one sees that ¢(z) = 2 = ¢~ 1(z), a = 2, & = 1/4,& =

1/2, 01 =1/4,00=0,5=0,8, =1/4, A= -2 B=1.
Choose k = 1/4, then g = 4, choose e; = 10, e5 = 50, ¢ = 20000. Then

i

(3.1)

o1+ ay)
(1 +Z 1041) B @
-y 1@;@/1 ( o2 —(1+> 1, i)+8)d‘9—120’
: c o(c) 120 X 20000
Q:mm{‘b(f)’ 1+ 5(2) }_ ;

3(2)—0 (1437, o)

€2 el 1200
W:¢( _ ):1600; E=¢(2) =2
Uofkl Fo1(s — k) ds (L) 299
suchthatcz%>eg><%>el>0,
0
(1 +2i O‘%)
> w.
Q= ¢( 1-— ZZ 10y )7 Q>

If

2097 [0,4],

600

500 z € [4,44],

folu) = 4 (a — 44)2000= 55 4 600 ¢ (44 54],

4000, z € [54,20004],

x — 16004, x > 20004,
and ) )

1+ sint u” +v
t =
f( ,U,’U) fo(u)"' 10000 +2X1012’

it is easy to see that ¢ > 55 > eg > s—; >ep >0,

0

> =1 ) >W
Q= o(—F =) Q
and
(A1) f(t,u,v) < 2520000 for all ¢ € [0,1],u € [4,20004], v € [-20000,20000];

(A2) f(t,u,v) > 1600 for all t € [1/4,3/4],u € [54,804],v € [—20000, 20000];

(A3) f(t,u,v) g 1200 for all ¢t € [0,1],u € [4,44],v € [~20000, 20000];

then Theorem implies that . has at least three decreasing and positive
solutions z1, 2, 3 such that 21(0) < 14, x2(3/4) > 54, 23(0) > 14, 25(3/4) < 54.
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Example 3.2. Consider the boundary-value problem
a"(t) + f(t,x(t),2'(t) =0, te(0,1),

1 1 1
x(0) = 533'(1/4) +2, 2'(1)= 133'(1/4) + Zw’(1/2) +5
Corresponding to (1.17), one sees that ¢(z) = z = ¢~ 1(x), a = 2, & = 1/4,
52:1/27 04121/27 OzQZO,ﬁl21/4:ﬁ2,A:2,B:5,h=2.

Choose k = 1/3, then o9 = 1/3, e; = 20, e3 = 80, ¢ = 30000 and

(3.2)

1 1+3°0, Bi
L:/O ¢71(1+ 1ib§b(”22;"g) +1—s)ds

m B ¢(1+E$1 51) 55
+) a1+ N tl-G) =
i:zl ( 1 _ ¢(1+225=1 ﬁw) ) 8
. c o(c) 48000
Q —mln{(b (Z) ) 1+ #(2) } - 11 ’
$(2) -6 (1+37, 6:)
€2 el 32
W= = 4320, E=o¢(2) ="
¢(Jofk1k¢)1(1ks)ds> AT =

suchthatczg—?é>eg>§—;>el>0,

(B - ﬁ) 1+, 6)
1- Z;Zl ﬂz

Q= o ). Q>w

If

(A1) f(t,u,0) < 8990 for all ¢ € [0,1],u € [2,30002], v € [~30000, 30000];
(A2) F(tu,0) > 4320 for all £ € [1/3,2/3],u € [82,722], v € [~30000, 30000];

(A3) f(t,u,v) <32 forallt e [0 1] u € [2,62],v € [—30000, 30000];

then Theorem [2.30) m implies that (| has at least three positive solutions x1, zs, x3
such that

t) <22 i t) > 82
Jax. w1 (t) S . z2(1) ;

t) > 22, i t) < 82.
R T

Example 3.3. Consider the boundary-value problem
a”(t) + f(t,2(t),2'(t)) =0, te(0,1),
1 1
1 1
z(1) = 11:(1/4) + ZI(1/2) +8

Corresponding to , one sees that gb(x) r = ¢ Y(x), & = 1/4, & = 1/2,
Q1:1/2,a2:1/3,ﬂ1—1/4 ﬂZa aB 8, h%
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Choose k = 1/4, then g9 = 1/4. Choose e; = 50, e2 = 250, ¢ = 400000 and

L o(1+30, 6)
L= e (0 e

S o P S oL+, 5) L
—I—lzmgai/iqﬁ 1(1+¢(2 1 +1—S)ds_—

—|—1—s)ds

) —o(1+ 32 6i) 64’
, c b(c 25600000
Q:mln{¢(f)’ “ T
. ¢(1+z;’;1m)
+ $(2)—¢(1+37", Bi)
e ery 3200
W=¢ — =8000; E=¢(—)="—.
(Uofkl k¢1(1k5)d5> (L) 481
suchthatcz%>eg>[%>el>07
0
B+ B)
> i=1 w.
Qzo(—55"). @
If
(A1) f(t,u,v) < 225009 for all ¢ € [0,1],u € [4,400004], v € [-400000, 400000];

(A2) f(t,u,v) > 8000 for all t € [1/4,3/4],u € [254,4004],v € [—400000, 400000];

(A3) f(t,u,v) <320 for all t € [0,1],u € [4,204],v € [—400000, 400000];

then Theorem implies that (3.3]) has at least three positive solutions x1, 3, T3
such that

max z1(t) < 54, min  xo(t) > 254,

te[0,1] te(k,1—k]
t) > 54, i t) < 254.
Jnax z3(t) eppin z3(t)
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