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STABILIZED QUASI-REVERSIBILITY METHOD FOR
A CLASS OF NONLINEAR ILL-POSED PROBLEMS

DANG DUC TRONG, NGUYEN HUY TUAN

Abstract. In this paper, we study a final value problem for the nonlinear
parabolic equation

ut + Au = h(u(t), t), 0 < t < T

u(T ) = ϕ,

where A is a non-negative, self-adjoint operator and h is a Lipchitz function.

Using the stabilized quasi-reversibility method presented by Miller, we find

optimal perturbations, of the operator A, depending on a small parameter ε
to setup an approximate nonlocal problem. We show that the approximate

problems are well-posed under certain conditions and that their solutions con-
verges if and only if the original problem has a classical solution. We also

obtain estimates for the solutions of the approximate problems, and show a

convergence result. This paper extends the work by Hetrick and Hughes [11]
to nonlinear ill-posed problems.

1. Introduction

Let A be a self-adjoint operator on a Hilbert space H such that −A generates a
compact contraction semi-group on H. We shall consider the final value problem
of finding a function u : [0, T ] → H satisfying

ut + Au = h(u(t), t), 0 < t < T, (1.1)

u(T ) = ϕ, (1.2)

for some prescribed final value ϕ in a Hilbert space H. Such problem are not well
posed, that is, even if a unique solution exists on [0, T ] it need not depend contin-
uously on the final value ϕ . Hence, a regularization is in order. We note that this
type of problems has been considered by many authors, using different approaches.
In their pioneering work Lattes and Lions [17] presented, in a heuristic approach,
the quasi-reversibility method. In this method the main ideas are replacing A by
an operator Aε = fε(A). Originally, fε(A) = A − εA2 which yields the well-posed
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problem, in the backward direction,

ut + Au− εA2u = 0, t ∈ [0, T ],

u(T ) = ϕ.
(1.3)

The stability of this method is of order ecε−1
. In [31], the problem is approximated

by
ut + Au + εAut = 0, t ∈ [0, T ],

u(T ) = ϕ.
(1.4)

In [22], using the method of stabilized quasi reversibility, the author studied the
general approximated problem

ut + f(A)u = 0, t ∈ [0, T ],

u(T ) = ϕ.
(1.5)

It is clear that (1.3) and (1.4) are special case of (1.5) where f(x) = x − εx2

and f(x) = x/(1 + εx) respectively. Note that the solution of (1.5) has the form
e(T−t)f(A)ϕ. And since these functions f are bounded by c/ε, we know that their
stability is of order ec/ε. Hence, the stability in this case are quite large as in the
original quasi-reversibility methods. To improve the stability result of this problem
(1.5), Miller gave some appropriate conditions on the “corrector” f(A) and obtain
the stability of order cε−1.

In 1983, Showalter presented a method called the quasiboundary value (QBV)
method, to regularize that linear homogeneous problem, which gave a stability es-
timate better than the one of discussed methods. The main idea of this method is
adding an appropriate “corrector” into the final data. Using this method, Clark-
Oppenheimer [5], and Denche-Bessila [7], recently, regularized the backward prob-
lem by replacing the final condition with

u(T ) + εu(0) = ϕ

and
u(T )− εu′(0) = ϕ,

respectively.
In 2005, Ames and Hughes [3] applied semigroup theory and other operator-

theoretic methods to prove Holder continuous dependence for homogeneous ill-
posed Cauchy problems. The authors consider the above problem in Banach space
and give the conditions of the function f , to obtained the stability estimate

‖u(t)− v(t)‖ ≤ Cβ1−w(t)Mw(t)

where u(t) is the solution of (1.1)–(1.2) and v(t) the solution of (1.5).
Although there are many works on the linear homogeneous case of the backward

problem (ill-posed problem), the literature on the linear nonhomogeneous case and
the nonlinear case are quite scarce. A conditional stability result for the Ginzburg-
Landau equation was given in [A]. In [27], the authors used the QR method and the
eigenvalue-expansion method to regularize a 1-D linear nonhomogeneous backward
problem. In [32], the authors used an improved version of QBV method to regularize
the latter problem. Recently, Hetrick and Hughes [11] extended the earlier work
of Ames and Hughes [3], by considered nonhomogeneous ill-posed problems and
proving the continuous dependence in Banach spaces. However, the nonlinear case
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of the problem in [3] in Banach space is not given here and will be presented in
future work.

Most of the above articles give better results than the quasi-reversibility method
given by Miller. So, it is difficult to consider the backward problem using quasi-
reversibility method. Up to the present, we can find only a few papers which
study (1.1)-(1.2) using quasi-reversibility, such as [18]. In fact, Long and Dinh [18]
approximated (1.1)-(1.2) by the problem

v′β(t) + Aβvβ(t) = e−(1−t)βAAβ h(vβ)

vβ(1.1) = ϕ

where fβ(A) = Aβ = A(I + βA)−1 is the approximate operator for A. Although
vβ is a good approximation of u, the authors can not prove that vβ is a regularized
solution of u. So, the quasi-reversibility method given in [18], is not effective to
regularize the backward problem with the large time.

This paper is a generalization of Miller’s paper for the nonlinear right hand side.
We prove that our method gives the same stability order as previous method in
[27, 33]. By replacing the operator A by fε(A), chosen latter under some better
conditions, we approximate the problem (1.1)-(1.2) as the follows:

uε
t + fε(A)uε = h(uε(t), t), 0 < t < T, (1.6)

uε(T ) = ϕ, (1.7)

with 0 < ε < 1.
This paper is organized as follows. In the section 2, we derive conditions on the

perturbation fε(A) and show that (1.6)-(1.7) is well-posed. Moreover, the stability
of this method is of order cε

t
T −1. Also, we find some conditions on fε so that we

can get error estimate

‖uε(t)− u(t)‖ ≤ Cβ(ε)t/T , (1.8)

where ‖ · ‖ is the norm in H, β(ε) → 0 when ε → 0 and C depends on u(t). Finally,
we consider the example and numerical experiment will be given in Section 4, which
show that the efficient of our method.

2. Approximation of the non-linear problem

We assume that H is a separable Hilbert space and A is self-adjoint and that
0 is in the resolvent set of A. We also assume that A−1 is compact. Let {φn} be
an orthonormal eigenbasic on H corresponding to the eigenvalues {λn} of A; i.e.,
Aφn = λnφn. Without loss of generality, we shall assume that

0 < λ1 < λ2 < λ3 < . . . , lim
n→∞

λn = ∞.

For every v in H having the expansion v =
∑∞

n=1 vnφn, vn ∈ R, n = 1, 2, . . . and
g : R → R, we define g(A)v =

∑∞
n=1 g(λn)vnφn. If v ∈ H, we define

Dom(g(A)) = {v ∈ H : ‖g(A)v‖2 =
∞∑

n=1

g2(λn)v2
n < ∞}
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Definition. Let fixed ε ∈ (0, 1). Let fε : [0,∞) → R be a bounded Borel function,
and assume that there exists β(ε) > 0 satisfies β(ε) → 0 when ε → 0, and |fε(α)| ≤
− 1

T ln(β(ε)) for all α ∈ [0,∞).
1. f is said to satisfy Condition (A) if

‖(−A + fε(A))u‖ ≤ β(ε)‖eTAu‖

for all u ∈ Dom(eTA) = {u ∈ H : ‖eTAu‖ =
√∑∞

n=1 e2Tλnu2
n < ∞}.

Yongzhong Huang [13, p.759] gave the approximate operator

Aε = − 1
pT

ln(ε + e−pTε)

In the case p = 1, we have fε(x) = − 1
T ln(ε + e−Tx), where x ∈ (0,∞). Then, it is

easy to see that |fε(α)| ≤ − 1
T ln(ε). Also we have

‖(−A + fε(A))u‖2 =
∞∑

n=1

(−λn −
1
T

ln(ε + e−Tλn))2u2
n

≤
∞∑

n=1

1
T 2

ln2(1 + εeTλn)u2
n

≤
∞∑

n=1

ε2

T 2
e2Tλnu2

n =
ε2

T 2
‖eTAu‖2

Hence, fε satisfies condition (A).
2. Let 0 ≤ s ≤ t ≤ T and u ∈ H. Then we define the operator

e(s−t)fε(A)u =
∞∑

n=1

e(s−t)fε(λn)unφn

Lemma 2.1. Let ε > 0 be such that 0 < β(ε) < 1 and u ∈ H has the eigen-function
expansion u =

∑∞
n=1 unφn where un =< u, φn >. Then

‖fε(A)u‖ ≤ − 1
T

ln(β(ε))‖u‖

Proof. Suppose that u ∈ H has the eigen-function expansion u =
∑∞

n=1 unφn where
un = 〈u, φn〉. Then, using the expansion of fε(A)u, and that fε is bounded, we
obtain

‖fε(A)u‖2 =
∞∑

n=1

f2
ε (λn)u2

n ≤
1

T 2
ln2 1

(β(ε))

∞∑
n=1

u2
n = ln2 1

(β(ε))
‖u‖2

This completes the proof. �

Lemma 2.2. Let ε, s, t be as in Lemma 2.1. Then for u ∈ H, we have

‖e(s−t)fε(A)u‖ ≤ (β(ε))
t−s
T ‖u‖

Proof. Using that fε is bounded, we have

‖e(s−t)fε(A)u‖2 =
∞∑

n=1

e2(s−t)fε(λn)u2
n ≤ exp(

s− t

T
ln

1
(β(ε))

)
∞∑

n=1

u2
n = (β(ε))

t−s
T ‖u‖2

�



EJDE-2008/84 STABILIZED QUASI-REVERSIBILITY METHOD 5

Theorem 2.3. Let ε be as in Lemma 2.1, ϕ ∈ H and let h : H × R → H be
a continuous operator satisfying ‖h(w(t), t) − h(v(t), t)‖ ≤ k‖w − v‖ for a k > 0
independent of w(t), v(t) ∈ H, t ∈ R and fε satisfies Condition (A). Then the
approximate problem (1.6)-(1.7) has a unique solution uε ∈ C([0, T ];H).

First, we consider two following propositions which are useful to the proof of
Theorem 2.3.

Proposition 2.4. The integral equation

uε(t) = e(T−t)fε(A)ϕ−
∫ T

t

e(s−t)fε(A)h(uε(s), s)ds (2.1)

has a unique solution and this solution satisfies the approximate problem (1.6)-(1.7).

Proof. We put

F (w)(t) = e(T−t)fε(A)ϕ−
∫ T

t

e(s−t)fε(A)h(w(s), s)ds

We claim that, for every w, v ∈ C([0, T ];H) we have

‖Fm(w)(., t)− Fm(v)(., t)‖ ≤
(k(T − t)

β(ε)

)m

|||w − v||| (2.2)

where C = max{T, 1} and ||| · ||| is sup norm in C([0, T ];H). We shall prove the
latter inequality by induction.

For m = 1, we have

‖F (w)(., t)− F (v)(., t)‖ = ‖
∫ T

t

e(s−t)fε(A)(h(w(s), s)− h(v(s), s))ds‖

≤
∫ T

t

‖e(s−t)fε(A)‖‖h(w(s), s)− h(v(s), s)‖ds

≤
∫ T

t

k

β(ε)
s−t
T

‖w(s)− v(s)‖ds

≤ k

β(ε)

∫ T

t

‖w(s)− v(s)‖ds

≤ k

β(ε)
(T − t)|||w − v||||

(We can choose ε such that 0 < β(ε) < 1)
Suppose that (2.2) holds for m = j. We prove that (2.2) holds for m = j + 1.

We have

‖F j+1(w)(., t)− F j+1(v)(., t)‖ = ‖
∫ T

t

e(s−t)fε(A)(h(F jw)(s)− h(F jv)(s))ds‖

≤
∫ T

t

‖e(s−t)fε(A)‖‖h(F jw)(s)− h(F jv)(s)‖ds

≤
∫ T

t

k(T − t)

β(ε)
s−t
T

‖h(F jw)(s)− h(F jv)(s)‖ds

≤ k(T − t)
β(ε)

∫ T

t

k‖(F jw)(s)− (F jv)(s)‖ds
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≤ 1
β(ε)

(T − t)k
∫ T

t

‖Gj(w)(., s)−Gj(v)(., s)‖2ds

≤ 1
β(ε)

(T − t)k
∫ T

t

kj

β(ε)j
(T − s)jds|||w − v|||

≤
( k

β(ε)
)(j+1)(T − t)j+1|||w − v|||.

Therefore, by the induction principle, we have (2.2).

We consider F : C([0, T ];H) → C([0, T ];H). Since limm→∞

(
kT
β(ε)

)m

= 0, there
exists a positive integer number m0 such that Fm0 is a contraction. It follows that
the equation Fm0(w) = w has a unique solution uε ∈ C([0, T ];H).

We claim that F (uε) = uε. In fact, one has F (Fm0(uε)) = F (uε). Hence
Fm0(F (uε)) = F (uε). By the uniqueness of the fixed point of Fm0 , one has F (uε) =
uε, i.e., the equation F (w) = w has a unique solution uε ∈ C([0, T ];H).

Finally, we prove the unique solution of (2.1) satisfies t (1.6)-(1.7). In fact, one
has in view from (2.1), we have

uε(t) = e(T−t)fε(A)ϕ−
∫ T

t

e(s−t)fε(A)h(uε(s), s)ds

This also follows that u(T ) = ϕ, hence the condition (1.7) is satisfied. The expan-
sion formula of uε(t)

uε(t) =
∞∑

n=1

(
e(T−t)fε(λn)ϕn −

∫ T

t

e(s−t)fε(λn)hn(uε)(s)ds
)
φn

Differentiating u(t) with respect to t, we get

uε
t(t) = −fε(A)e(T−t)fε(A)ϕ + fε(A)

∫ T

t

e(s−t)fε(A)h(uε(s), s)ds + h(uε(t), t)

= −fε(A)uε + h(uε(t), t).

This completes the proof of Proposition 2.4 �

Proposition 2.5. Assume that fε satisfies condition A then Problem (1.6)-(1.7)
has at most one solution in C([0, T ];H).

Proof. Suppose u(t) and v(t) are solution in C([0, T ];H) of the approximate prob-
lem (1.6)-(1.7). Putting w(t) = em(t−T )(u(t)− v(t)) (m > 0), then replacing in the
equation (1.6) and by direct computation, we obtain

wt + fε(A)w(t)−mw(t) = em(t−T )h(e−m(t−T )u(t), t)− h(e−m(t−T )v(t), t) (2.3)

Multiplying two side of (2.3) with w and using global Lipchitz properties of function
h we get

d

2dt
‖w(t)‖2 + 〈fε(A)w,w〉 −m‖w‖2 + k‖w‖2 ≥ 0

Using the boundedness of function fε in Lemma 2.2, we have

|〈fε(A)w,w〉| ≤ ‖fε(A)w‖‖w‖ ≤ 1
T

ln(
1

β(ε)
)‖w‖2

It follows that
d

2ds
‖w(s)‖2 ≥ m‖w‖2 − k‖w‖2 − 1

T
ln(

1
β(ε)

)‖w‖2 (2.4)
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Putting the integral with s from t to T in (2.4), then choosing m = k + 1
T ln( 1

β(ε) ),
it can be rewritten as

‖w(T )‖2 − ‖w(t)‖2 ≥ 2(m− k − 1
T

ln(
1

β(ε)
)
∫ T

t

‖w(s)‖2ds = 0 (2.5)

Using the equality w(T ) = u(T )− v(T ) = 0, one has w(t) = 0. This completes the
proof �

Theorem 2.6. The solution of (1.6)-(1.7) depends continuously on ϕ

Proof. Let u and v be two solution of (1.6)-(1.7) corresponding with two final
values ϕ and ω. By setting w(t) = em(t−T )(u(t) − v(t)) (with m > 0), we have
w(T ) = ϕ− ω. In view of inequality (2.3) in Proposition 2.4, we get

‖w(T )‖2 − ‖w(t)‖2 ≥ 2(m− k − 1
T

ln(
1

β(ε)
)
∫ T

t

‖w(s)‖2ds = 0. (2.6)

choosing m = k + 1
T ln( 1

β(ε) ), we have

‖ϕ− ω‖ ≥ ‖w(t)‖ = em(t−T )‖u(t)− v(t)‖
This implies

‖u(t)− v(t)‖ ≤ em(T−t)‖ϕ− ω‖ = ek(T−t)β(ε)
t
T −1‖ϕ− ω‖

whihc proves continuity and that the stability of the solution is of order Eβ(ε)
t
T −1.

�

3. Regularization of Problem (1.1)-(1.2)

Theorem 3.1. Let ε be as in Lemma 2.1. Suppose problem (1.1)-(1.2) has a unique
solution u(t) ∈ (C[0, T ];H) which satisfies u(t) ∈ Dom(eTA). Then for 0 < t ≤ T
we have the error estimate

‖u(t)− uε(t)‖ ≤ Mβ(ε)t/T

Moreover, there exists a tε ∈ (0, T ) such that

‖u(0)− uε(tε)‖ ≤ 2C
( T

ln 1
β(ε)

)1/2

,

where

M = ek(T−t)

∫ T

0

‖eTAu(s)‖ds, C = max{ekT M, (
1
T

+ k)M + sup
t∈[0,T ]

‖f(0, t)‖},

uε is the unique solution of (1.5), and uε(t) is the unique solution of (1.6)-(1.7).

Proof. We put wε(t) = uε(t)− u(t) and gε(A) = −A + fε(A). Then wε(t) satisfies

wε
t + fε(A)wε = h(uε(t), t)− h(u(t), t) + gε(A)u(t) (3.1)

Let h1 : H × R → H satisfying h1(w(t), t)) = h(w(t) + u(t), t) − h(u(t), t). Using
the Lipchitz property of h given in Theorem 2.6, we get ‖h1(w(t), t))‖ ≤ k‖w(t)‖.
Hence, (2.6) can be written as

wε
t + fε(A)wε = h1(wε(t), t) + gε(A)u(t)

wε(T ) = 0



8 D. D. TRONG, N. H. TUAN EJDE-2008/84

It is not difficult to check wε(t) satisfies

wε(t) = −
∫ T

t

e(s−t)fε(A)[h1(wε(s), s) + gε(A)u(s)]ds. (3.2)

It follows that

‖wε(t)‖ = ‖
∫ T

t

e(s−t)fε(A)[h1(wε(s), s) + gε(A)u(s)]ds‖

≤
∫ T

t

e(s−t)‖fε(A)‖[‖h1(wε(s), s)‖+ ‖gε(A)u(s)‖]ds

≤ β(ε)
t
T k

∫ T

t

β(ε)
−s
T ‖wε(s))‖ds + β(ε)

t
T

∫ T

t

β(ε)
−s
T ‖gε(A)u‖ds

≤ β(ε)
t
T k

∫ T

t

β(ε)
−s
T ‖wε(s))‖ds + β(ε)

t
T

∫ T

0

β(ε)
T−s

T ‖eTAu(s)‖ds

≤ β(ε)
t
T k

∫ T

t

β(ε)
−s
T ‖wε(s))‖ds + β(ε)

t
T T

∫ T

0

‖eTAu(s)‖ds

From the above inequality, we have

β(ε)
−t
T ‖wε(t)‖ ≤ k

∫ T

t

β(ε)
−s
T ‖wε(s)‖ds +

∫ T

0

‖eTAu(s)‖ds .

Using Gronwall’s inequality we obtain

‖wε(t)‖ ≤ ek(T−t)β(ε)
t
T

∫ T

0

‖eTAu(s)‖ds,

or
‖uε(t)− u(t)‖ ≤ Mβ(ε)

t
T ,

For t ∈ (0, T ), considering the function h(t) = ln t
t − ln(β(ε))

T , we have h(β(ε)) > 0,
limt→0 h(t) = −∞, h′(t) > 0 (0 < t < β(ε)). It follows that the equation h(t) = 0
has a unique solution tε in (0, β(ε)). Since ln tε

tε
= ln(β(ε))

T , the inequality ln t > − 1
t

gives tε <
√

T
ln 1

ε

.

We have u(tε)− u(0) =
∫ tε

0
u′(t)dt. Hence ‖u(0)− u(tε)‖ ≤ tε supt∈[0,T ] ‖u′(t)‖.

On the other hand, one has

‖u′(t)‖ ≤ ‖Au(t)‖+ ‖f(u(t), t)‖

≤
( ∞∑

n=1

λ2
nu2

n(t)
)1/2

+ k‖u(t)‖+ ‖f(0, t)‖

≤ 1
T

( ∞∑
n=1

e2Tλnu2
n(t)

)1/2

+ k‖u(t)‖+ ‖f(0, t)‖

≤ (
1
T

+ k)M + ‖f(0, t)‖ ≤ C.

It follows that ‖u(0)− u(tε)‖ ≤ Ctε. By the definition of tε, we get

‖u(0)− uε(tε)‖ ≤ ‖u(0)− u(tε)‖+ ‖u(tε)− uε(tε)‖

≤ 2Ctε ≤ 2C
( T

ln( 1
β(ε) )

)1/2

.
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which completes the proof. �

4. Example and applications

First, we consider the model problem

ut + Au(t) = h(u(t), t)

u(T ) = ϕ

that is compared with the following well-posed problem. Taking function fε(x) =
− 1

T ln(ε + e−Tx) for x ∈ (0,∞), we have the first approximate problem

uε
t −

1
T

ln(ε + e−TA)uε = h(uε(t), t) (4.1)

uε(T ) = ϕ . (4.2)

It is easy to check that |f(x)| ≤ 1
T ln( 1

ε ). Then f satisfies Condition (A) with
β(ε) = ε.

In the Hilbert space, let H = L2(0, π) and let A = −∆ is the Laplace operator.

We take λn = n2, φn =
√

2
π sin(nx) are eigenvalues and orthonormal eigenfunc-

tions, which form a basis for H. Let us consider the nonlinear backward heat
problem

−uxx + ut = f(u) + g(x, t), (x, t) ∈ (0, π)× (0, 1) (4.3)

u(0, t) = u(π, t) = 0, t ∈ [0, 1], (4.4)

u(x, 1) = ϕ(x), x ∈ [0, π] (4.5)

where

f(u) =


u2 u ∈ [−e10, e10]
− e10

e−1u + e21

e−1 u ∈ (e10, e11]
e10

e−1u + e21

e−1 u ∈ (−e11,−e10]
0 |u| > e11

g(x, t) = 2et sinx− e2t sin2 x,

u(x, 1) = ϕ0(x) ≡ e sinx.

The exact solution of the above equation is u(x, t) = et sinx. In particular,

u
(
x,

999
100

)
≡ u(x) = exp

( 999
1000

)
sinx ≈ 2.715564905 sinx.

Let ϕε(x) ≡ ϕ(x) = (ε + 1)e sinx. Then

‖ϕε − ϕ‖2 =
( ∫ π

0

ε2e2 sin2 xdx
)1/2

= εe
√

π/2.

Applying the method introduced in this paper, we find the regularized solution
uε

(
x, 999

1000

)
≡ uε(x) having the form

uε(x) = vm(x) = w1,m sinx + w6,m sin 6x ,

where v1(x) = (ε + 1)e sinx, w1,1 = (ε + 1)e, w6,1 = 0, and a = 1
5000 , tm = 1− am

for m = 1, 2, . . . , 5, and

wi,m+1 = (ε + e−tmi2)
tm+1−tm

tm wi,m
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− 2
π

∫ tm

tm+1

e(s−tm+1)i
2
(∫ π

0

(
v2

m(x) + g(x, s)
)
sin(ix)dxds

)
,

for i = 1, 6. Table 1 shows the approximation error in this case.

Table 1. Error between regularized and exact solution

ε uε ‖uε − u‖
ε1 = 10−3 2.718118645 sin(x)− 0.005612885749 sin(6x) 0.002585244486
ε2 = 10−4 2.715807105 sin(x)− 0.005488275207 sin(6x) 0.0002723211648
ε3 = 10−11 2.715552177 sin(x)− 0.005518178192 sin(6x) 0.00004317829056

By applying the method in [18], we have the approximate solution

uε(x,
999
1000

) = vm(x) = w1,m sinx + w3,m sin 3x,

where v1(x) = (ε + 1)e sinx, w1,1 = (ε + 1)e, w3,1 = 0, a = 1
5000 , tm = 1 − am for

m = 1, 2, . . . , 5 and

wi,m+1 = e
(tm−tm+1)

i2

1+εi2 wi,m

− 2
π

∫ tm

tm+1

e
s−tm+1−

(tm−tm+1)εi2

1+εi2

(∫ π

0

(
v2

m(x) + g(x, s)
)
sin(ix)dx

)
ds,

for i = 1, 3. Table 2 shows the approximation error in this case.

Table 2. Error between regularized and exact solution

ε uε ‖uε − u‖
ε1 = 10−3 2.718267378 sin(x)− 0.005479540370 sin(3x) 0.006109723643
ε2 = 10−4 2.715832209 sin(x)− 0.005468363690 sin(3x) 0.005474892956
ε3 = 10−11 2.715561633 sin(x)− 0.005467119519 sin(3x) 0.005467120499

From the two tables, we see that the error in Table 1 is smaller and increases
slower than the error in Table 2. This indicates that in this example, our our
approach has a nice regularizing effect and give a better approximation that the
method in [18].
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[17] R. Lattès, J.-L. Lions; Méthode de Quasi-réversibilité et Applications, Dunod, Paris, 1967.
[18] N. T. Long, A. P. Ngoc. Ding; Approximation of a parabolic non-linear evolution equation

backwards in time, Inv. Problems, 10 (1994), 905-914.
[19] I. V. Mel’nikova, Q. Zheng and J. Zheng; Regularization of weakly ill-posed Cauchy problem,

J. Inv. Ill-posed Problems, Vol. 10 (2002), No. 5, 385-393.

[20] I. V. Mel’nikova, S. V. Bochkareva; C-semigroups and regularization of an ill-posed Cauchy
problem, Dok. Akad. Nauk., 329 (1993), 270-273.

[21] I. V. Mel’nikova, A. I. Filinkov; The Cauchy problem. Three approaches, Monograph and

Surveys in Pure and Applied Mathematics, 120, London-New York: Chapman & Hall, 2001.
[22] K. Miller; Stabilized quasi-reversibility and other nearly-best-possible methods for non-well

posed problems, Symposium on Non-Well Posed Problems and Logarithmic Convexity, Lec-

ture Notes in Mathematics, 316 (1973), Springer-Verlag, Berlin , 161-176.
[23] L. E. Payne; Some general remarks on improperly posed problems for partial differential

equations, Symposium on Non-Well Posed Problems and Logarithmic Convexity, Lecture

Notes in Mathematics, 316 (1973), Springer-Verlag, Berlin, 1-30.
[24] L. E. Payne; Imprperely Posed Problems in Partial Differential Equations, SIAM, Philadel-

phia, PA, 1975.
[25] A. Pazy; Semigroups of linear operators and application to partial differential equations,

Springer-Verlag, 1983.

[26] S. Piskarev; Estimates for the rate of convergence in the solution of ill-posed problems for
evolution equations, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 676-687.

[27] P. H. Quan, D. D. Trong, D. D., A nonlinearly backward heat problem: uniqueness, regu-
larization and error estimate, Applicable Analysis, Vol. 85, Nos. 6-7, June-July 2006, pp.
641-657.

[28] M. Renardy, W. J. Hursa, J. A. Nohel; Mathematical Problems in Viscoelasticity, Wiley, New

York, 1987.
[29] R. E. Showalter; The final value problem for evolution equations, J. Math. Anal. Appl, 47

(1974), 563-572.
[30] R. E. Showalter; Cauchy problem for hyper-parabolic partial differential equations, in Trends

in the Theory and Practice of Non-Linear Analysis, Elsevier 1983.

[31] R. E. Showalter, Quasi-reversibility of first and second order parabolic evolution equations,

Improperly posed boundary value problems (Conf., Univ. New Mexico, Albuquerque, N. M.,
1974), pp. 76-84. Res. Notes in Math., no. 1, Pitman, London, 1975.



12 D. D. TRONG, N. H. TUAN EJDE-2008/84

[32] D. D. Trong, N. H. Tuan; Regularization and error estimates for nonhomogeneous backward

heat problems, Electron. J. Diff. Eqns., Vol. 2006, No. 04, 2006, pp. 1-10.

[33] D. D. Trong, P. H. Quan, T. V. Khanh, N. H. Tuan; A nonlinear case of the 1-D backward
heat problem: Regularization and error estimate, Zeitschrift Analysis und ihre Anwendungen,

Volume 26, Issue 2, 2007, pp. 231-245.

Dang Duc Trong

Department of Mathematics and Informatics, Hochiminh City National University, 227
Nguyen Van Cu, Q. 5, Hochiminh City, Vietnam

E-mail address: ddtrong@mathdep.hcmuns.edu.vn

Nguyen Huy Tuan

Department of Mathematics and Informatics, Ton Duc Thang University, 98 Ngo Tat

To street , Binh Thanh district Hochiminh City, Vietnam
E-mail address: tuanhuy bs@yahoo.com


	1. Introduction
	2. Approximation of the non-linear problem
	Definition

	3. Regularization of Problem (1.1)-(1.2)
	4. Example and applications
	Acknowledgments

	References

