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STABILITY OF CELLULAR NEURAL NETWORKS WITH
UNBOUNDED TIME-VARYING DELAYS

LIJUAN WANG, JIANYING SHAO

Abstract. In this article, we prove the existence of local solutions and the

stability of the equilibrium points for cellular neural networks.

1. Introduction

Let n correspond to the number of units in a neural network, xi(t) be the state
vector of the ith unit at the time t, aij(t) be the strength of the jth unit on the
ith unit at time t, bij(t) be the strength of the jth unit on the ith unit at time
t − τij(t), and τij(t) ≥ 0 denote the transmission delay of the ith unit along the
axon of the jth unit at the time t. It is well known that the cellular neural networks
with time-varying delays are described by the differential equations

x′i(t) = −ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t)) +
n∑

j=1

bij(t)gj(xj(t− τij(t))) + Ii(t), (1.1)

where i = 1, 2, . . . , n, for any activation functions of signal transmission fj and gj .
Here Ii(t) denotes the external bias on the ith unit at the time t, ci(t) represents the
rate with which the ith unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs at the time t.

Since the cellular neural networks (CNNs) were introduced by Chua and Yang
[3] in 1990, they have been successfully applied to signal and image processing, pat-
tern recognition and optimization. Hence, CNNs have been the object of intensive
analysis by numerous authors in recent years. In particular, extensive results on
the problem of the existence and stability of the equilibriums and periodic solutions
for (1.1) are given out in the literature. We refer the reader to [2, 4, 5, 6, 7, 8, 9]
and the references cited therein. Suppose that the following condition

(H0) there exists a constant τ such that

τ = max
1≤i,j≤n

{
sup
t∈R

τij(t)
}
. (1.2)
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Most authors of bibliographies listed above obtained some sufficient conditions for
the existence and stability of the equilibriums and periodic solutions for system
(1.1). However, to the best of our knowledge, few authors have considered dynamic
behaviors of (1.1) without the assumption (H0). Thus, it is worth while to continue
to investigate the stability of system (1.1).

The main purpose of this paper is to give new criteria for the stability of the
equilibrium of system (1.1). By applying mathematical analysis techniques, without
assuming (H0), we derive some sufficient conditions ensuring that the equilibrium of
(1.1) is locally stable, which are new and complement of previously known results.
An example is provided to illustrate our results. In this paper, for i, j = 1, 2, . . . , n,
it will be assumed that ci(t), Ii(t), aij(t), bij(t) are constant:

ci ≡ ci(t), Ii ≡ Ii(t), aij ≡ aij(t), bij ≡ bij(t). (1.3)

It will be assumed that

max
1≤i,j≤n

{sup
t∈R

τij(t)} = +∞, τij(t) < t, i, j = 1, 2, · · · , n. (1.4)

We also assume that the following conditions:
(H1) For each j ∈ {1, 2, . . . , n}, there exist nonnegative constants L̃j and Lj such

that

|fj(u)− fj(v)| ≤ L̃j |u− v|, |gj(u)− gj(v)| ≤ Lj |u− v|, for all u, v ∈ R. (1.5)

(H2) There exist constants η > 0 and ξi > 0, i = 1, 2, . . . , n, such that

−ciξi +
n∑

j=1

|aij |L̃jξj +
n∑

j=1

|bij |Ljξj < −η < 0, i = 1, 2, . . . , n.

Since ci(t), Ii(t), aij(t), bij(t) are constant, by using a similar argument as that
in the proof of [4, Theorem 2.3], we can easily show the following lemma.

Lemma 1.1. Let (H1), (H2) hold. Then (1.1) has at least one equilibrium point.

The initial conditions associated with (1.1) are of the form

xi(s) = ϕi(s), s ∈ (−∞, 0], i = 1, 2, . . . , n, (1.6)

where ϕi(·) denotes real-valued bounded continuous function defined on (−∞, 0].
For Z(t) = (x1(t), x2(t), . . . , xn(t))T , we define the norm

‖Z(t)‖ξ = max
i=1,2,...,n

|ξ−1
i xi(t)|. (1.7)

The remaining part of this paper is organized as follows. In Section 2, we present
sufficient conditions to ensure that the equilibrium of system (1.1) is locally stable.
In Section 3, we give some examples and remarks to illustrate our results obtained
in the previous sections.

2. Main Results

Theorem 2.1. Assume (H1), (H2) hold. Suppose that Z∗ = (x∗1, x
∗
2, . . . , x

∗
n)T is

the equilibrium of (1.1). Then, Z∗ is locally stable, namely, for all ε > 0, there
exists a constant δ > 0 such that for every solution Z(t) = (x1(t), x2(t), . . . , xn(t))T

of (1.1) with any initial value ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T such that

‖ϕ− Z∗‖ = max
1≤j≤n

{ sup
−∞≤t≤0

|ϕj − Z∗j |} < δ,
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there holds

|xi(t)− x∗i | < ε, for all t ≥ 0, i = 1, 2, . . . , n.

Proof. Let Z(t) = (x1(t), x2(t), . . . , xn(t))T be a solution of system (1.1) with any
initial value ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T , and define

u(t) = (u1(t), u2(t), . . . , un(t))T = Z(t)− Z∗.

Then

u′i(t) = −ciui(t) +
n∑

j=1

aij [fj(xj(t))− fj(x∗j )] +
n∑

j=1

bij [gj(xj(t− τij(t)))− gj(x∗j )],

(2.1)
where i = 1, 2, . . . , n. Let it be an index such that

ξ−1
it
|uit

(t)| = ‖u(t)‖ξ. (2.2)

Calculating the upper right derivative of |uis
(s)| along (2.1), in view of (2.1) and

(H1), we have

D+(|uis
(s)|)

∣∣∣
s=t

= sign(uit
(t))

{
− cit

uit
(t) +

n∑
j=1

aitj [fj(xj(t))− fj(x∗j )]

+
n∑

j=1

bitj [gj(xj(t− τitj(t)))− gj(x∗j )]
}

≤ −cit
|uit

(t)|ξ−1
it

ξit
+

n∑
j=1

aitjL̃j |uj(t)|ξ−1
j ξj

+
n∑

j=1

bitjLj |uj(t− τitj(t))|ξ−1
j ξj .

(2.3)

Let

M(t) = max
s≤t

{‖u(s)‖ξ}. (2.4)

It is obvious that ‖u(t)‖ξ ≤ M(t), and M(t) is non-decreasing. Now, we consider
two cases.
Case (i).

M(t) > ‖u(t)‖ξ for all t ≥ 0. (2.5)

We claim that M(t) ≡ M(0) is constant for all t ≥ 0. By way of contradiction,
assume that this is not the case. Consequently, there exists t1 > 0 such that
M(t1) > M(0). Since

‖u(t)‖ξ ≤ M(0) for all t ≤ 0.

There must exist β ∈ (0, t1) such that

‖u(β)‖ξ = M(t1) ≥ M(β),

which contradicts (2.5). This contradiction implies that M(t) is constant and

‖u(t)‖ξ < M(t) = M(0) for all t ≥ 0. (2.6)
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Case (ii). There is a point t0 ≥ 0 such that M(t0) = ‖u(t0)‖ξ. Then, using the
(2.1) and (2.3), for all ε > 0, we obtain

D+(|uis
(s)|)

∣∣∣
s=t0

≤ −cit0
|uit0

(t0)|ξ−1
it0

ξit0
+

n∑
j=1

ait0 jL̃j |uj(t0)|ξ−1
j ξj

+
n∑

j=1

bit0 jLj |uj(t0 − τit0 j(t0))|ξ−1
j ξj

≤
[
− cit0

ξit0
+

n∑
j=1

ait0 jL̃jξj +
n∑

j=1

bit0 jLjξj

]
M(t0)

< −ηM(t0) + η min
1≤j≤n

{ξ−1
j }ε .

In addition, if M(t0) ≥ min1≤j≤n{ξ−1
j }ε, then M(t) is strictly decreasing in a small

neighborhood (t0, t0 + δ0). This contradicts that M(t) is non-decreasing. Hence,

‖u(t0)‖ξ = M(t0) < min
1≤j≤n

{ξ−1
j }ε. (2.7)

Furthermore, for any t > t0, by the same approach used in the proof of (2.7), we
have

‖u(t)‖ξ < min
1≤j≤n

{ξ−1
j }ε, if M(t) = ‖u(t)‖ξ. (2.8)

On the other hand, if M(t) > ‖u(t)‖ξ, t > t0. We can choose t0 ≤ t3 < t such that

M(t3) = ‖u(t3)‖ξ < min
1≤j≤n

{ξ−1
j }ε, M(s) > ‖u(s)‖ξ for all s ∈ (t3, t].

Using a similar argument as in the proof of Case (i), we can show that M(s) ≡ M(t3)
is constant for all s ∈ (t3, t], which implies that

‖u(t)‖ξ < M(t) = M(t3) = ‖u(t3)‖ξ < min
1≤j≤n

{ξ−1
j }ε.

In summary, for all t ≥ 0, we obtain

‖u(t)‖ξ < max
{
M(0), min

1≤j≤n
{ξ−1

j }ε
}
. (2.9)

Hence, for ε > 0, set

δ =
min1≤j≤n{ξ−1

j }ε
max1≤j≤n{ξ−1

j }
> 0.

Then, for every solution Z(t) = (x1(t), x2(t), . . . , xn(t))T of (1.1) with any initial
value ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T and

‖ϕ− Z∗‖ = max
1≤j≤n

{
sup

−∞≤t≤0
|ϕj − Z∗j |

}
< δ,

in view of (2.9), we have |xi(t) − x∗i | < ε, for all t ≥ 0, i = 1, 2, . . . , n. This
completes the proof. �



EJDE-2008/89 STABILITY OF CELLULAR NEURAL NETWORKS 5

3. An Example

To illustrate the results obtained in previous sections, consider the CNNs, with
unbounded time-varying delays,

x′1(t) = −x1(t) +
1
4
f1(x1(t)) +

1
36

f2(x2(t)) +
1
4
g1(x1(t−

1
2
|t sin t|))

+
1
36

g2(x2(t−
1
3
|t sin t|)) + 1,

x′2(t) = −x2(t) + f1(x1(t)) +
1
4
f2(x2(t)) + g1(x1(t−

1
4
|t sin t|))

+
1
4
g2(x2(t−

1
5
|t sin t|)) + 2,

(3.1)

where f1(x) = f2(x) = g1(x) = g2(x) = arctanx. Note that

c1 = c2 = L1 = L2 = L̃1 = L̃2 = 1, a11 = b11 =
1
4
,

a12 = b12 =
1
36

, a21 = b21 = 1, a22 = b22 =
1
4
.

Then

dij =
1
ci

(aijL̃j + bijLj) i, j = 1, 2, D = (dij)2×2 =
(

1/2 1/18
2 1/2

)
.

Hence, we have ρ(D) = 5
6 < 1. Therefore, it follows from theory of M -matrix in [1]

that there exist constants η > 0 and ξi > 0, i = 1, 2, such that for all t > 0, there
holds

−ciξi +
2∑

j=1

|aij |L̃jξj +
2∑

j=1

|bij |Ljξj < −η < 0, i = 1, 2,

which implies that (3.1) satisfied (H1) and (H2). Hence, from Lemma 1.1 and
Theorem 2.1, system (3.1) has at least one equilibrium Z∗, and Z∗ is locally stable.

We remark that since (3.1) is a cellular neural networks with unbounded time-
varying delays, the results in [2, 4, 5, 6, 7, 8, 9] can not be applied to prove that the
equilibrium point is locally stable. Thus, the results of this paper are essentially
new.
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