
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 95, pp. 1–12.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

LINEAR MATRIX DIFFERENTIAL EQUATIONS OF
HIGHER-ORDER AND APPLICATIONS

RAJAE BEN TAHER, MUSTAPHA RACHIDI

Abstract. In this article, we study linear differential equations of higher-

order whose coefficients are square matrices. The combinatorial method for

computing the matrix powers and exponential is adopted. New formulas rep-
resenting auxiliary results are obtained. This allows us to prove properties of a

large class of linear matrix differential equations of higher-order, in particular

results of Apostol and Kolodner are recovered. Also illustrative examples and
applications are presented.

1. Introduction

Linear matrix differential equations are important in many fields of mathematics
and their applications. Among the most simple and fundamental are the first order
linear systems with constant coefficients,

X ′(t) = AX(t), such that X(0) = 1d, (1.1)

where 1d is the identity matrix of M(d; C), A ∈M(d; C) and X ∈ C∞(R;M(d; C)).
For the sake of simplicity we set in the sequel Ad = M(d; C). The system (1.1) has
been extensively studied; its solutions depend closely on the computation of etA (t ∈
R). To perform this computation, many theoretical and numerical methods have
been developed (see [2, 3, 4, 6, 8, 11, 12, 14, 16, 17] for example). The combinatorial
method is among those considered recently for obtaining some practical expressions
of An (n ≥ d) and etA (t ∈ R) (see [2, 3, 14]). Techniques of this method are based
on properties of some linear recursive sequences (see [10, 13] for example), known in
the literature as r-generalized Fibonacci sequences (to abbreviate we write r-GFS).

Let A0, . . . , As−1 be in Ad and consider the linear matrix differential equation
of higher-order

X(s)(t) = A0X
(s−1)(t) + · · ·+ As−1X(t), (1.2)

subject to the initial conditions X(0), X ′(0), . . . , X(s−1)(0). To study (1.2) it
is customary to write it under its equivalent form as the linear first order system
(1.1). More precisely, (1.2) takes the form Y ′(t) = BY (t), where B ∈ Ads and
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Y ∈ C∞(R;Ads) (see Section 4 for more details). For s = 2 properties of the linear
matrix differential equation (1.2),

X ′′(t) = A0X
′(t) + A1X(t), (1.3)

have been studied (directly) by Apostol and Kolodner (see [1, 9]) without appealing
to its equivalent form as equation (1.1).

The main purpose of this paper is to study solutions of a large class of linear
matrix differential equations (1.2), whose coefficients are in the algebra Ad. First
we consider (1.2) when A0 = · · · = Ar−2 = Θd (the zero matrix of Ad) and
Ar−1 = A 6= Θd. Solutions to these matrix differential equations are expressed in
terms of the coefficients of the polynomial P (z) = zr−a0z

r−1−· · ·−ar−1 satisfying
P (A) = Θd and matrices A0 = 1d, A, . . . , Ar−1. Moreover, these solutions are also
described with the aid of the zeros of the polynomial P (z). Furthermore, the case
r = 2 is improved and the fundamental results of Apostol-Kolodner are recovered
and their extension is established. Secondly, in light of a survey of the general
equation (1.2), we manage to supply their solutions under a combinatorial form.

In Section 2 we recall auxiliary results on the powers and exponential of an
element A ∈ Ad. In Section 3, we study the class of linear matrix differential
equations of higher-order (1.2) associated to A0 = · · · = As−2 = Θd and As−1 = A
(we call this class the Higher order linear matrix differential of Apostol type) and
recover the results of Apostol-Kolodner. In Section 4 we consider the combinatorial
aspect of the matrix powers and exponential in order to explore the general setting
of linear matrix differential equations (1.2). Finally, concluding remarks are stated
and a future problem is formulated in Section 5.

2. Auxiliary results on the powers and exponential of a matrix

We review here some basic results on the matrix powers and exponential needed
in the next sections. That is, we recall some results of [2, 3, 4] and set forth a new
result in Proposition 2.2. To begin, let A0, . . . , Ar−1 and S0, . . . , Sr−1 be two finite
sequences of Ad with Ar−1 6= Θd. Consider the recursive sequence {Yn}n≥0 such
that Yn = Sn for 0 ≤ n ≤ r − 1 and

Yn+1 = A0Yn + · · ·+ Ar−1Yn−r+1, for every n ≥ r − 1. (2.1)

When AjAk = AkAj , for every 0 ≤ j, k ≤ r− 1 and following the same straightfor-
ward computation as in [2, 14] we obtain,

Yn = ρ(n, r)W0 + · · ·+ ρ(n− r + 1, r)Wr−1, for every n ≥ r, (2.2)

where Wp = Ar−1Sp + · · ·+ ApSr−1 (p = 0, 1, . . . , r − 1) and

ρ(n, r) =
∑

k0+2k1+···+rkr−1=n−r

(k0 + · · ·+ kr−1)!
k0!k1! . . . kr−1!

Ak0
0 Ak1

1 . . . A
kr−1
r−1 , (2.3)

for every n ≥ r, with ρ(r, r) = 1 and ρ(n, r) = 0 for n ≤ r−1 (see [2, 3, 11, 13, 14]).
The computation of the powers An (n ≥ r) follows by a direct application of (2.2)-
(2.3). Indeed, the polynomial equation P (A) = Θd shows that An+1 = a0A

n +
· · ·+ ar−1A

n−r+1, for every n ≥ r− 1, and by the way the sequence {An}n≥0 is an
r-GFS in Ad, whose coefficients and initial values are A0 = a0, . . . , Ar−1 = ar−1,
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S0 = A0 = 1d, . . . , Sr−1 = Ar−1 (respectively). In light of [2, 14] we have the
following characterization of the powers of A,

An =
r−1∑
p=0

( p∑
j=0

ar−p+j−1ρ(n− j, r)
)
Ap, for every n ≥ r, (2.4)

where

ρ(n, r) =
∑

k0+2k1+···+rkr−1=n−r

(k0 + · · ·+ kr−1)!
k0!k1! . . . kr−1!

ak0
0 . . . a

kr−1
r−1 , for n ≥ r, (2.5)

with ρ(r, r) = 1 and ρ(n, r) = 0 for n ≤ r− 1 (see [2, 14]). The matrix exponential
etA (A ∈ Ad) is defined as usual by the series etA =

∑+∞
n=0(t

n/n!)An. It turns
out following [2] that direct computation using (2.4)-(2.5) allows us to derive that
the unique solution of the matrix differential equation (1.1), satisfying the initial
condition X(0) = 1d, is X(t) = etA =

∑r−1
k=0 Ωk(t)Ak such that

Ωk(t) =
tk

k!
+

k∑
j=0

ar−k+j−1ωj(t), (0 ≤ k ≤ r − 1), (2.6)

with

ωj(t) =
+∞∑
n=0

ρ(n− j, r)
tn

n!
(0 ≤ j ≤ r − 1)

and ρ(n, r) given by (2.5).
As shown here the preceding expressions of An (n ≥ r) and etA are formulated in

terms of the coefficients of the polynomial P (z) = zr − a0z
r−1− · · · − ar−1 and the

first r powers A0 = 1d, A, . . . , Ar−1. The goal now is to express An (n ≥ r) and etA

using the roots of the polynomial P (z) = zr−a0z
r−1−· · ·−ar−1 satisfying P (A) =

Θd. To this aim, let λ1, . . . , λs be the distinct roots of P (z) = zr−a0z
r−1−· · ·−ar−1

of multiplicities m1, . . . ,ms (respectively). For every j (1 ≤ j ≤ s) we consider the
sequence {bi,j}0≤i≤mj−1 such that bi,j = 0 for i > m1+· · ·+mj−1+mj+1+· · ·+ms

and otherwise

bi,j =
∑

h1+···+hj−1+hj+1+···+hs=i,hd≤md

s∏
d=1,d6=j

(hd
md

)(λj − λd)md−hd . (2.7)

For every j (1 ≤ j ≤ s), let {αi,j}0≤i≤mj−1 be the sequence defined by α0,j = 1
and

αi,j =
−1
b0,j

(b1,jαi−1,j + b2,jαi−2,j + · · ·+ bi−1,jα1,j + bi,jα0,j) , (2.8)

where the bi,j are given by (2.7). Recall that {bi,j}0≤i≤mj−1 and {αi,j}0≤i≤mj−1

have been introduced in [3] for computing the powers of a matrix A ∈ Ad. Besides
the exploration of Expression (4.15) in [18] and Proposition 4.3 in [4] allow us to
obtain an explicit formula for the αi,j as follows,

αi,j = (−1)i
∑

h1+h2+···+hj−1+hj+1···+hs=i,hd≤md

s∏
d=1d6=j

(hd

md+hd−1) (λj − λd)
−hd .

(2.9)
With the aid of the basis of the Lagrange-Sylvester interpolation polynomials as in
[8], we obtain the following result.
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Proposition 2.1. Let A be in Ad such that p(A) =
∏s

j=1(A − λj1d)mj = Θd

(λi 6= λj, for i 6= j). Then

etA =
s∑

j=1

eλjt

mj−1∑
k=0

fj,k(t)(A− λj1d)kqj(A),

=
s∑

j=1

eλjt
[ mj−1∑

k=0

tk

k!
(A− λj1d)k

]
pj(A),

(2.10)

An =
s∑

j=1

min(n,mj−1)∑
k=0

mj−k−1∑
i=0

λn−k
j αi,j

(
n

k

)
(A− λj1d)k+iqj(A) (2.11)

such that

pj(z) =
∏

d=1,d 6=j

((z − λd)md/(λj − λd)md)
mj−1∑
i=0

αi,j(z − λj)i,

qj(z) = p(z)/(z − λj)mj and

fj,k(t) =
k∑

i=0

αi,j(tk−i/(k − i)!)(1/
∏

d=1,d6=j

(λj − λd)md),

where the αi,j are given by (2.9).

When p(A) = (A− λj1)r = Θd we can take α01 = 1 and αi1 = 0 for every i 6= 0.
Let Ω0(t) be the coefficient of A0 = 1d in the well known polynomial decom-

position etA =
∑r−1

k=0 Ωk(t)Ak. A direct computation, using (2.10), yields a new
formula for Ω0(t) in terms of {λj}{1≤j≤s} as follows.

Proposition 2.2. Under the hypothesis of Proposition 2.1, we have

Ω0(t) =
s∑

k=1

eλktQk(t)
s∏

j=1,j 6=k

(−λj)mj

(λk − λj)mj
, (2.12)

where

Qk(t) =
mk−1∑
p=0

( p∑
i=0

αi,ktp−i/(p− i)!
)
(−λk)p,

with the αi,k given by (2.9). Moreover, we have dΩk+1
dt (t) = ar−k−2

dω0
dt (t) + Ωk(t),

with Ω0(t) = 1 + ar−1ω0(t).

From Proposition 2.2 we derive that

ω0(t) =
1− Ω0(t)

(−λ1)m1 . . . (−λs)ms
,

where Ω0(t) is given by (2.12). It seems for us that (2.12), which gives Ω0(t) in
terms of the eigenvalues {λj}{1≤j≤s} of the matrix A, is not known in the literature
under this form.

The preceding results will play a central role in the next sections devoted to some
properties of the linear matrix differential equations of higher-order (1.2)-(1.3).
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3. Higher-order matrix differential equations of Apostol type

We are concerned here with the higher-order matrix differential equations (1.2)
when A0 = · · · = Ar−2 = Θd and Ar−1 = A 6= Θd, where A ∈ Ad. These linear
matrix differential equations are called of Apostol type. For reason of clarity we
proceed as follows. We start by reconsidering the case r = 2 and afterwards we
focus on the case r ≥ 2, particularly results of Apostol and Kolonder are recovered.

3.1. Simple second-order differential equations. Let A be in Ad satisfying
the polynomial equation P (A) = Θd, where P (z) = zr − a0z

r−1 − · · · − ar−1. It is
well known that the second-order linear matrix differential equation

X ′′(t) = AX(t), (3.1)

has a unique solution X(t) = C(t)X(0) + S(t)X ′(0), where X(0) and X ′(0) are the
prescribed initial values and C(t) and S(t) are the following series

C(t) =
+∞∑
k=0

t2k

(2k)!
Ak, S(t) =

+∞∑
k=0

t2k+1

(2k + 1)!
Ak

(see [1, 9]). If we substitute for Ak its expression given in (2.4) we manage to have
the following improvement of the Apostol-Kolodner result.

Proposition 3.1. Let A be in Ad satisfying the polynomial equation P (A) = Θd,
where P (z) = zr − a0z

r−1 − · · · − ar−1. Then, the unique solution of the ma-
trix differential equation (3.1), with the prescribed initial values X(0) and X ′(0) is
X(t) =

∑r−1
k=0(Ck(t)X(0) + Sk(t)X ′(0))Ak, such that

Ck(t) =
t2k

(2k)!
+

+∞∑
n=r

t2n

(2n)!
ρk(n), Sk(t) =

t2k+1

(2k + 1)!
+

+∞∑
n=r

t2n+1

(2n + 1)!
ρk(n)

for 0 ≤ k ≤ r − 1, where ρk(n) =
∑k

j=0 ar−k+j−1ρ(n− j, r) with the ρ(n, r) given
by (2.5).

Consider the first-order differential equation (1.1) with A ∈ Ad satisfying P (A) =
Θd, where P (X) = zr − a0z

r−1 − · · · − ar−1. Kolodner’s method (see [9]) shows
that P (D)X(t) = P (A)X(t) = 0, where D = d/dt. Therefore, we have X(t) =∑r−1

j=0 φj(t)Aj , where the functions φj(t) (0 ≤ j ≤ r−1) verify the scalar differential
equation P (D)x(t) = 0, whose initial conditions are Dkφj(0) = δj,k (= 1 for j = k
and 0 if not), (see [9, 11]). For the linear matrix differential equation (3.1) we have
D2X(t) = AX(t), and the preceding method shows that P (D2)X(t) = 0. If we set
Q(z) = P (z2), it is easy to show that each function φj(t) (0 ≤ j ≤ 2r − 1) is also
a solution of the scalar ordinary differential equation (of order 2r) Q(D)x(t) = 0,
satisfying the initial conditions Dkφj(0) = δj,k (0 ≤ j ≤ 2r − 1). Therefore,
Equation (2.6) implies that

φk(t) =
tk

k!
+

k∑
j=0

b2r−k+j−1ωj(t), (3.2)

where b2i = 0, b2i+1 = ai and ωj(t) =
∑+∞

n=2r ρ(n − j, 2r)tn/n! (0 ≤ j ≤ 2r − 1),
with ρ(n, 2r) given by (2.5) are such that the ai and r are replaced by the bi and
2r (respectively). In conclusion we have the following proposition.
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Proposition 3.2. Let A ∈ Ad such that P (A) = Θr, where P (z) = zr − a0z
r−1 −

· · · − ar−1. Then, the unique solution of the matrix differential equation (3.1),
with the prescribed initial values X(0) and X ′(0), is given by X(t) = C(t)X(0) +
S(t)X ′(0) with

C(t) =
r−1∑
k=0

φ2k+1(t)Ak, S(t) =
r−1∑
k=0

φ2k(t)Ak, (3.3)

where the φk(t) (0 ≤ k ≤ r − 1) are described by (3.2).

Proposition 3.2 represents a new formulation of the result of Kolodner (see [9]).
As an application of the last propositions, let us consider the following example.

Example 3.3. Let A ∈ Ad satisfying P (A) = A2 − 1d = Θd (or equivalently
A2 = 1d), then ρ0(2n) = 1, ρ0(2n + 1) = 0 and ρ1(2n) = 0, ρ1(2n + 1) = 0 for
n ≥ 2. And a straightforward verification, using Propositions 3.1 or 3.2, shows that
we have X(t) = (C0(t)X(0) + S0(t)X ′(0)) 1d + (C1(t)X(0) + S1(t)X ′(0))A, where

C0(t) =
1
2
(ch(t) + cos(t)), S0(t) = t +

1
2
(sh(t) + sin(t)),

C1(t) =
1
2
(ch(t)− cos(t)), S1(t) = t +

1
2
(sh(t)− sin(t)).

3.2. Higher order linear differential equations of Apostol type. In this
Subsection we extend results of Subsection 3.1 to the class of Apostol linear matrix
differential equations of order p ≥ 2,

X(p)(t) = AX(t), (3.4)

whose prescribed initial conditions are X(0), X ′(0), . . . , X(p−1)(0), where A ∈ Ad

satisfying the polynomial equation P (A) = Θd, where P (z) = zr − a0z
r−1 − · · · −

ar−11d. Consider the vector column Z(t) =t (X(p−1)(t), . . . , X(t)) and the square
matrix dp× dp,

B =


Θd Θd . . . Θd A
1d Θd . . . Θd

Θd 1d Θd . . . Θd

...
. . . . . . . . .

...
Θd . . . Θd 1d Θd

 . (3.5)

It is well known that the solution of the linear matrix differential equation (3.4)
can be derived from the usual solution,

Z(t) = etBZ(0) where Z(0) =t (X(p−1)(0), . . . , X ′(0), X(0)), (3.6)

of the first order linear system (1.1) defined by the matrix (3.5). That is, we
focus our task on the computation of etB , which is essentially based on the explicit
formula of the powers Bn(n ≥ 0). Indeed, by induction we verify that, for every
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n ≥ 0, we have

Bpn =


An Θd . . . Θd

Θd
. . . . . .

...
...

. . . . . . Θd

Θd . . . Θd An

 , Bpn+i =



Θd . . . An+1 . . . Θd

...
. . . . . . . . .

...
Θd Θd . . . Θd An+1

An Θd
. . . . . .

...
...

. . . . . . . . .
...

Θd . . . An . . . Θd


,

(3.7)
for 1 ≤ i ≤ p−1, where the power An+1 of the first line is located at the (p−i+1)th

column and the power An of the first column is located at the (i + 1)th line. That
is, the matrix Bnp+i = (Ei,j)1≤i,j≤p such that 1 ≤ i ≤ p − 1 and Ei,j ∈ Ad, is
described as follows : Ej,p−i+j = An+1 for j = 1, . . . , i + 1, Ei+j,j = An+1 for
j = 1, . . . , p − i − 1 and Ei,j = Θd otherwise. The solution X(t) of the matrix
differential equation (3.4), is derived by a direct computation. More precisely, the
natural generalization of Proposition 3.1 is formulated as follows.

Theorem 3.4. Let A be in Ad. Then, the linear matrix differential equation (3.4)
of order p ≥ 2, with the prescribed initial conditions X(0), X ′(0), . . . , X(p−1)(0)
has a unique solution X(t) satisfying X(t) = C0(t, A)X(0) + C1(t, A)X ′(0) + · · ·+
Cp−1(t, A)X(p−1)(0), where

Cj(t, A) =
+∞∑
n=0

tpn+j

(np + j)!
An, for every j (0 ≤ j ≤ p− 1). (3.8)

Expression (3.7) of the powers of the matrix (3.5), can be easily derived using
the general method of Section 4, where this later is based on the extension of the
technique of [5, 7]. On the other hand, properties of the family of the functions
Cj(t, A) (0 ≤ j ≤ p− 1), may be obtained from (3.8). Indeed, a simple verification
gives the corollary.

Corollary 3.5. Under the hypothesis of Theorem 3.4, the functions Cj(t) (0 ≤ j ≤
p− 1) defined by (3.8) satisfy the following differential relations,

DkCj(t, A) = Cj−k(t, A), for 0 ≤ k ≤ j ≤ p− 1, and DkCj(0) = δj,k,

where D = d/dt. Moreover, for every j (0 ≤ j ≤ p − 1) we have Cj(t) =
Dp−j−1Cp−1(t).

A direct application of (2.4)-(2.5) and Theorem 3.4, permits us to establish that
solutions of the linear matrix differential equation (3.4) are expressed in terms of
the coefficients aj (0 ≤ j ≤ r−1) of the polynomial P (z) = zr−a0z

r−1−· · ·−ar−1

satisfying P (A) = Θd. More precisely, replacing An in (3.8) by its expression given
in (2.4) yields the following proposition.

Proposition 3.6. Let A be in Ad such that P (A) = θd, where P (z) = zr −
a0z

r−1 − · · · − ar−1. Then, the solution of the linear differential equation (3.4),
with the prescribed initial conditions X(0), X ′(0), . . . , X(p−1)(0), is

X(t) =
r−1∑
k=0

[ p−1∑
j=0

Cj,k(t)X(j)(0)
]
Ak
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such that

Cj,k(t) =
tpk+j

(pk + j)!
+

+∞∑
n=r

tpn+j

(pn + j)!
ρk(n),

with ρk(n) =
∑k

j=0 ar−k+j−1ρ(n− j, r), where ρ(n, r) is given by (2.5).

Now we obtain an explicit formula for the solution of the linear matrix differential
equation (3.4), in terms of the roots of the polynomial P (z) = zr−a0z

r−1−· · ·−ar−1

satisfying P (A) = Θd. To this aim, in Expression (3.8) we substitute for An

(n ≥ r) its expression set forth in Proposition 2.1. Then, a hard straightforward
computation leads us to the following result.

Theorem 3.7. Let A be in Ad such that P (A) =
∏s

j=1(A−λj1d)mj = Θd (λi 6= λj

for i 6= j). Then, the unique solution of the linear matrix differential equation
(3.4), with the prescribed initial conditions X(0), X ′(0), . . . , X(p−1)(0), is X(t) =∑p−1

i=0 Ci(t, A)X(i)(0) such that

Ci(t, A) =
s∑

j=1

ϕj(t;A),with ϕj(t;A) =
mj−1∑
k=0

dkVi

dzk
(t, λj)ρjk(A),

where Vi(t, z) =
∑+∞

n=0
tpn+i

(pn+i)!z
n and

ρj,k(z) =
1
k!

( mj−k−1∑
d=0

αd,j(z − λj)k+d
)( s∏

t=1,t6=j

(z − λt)mt

(λj − λt)mt

)
,

with αd,j given by (2.9).

The expression of the Cj(t, A) (0 ≤ j ≤ s) given in Theorem 3.7 seems quite
complicated, yet its application is a powerful tool in many important practical
situations as shown is the following corollaries and Example 3.10, it also leads to
have explicit formulas. Indeed, when p(A) =

∏r
j=1(A− λj1d) = Θd (λi 6= λj , then

we show that ρj0 = α0j = 1, and the following corollary is derived.

Corollary 3.8. Let A be in Ad such that p(A) =
∏r

j=1(A− λj1d) = Θd (λi 6= λj

for i 6= j). Then, the unique solution of Equation (3.4), with the prescribed initial
conditions X(0), X ′(0), . . . , X(p−1)(0) is X(t) =

∑p−1
i=0 Ci(t, A)X(i)(0), where

Ci(t, z) =
r∑

j=1

( +∞∑
n=0

tpn+i

(pn + i)!
λn

j

) r∏
t=1,t6=j

(z − λt)
(λj − λt)

.

In the particular case where p = 2, the result of Apostol (see [1]) is derived as
a simple consequence of the above corollary. Another important result of Theorem
3.7 can be established when p(A) = (A − λ11d)r = Θd. Indeed, as it was noticed
above, in this case we have α01 = 1 and αij = 0 for each i 6= 0 , whence ρ1,k(z) =
1
k! (z − λ1)k.

Corollary 3.9. Suppose that A ∈ Ad satisfies p(A) = (A − λ11d)r = Θd. Then,
the unique solution of Equation (3.4), with the prescribed initial conditions X(0),
X ′(0), . . . , X(p−1)(0), is X(t) =

∑p−1
i=0 Ci(t, A)X(i)(0), where

Ci(t, A) =
r∑

j=1

1
(j − 1)!

dj−1Vi

dλj−1
(t, λ1)(A− λ11d)j−1.
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Example 3.10. Let A ∈ Ad such that P (A) = Θd, where P (z) = (z − λ)2(z − µ)
(with λ 6= µ). Then, the solution of the third-order matrix differential equation
X ′′′(t) = AX(t), with the prescribed initial conditions X(0), X ′(0) and X ′′(0), is
given by X(t) = C0(t, A)X(0) + C1(t, A)X ′(0) + C2(t, A)X ′′(0). And by Corollary
3.8 we have C1(t, A) = DC2(t, A), C0(t, A) =D2C2(t, A) (D = d/dt), where

C2(t, A) = V2(t, λ)
[
1d+

A− λ1d

µ− λ

]
φ1(A)+

dV2

dz
(t, λ)(A−λ1d)φ1(t, λ)+V2(t, µ)φ2(A),

with

V2(t, z) =
+∞∑
n=0

t3n+2

(3n + 2)!
zn, φ1(z) =

z − µ

λ− µ

and φ2(z) = (z−λ)2

(µ−λ)2
.

Remark 3.11. As shown before, our method for studying these kinds of matrix
differential equations is more direct and does not appeal to other technics. Mean-
while, it seems for us that the method of Verde Star based on the technics of divided
differences can be also applied for studying such equations (see [17]).

4. Solutions of Equation (1.2): combinatorial setting

We are interested here in the combinatorial solutions of (1.2), where the expo-
nential generating function of the family of sequences {ρ(n−j, r)}n≥0 (0 ≤ j ≤ r−1)
is defined by (2.3).

Let A0, . . . , Ar−1 and S0, . . . , Sr−1 be two finite sequences of Ad such that
Ar−1 6= 0. Let C∞(R ;Ad) be the C-vector space of functions of class C∞. Con-
sider the class of linear matrix differential equations of higher-order (1.2), with
solutions in X ∈ C∞(R ;Ad) and subject to the initial conditions, X(0), X ′(0), . . . ,
X(r−1)(0). Set Z(t) =t (X(r−1)(t), . . . , X(t)) and Z(0) =t (X(r−1)(0), . . . , X(0)).
A standard computation shows that (1.2) is equivalent to the following first-order
matrix differential equation,

Z ′(t) = BZ(t), (4.1)

where B ∈M(r, Ad) is the companion matrix

B =


A0 A1 . . . Ar−1

1d Θd . . . Θd

Θd 1d Θd . . . Θd

...
. . . . . . . . .

...
Θd . . . Θd 1d Θd

 . (4.2)

It is well known that the solution of the linear matrix differential equation (1.2) is
Z(t) = etBZ(0), where the expression of etB depends on the computation of the
powers Bn with the aid of A0, . . . , Ar−1. To this aim, we apply the recent technique
for computing the powers of the usual companion matrix (4.2) (see [5, 7]). Indeed,
let {Yn,s}n≥0 (0 ≤ s ≤ r − 1) be the class of sequences (2.1) in Ad such that
Yn,s = δn,s1d (δn,s = 1 if n = s and 0 if not) for 0 ≤ n ≤ r − 1 and

Yn+1,s = A0Yn,s + A1Yn−1,s + · · ·+ Ar−1Yn−r+1,s, for n ≥ r − 1. (4.3)
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Lemma 4.1. Let A0, . . . , Ar−1 be in Ad with Ar−1 6= 0. Then

Bn =


Yn+r−1,r−1 Yn+r−1,r−2 . . . Yn+r−1,0

Yn+r−2,r−1 Yn+r−2,r−2 . . . Yn+r−2,0

...
...

. . .
...

Yn,r−1 Yn,r−2 . . . Yn,0

 , for every n ≥ 0. (4.4)

Expression (4.4) implies that etB = (Ci,j(t))0≤i, j≤r−1, where Ci,j(t) (0 ≤ i, j ≤
r−1) is the exponential generating functions of the sequence {Yn+r−1−i,r−1−j}n≥0

(0 ≤ i, j ≤ r − 1). Thus, the characterization of solutions of the linear matrix
differential equation (1.2), can be formulated as follows.

Theorem 4.2. Let A0, . . . , Ar−1 be in Ad such that Ar−1 6= 0. Then, the solution
of the linear matrix differential equation (1.2) is X(t) =

∑r−1
j=0 Cj(t)X(j)(0), where

Cj(t) =
∑+∞

n=0 Yn,jt
n/n! (0 ≤ j ≤ r − 1) is the exponential generating function of

the sequences {Yn,j}n≥0 (0 ≤ j ≤ r − 1) defined by (4.3).

A result similar to Theorem 4.2 has been given by Verde Star under another form,
by using the divided difference method for solving linear differential equations (1.2)
(see Section 5 of [19]). Indeed, Equation (1.2) is analogous to the Equation (5.6)
given by Verde Star whose solutions (5.13), submitted to the initial conditions
C0, C1, . . . , Cs, are expressed in terms of a sequence {Pk+j}0≤j≤s,k≥0 (see [19]),
satisfying a linear recursive relation analogous to (4.3), moreover {Pk+j}0≤j≤s,k≥0

is nothing else but the sequence {Yk,s−j}j defined previously by (4.3). Com-
parison of our procedure with the Verde Star’s method leads to infer that the
functions C0(t), C1(t), . . . , Cr−1(t) of Theorem 4.2 are identical to the functions
G0,1(t), G0,2(t), . . . , G0,s(t) considered in [19].

Furthermore when the condition AjAk = AkAj (0 ≤ j, k ≤ r − 1) is satisfied,
expressions (2.2)–(2.3) show that the combinatoric formula of sequences (4.3) can
be written explicitly as follows,

Yn,j =
j∑

k=0

Ar−j+k−1ρ(n− k, r), for n ≥ r, (4.5)

where the ρ(n, r) are defined in (2.3) for n ≥ r, with ρ(r, r) = 1d and ρ(n, r) =
Θd for n ≤ r − 1. Therefore, Expression (4.5) implies that Cj(t) = tj

j! 1d +∑j
k=0 Ar−j+k−1gk(t), where gk(t) =

∑+∞
n=0 ρ(n−k, r)tn/n! is the exponential gener-

ating functions of the sequence {ρ(n−k, r)}n≥0. Moreover, we verify easily that the

functions gj(t) (0 ≤ k ≤ j) satisfy g
(j−k)
j (t) = dj−kgj

dtj−k (t)=gk(t). Hence, an extension
of Proposition 3.1 and Theorem 3.4 can be formulated as follows.

Proposition 4.3. Let A0, . . . , Ar−1 be in Ad such that AiAk = AkAi for 0 ≤ i,
k ≤ r−1. Then the solution of the linear matrix differential equation (1.2), subject
to the prescribed initial values X(0), X ′(0), . . . , X(r−1)(0), is the following

X(t) =
r−1∑
j=0

∆j(t)X(j)(0) =
r−1∑
j=0

( tj

j!
+ Πj(D)gj(t)

)
X(j)(0), (4.6)

such that

∆j(t) =
tj

j!
+

j∑
k=0

Ar−j+k−1gk(t), Πj(D) =
tj

j!
+

j∑
k=0

Ar−j+k−1D
j−k,



EJDE-2008/95 LINEAR MATRIX DIFFERENTIAL EQUATIONS 11

where D = d/dt and gj(t) is the exponential generating function of the sequence
{ρ(n− j, r)}n≥0.

Proposition 4.3 shows that solutions of the linear matrix differential equation
(1.2) may be given in terms of the exponential generating function of the class of
sequences {Yn,j}n≥0 (0 ≤ j ≤ r− 1) defined by (4.3). In the same way, expressions
(2.2)-(2.3) may be used to obtain the combinatoric formulas of the sequences in
(4.3). Moreover, solutions of the linear matrix differential equation (1.2), subject
to the prescribed initial values X(0), X ′(0), . . . , X(r−1)(0), can be expressed in
terms the exponential generating functions of the class of sequences {ρ(n−k, r)}n≥0

(0 ≤ k ≤ r − 1).

Remark 4.4. Consider a unitary topological C-algebra A instead of the C-algebra
of the square matrices Ad. Suppose that A ∈ A is an algebraic element satisfying
P (A) = 0, where P (z) = zr−a0z

r−1−· · ·−ar−1 (aj ∈ C for 0 ≤ j ≤ r−1). Then,
all results of the preceding Sections are still valid. On the other hand, it’s easy
to show that Theorem 3.4 and Corollary 3.5, on the solutions of the linear matrix
differential equation (3.4), do not depend on the condition that A is algebraic.

Remark 4.5 (Future problem). Solutions of the linear matrix differential equation
(1.3), can be also described using some recursive relations and the exponential
generating functions of the combinatorial sequences (2.1). One of the main problems
is to study the spectral aspect of solutions of these classes of differential equations.
More precisely, suppose that the two (non trivial) matrices A0, A1 appearing in (1.3)
satisfy the following polynomial equations P1(A0) = P2(A1) = Θd, where P1(z) =∏s1

j=0(z − λj)pj and P2(z) =
∏s2

j=0(z − µj)qj . The problem can be formulated as
follows : study the solutions of the linear matrix differential equation (1.3), in terms
of the λj (0 ≤ j ≤ s1) and µj (0 ≤ j ≤ s2). Some investigations are currently done
for this purpose.
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