Electronic Journal of Differential Equations, Vol. 2008(2008), No. 78, pp. 1-13.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

BOUNDARY EIGENCURVE PROBLEMS INVOLVING THE
P-LAPLACIAN OPERATOR

ABDELOUAHED EL KHALIL, MOHAMMED OUANAN

ABSTRACT. In this paper, we show that for each A\ € R, there is an increasing
sequence of eigenvalues for the nonlinear boundary-value problem

Apu = [u|P72u  in Q
p—2 Ou p—2 p—2
[Vul 5= Ap(@)|ulP~“u + plulP~“u  on 9Q;

also we show that the first eigenvalue is simple and isolated. Some results
about their variation, density, and continuous dependence on the parameter A
are obtained.

Editor’s note: After publication, we learned that this article is an unauthorized
copy of “On the principal eigencurve of the p-Laplacian related to the Sobolev trace
embedding”, Applicationes Mathematicae, 32, 1 (2005), 1-16. The authors alone
are responsible for this action which may be in violation of the Copyright Laws.

1. INTRODUCTION AND NOTATION

Let Q be a smooth bounded domain in RY, with N > 1. Let p be a function
in L (9€Q) with p # 0 and that can change sign. Let A, p, u be real numbers, with
1 < p < co. We are interested in the nonlinear boundary-value problem

Apu = |[ulP?u in Q (1.1)
ou p—2 p—2
e Ap(@)|[ulP™*u + plulP™=u  on 0. (1.2)
Here Apu = V(|Vu|P~2Vu), which is known as the p-Laplacian and has attracted a
lot of attention because of its applications. It appears in mathematical models for
subject such as glaciology, nonlinear diffusion, filtration problem [I7], power-low
materials [I4], non-Newtonian fluids [4], reaction-diffusion problems, flow through
porous media, nonlinear elasticity, petroleum extraction, torsional creep problems,
etc. For a discussion and some physical background, we refer the reader to [IT].
The nonlinear boundary condition (1.2]) describes a flux through the boundary 92

which depends on the solution itself. For a physical motivation of such conditions,
see for example [16].
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Observe that in the restrictive cases y = 0 or p = 2, (L.1)—(L.2) becomes linear
and it is known as the Steklov problem [§].

Classical Dirichlet problems involving the p-Laplacian have been extensively
studied by various authors in the cases: A = 0 and g = 0; we cite the works
[T, 2 B, [T, 18, 19]. For the nonlinear boundary condition , recently the au-
thors in [9] studied the case when p = 0 and p belongs to L*(9), which is not
necessary essentially bounded, with an additional condition on its sign.

We set

pa(A) = inf {|Jo?, — )\/ p(2)|ofPdo < v € W“’(Q),/ Pdo =1}, (13)
o0 o0

where || - || , denotes the WP (Q)-norm; i.e., ||v]1,, = (IIVol[p + Hv||§)1/p and |||,
is the LP-norm, with o is the Lebesgue measure of RV ~!. We understand by the
principal (or first) eigencurve of the p-Laplacian related to Sobolev trace embedding,
the graph of the map p; : A — p1(A) from R into R. In [I3], the authors proved the
simplicity and isolation of the first eigencurve of Dirichlet p-Laplacian by extending
a similar result shown by Binding and Huang in [7].

Our purpose of this paper is to extend some of the results known in the ordinary
Dirichlet p-Laplacian, by using suitable Sobolev trace embeddings which lead to
a nonlinear eigenvalue problem where the two parameter eigenvalues appear at
the nonlinear boundary condition. We show that pq()) is simple and isolated for
any A € R. Note that to show the simplicity (uniqueness) result, we use a simple
convexity argument, by remarking that the energy functional associated with 7
(1.2)) is convex in u? for nonnegative functions u, without use in any way C*(Q)
and L*°(Q) regularities of the eigenfunctions. Here our process is new.

Remark that p1(0) = A; the optimal reciprocal constant of the Sobolev embed-
ding WP(Q) — LP(9Q). For the particular case p = 0 and p € L*(99Q) (for a
suitable s), the isolation and simplicity of the first eigenvalue of (L.I)-(1.2)) are
studied by [9].

The main objective of our work is to extend this result to any A € R, by using
new technical methods.

The rest of the paper is organized as follows. In Section 2, we establish some
definitions and preliminaries. In Section 3, we use a variational method to prove
the existence of a sequence of eigencurves of 7. In Section 4, we prove the
simplicity and the isolation results of each point of the first eigencurve. Finally, in
Section 5, we show some results about variations of the weight as a direct application
of the simplicity result.

Definitions. In this paper, all solutions are weak solutions; i.e., u € W1P(Q) is a

solution of (L.1)—(1.2), if for all v € WP(Q),
/ |Vu|P~2VuVude +/ lu[P 2 uvdx = / (Mo(x) + p)|ulP?uvdo. (1.4)
Q Q a0

If u € WHP(Q)\{0}, then u shall be called an eigenfunction of (1.1))—(1.2) associated
with the eigenpair (A, p).
Set

M={ueW"(Q): / lulPdo = 1}. (1.5)
oN

We say that a principal eigenfunction of (1.1)—(1.2)), an any eigenfunction u € M,
u > 0 a.e. on § associated to pair (A, u1(N)).
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Define the energy functionals on W1P(Q) as

1 A 1
<I>,\u=fup—f/ p(@)|ulPdo = = |lul|} , + ®(u), AeR
(u) p|| 11, - (@)|ul p|| 17, + @(w)

and )
W) = f/ lufPdo.
P Joa

It is clear that for any A € R, solutions of f are the critical points of
®,, restricted to M. We shall deal with operators T acting from W1P(Q) into
(WLP(Q))'. T is said to belong to the class (S, ), if for any sequence v,, weakly
convergent to v in W'P(Q), and limsup,,_, . (Tv,,v, — v) < 0, it follows that
v, — v strongly in W1P(Q), where (W1P(Q))" is the dual of W?(Q) with respect
to the pairing (-, -).

2. EXISTENCE RESULTS

We will use Ljusternick-Schnirelmann theory on C!-manifolds, see [19]. It is
clear that for any A\ € R, the functional @) is even and bounded from below on M.
Indeed, let u € M, then

Ox(u) = ~([lullf, = Alllplloc.00)-

SR

So that

@,\(U) Z

where A1 = p1(0) is the reciprocal of the optimal constant in the Sobolev trace
embedding W1P(Q) — LP(99). By employing the Sobolev trace embedding, we
deduce that

e U and ® are weakly continuous

e U’ and @’ are compact.

(A1 = [Alllpllss,00) > —oo, (2.1)

SR

The following lemma is the key to show the existence of eigenvalues.

Lemma 2.1. For each A € R, we have

(i) (@A)’ maps the bounded sets in the bounded sets;

(ii) if up — u (weakly) in WHP(Q) and (®)) (u,) converges strongly in the
space (WHP(Q))', then u, — u (strongly) in WHP(Q);

(iii) the functional @ satisfies the Palais-Smale condition on M; i.e., for each
sequence (Un)n C M, if ®x(uy) is bounded and

(®2) (un) = €' (un) — 0, (2.2)

with ¢, = % Then, (un)n has a convergent subsequence in
WLr(Q).

Proof. (i) Let u,v € W1P(Q). Thus

(@) (u),v) :/Q|Vu|p*2Vqudx+/Q|u|p*2uvdz+/69p(x)\u|p*2uvda.

By Holder’s inequality, we obtain

/ /v P /v
(@0l < ([ 1v® o) wul, + ([ )" o,
Q Q
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1/p’
[[v

|p,00

+llon( [ 1l do)

— — -1
= [IVullp= Vol + llullp~ vl + M llso.onllull} sollvlip.on-

Now, the trace Sobolev embedding W1P(2) < LP(92) ensures the existence of a
constance ¢ > 0 such that

lpoa < cllwll1,p, foreach w e Wl’p(Q).

[Jw
Therefore,
- - -1
(@) (@)l < [Vulp= Vol + lullz™ ol + A plloo,00) [T, 10]1,p-
It is clear that
- - -1
IValls=H Vol + [ulls vl < lullf, vl
Combining the above inequalities, we conclude that
-1
[((@x)" (), v{] < (L + " Alllpllos,00) lully " V]| p,
for any u,v € WP(Q). It follows that
1(@2) (@)l < (1 + Al plloo,00) u

where || - || denotes the norm of (WP(€))’. This implies assertion (i).
(ii) We use the condition (S ) as follows. (®y)(u,) being a convergent sequence
strongly to some f € (W1P(Q)). Thus, we have by calculation

I
1,p >

(Aup,v) = <—Apun,v>—|—/ |un|p72unvdx—|—/ |V, |P2Vu,vv do, (2.3)
Q o9

for any v € WP(Q), where A is an operator defined from W1P(Q) into (W1P(Q))
by

<Au,v>:/ |Vu|p*2Vqudx+/ |ulP~?uw d.
Q Q

This operator satisfies the condition (S;) because —A,, does it [13].
If we take v = u,, — u in (2.3) we obtain

(A, up — v)
= (=Apup, uy, —v) + /Q [t |P™ 2, (1, — u)d + /zm |V [P~ 2V, v(u, — u) do.
Introducing (®y)’(uy,), we deduce that
(At un — u) = (1) (un) = frun = u) + (f, un — 1) = ((22) (un), tn — u).
Using the compactness of @', we find that as n — oo,

lim sup{Auy,, u, — u) > 0.
n—-+o0o
Hence u,, — u strongly in W1P(2), in virtue of the condition (S ).

(iii) From we deduce that (uy,), is bounded in W1?(Q). Thus, without loss
of generality, we can assume that u, — u (weakly) in W1P(Q) for some function
u € WHP(Q). Tt follows that ¥/ (u,,) — ¥'(u) in (WP(Q)) and p¥(u) = 1, because
p¥(u,) = 1,¥n € N*. Hence u € M. Since (uy), is bounded, then (i) ensures
that {(®»)'(uy)} is bounded. By a calculation we obtain via that {(®y) (un)}
converges strongly in (W1?(Q2))". Consequently, from (ii) we conclude that u, — u
(strongly) in W1P(Q). This achieves the proof of Lemma. O
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Set T'y, = {K C M : K symmetric, compact and ~(K) = k}, where v(K) = k is
the genus of K i.e., the smallest integer k such that there is an odd continuous
map from K to R*\{0}.

Next, we establish our existence result.

Theorem 2.2. For each A € R and each integer k € N*,

e (A) = Knellik max D (u)

is a critical value of ®y restricted to M. More precisely, there exists ug(\) € M
such that

pr(A) = p®a(ur(N)) = I@Pé}’gp‘%(“)

and (ug(N), pre(N)) is a solution of (1.1)—(1.2). Moreover, ur(\) — +oo, as k —
+00.

Proof. In view of [19], we need only to prove that for any k € N* Ty, # () and the

last assertion. Indeed, since WP (Q) is separable, there exist (e;);>1 linearly dense

in W1P(Q) such that supp e; Nsupp e; = if i # j, where supp e; denotes the support
€4

of e;. We can suppose that e; € M (if not we take e} = pT(@))

Let k € N* and Fj, = span{eq, ea,...,er}. Fi is a vector subspace and dim Fj, =

k. If v € F}, then there exist aq,...,a; in R such that v = Zi]f a;e;. Thus

i=k i=k
1
U(v) = Z | [PW(e;) = — Z i P,
i=1 Lo

because ¥(e;) = 1, for i = 1,2,..., k. It follows that the map v — (p¥(v))'/? is a
norm on Fj. Hence, there is a constant ¢ > 0 so that

1
cllollp < (p¥()"/P < oy, Vo F.
That is,
1/p 1
oln < ([ loPdo) ™ < 2ol o€ A
o0 ¢
This implies that the set
V=F.nN {’U S Wl’p(Q) : ||U||p7(99 < 1}

is bounded. Because V C B(0, 1), where
1 - 1
B0, 2) = (v e W' ol < 2.

Moreover V is a symmetric bounded neighborhood of the origin 0. Consequently,
from [19, Proposition 2.3], we deduce that v(F, N M) = k. Then F, N M € Ty
(because Fj, N M is compact, since it exactly equals to the boundary of V).

To complete the proof, it suffices to show that for any A € R, pp(\) — 400,
as k — +oo. Indeed, let (en,e;)mj be a biorthogonal system such that e, €
Whe(Q), ex € (WHP(Q))', the (ep), are dense in WP(Q); and the (e}); are total
in (WLP(Q))’. Set for any k € N*

1
Fi_1 = span(eg41, €k12, €k+3,- - - )
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Observe that for any for any K € I'y, K N Fi- | # 0 (by [19, (g) of Proposition
2.3]). Now, we claim that

tp:= inf sup pPy(u) — 400, ask — +oo.
Kel'y Kn]:kl—l

Indeed, to obtain the contradiction, assume for k large enough that there is uy €
Fiy with [, [ux[Pdo = 1 such that

tr < pPa(ug) < M,

for some M > 0 independent of k. Therefore,

sl , — A /a p(luldo < M.

Hence

lurlly , < M + A|plloo.00 < oo

This implies that (ug)x is bounded in WP(Q). For a subsequence of (uy)y if
necessary, we can suppose that (uy) converges weakly in W1?(Q) and strongly in
LP(0R2). By our choice of Fi- |, we have u, — 0 in WP(Q). Because (e}, ex),
for all £ > n. This contradicts the fact that [, [ux|Pdo = 1, for all k and the the
claim is proved.

Finally, since pg(A) > tx we conclude that pug(A) — 400, as k — +oo and the
proof is complete. O

3. SIMPLICITY AND ISOLATION OF p(\)

3.1. Simplicity. First, observe that solutions of (L.1)—(1.2), by an well-known
advanced regularity, belong to C1(Q), see [20].

Lemma 3.1. Figenfunctions associated to ui(\) are either positive or negative in
Q. Moreover if u € C1*(Q) then u has definite sign in Q.

Proof. Let u be an eigenfunction associated to u1(A),. Since @y (|ul) < ®y(u) and
U(ju|) = U(u), it follows from (1.3) that |u| is also an eigenfunction associated to
p1(A). Using Harnack’s inequality, cf. [I4], we deduce that |u| > 0 in 2 and by
continuity we conclude that has definite sign in €. In fact |u| > 0 in € because
[g:f%x()) < 0 for any z¢p € 9Q with u(xzg) = 0, by applying Hopf’s Lemma, see
21). (]

Theorem 3.2 (Uniqueness). For any A € R, the eigenvalue py(N\) defined by (1.3)
is a simple; i.e., the set of the eigenfunctions associated with (A, pu1 (X)) is {tui () :
t € R}, where ui(\) denotes the principal eigenfunction associated with (X, u1(N)).

Proof. By Theorem it is clear that p1(\) is an eigenvalue of the problem ([1.1[)—
for any A € R. Let u and v be two eigenfunctions associated to (X, p1(N)),
such that u,v € M. Thus in virtue of Lemma [3.I] we can assume that v and v are
positives.

Note that W?(Q) 3 w — [|[Vw|[h; w — [ [wPdo and w — [, p(z)|w|Pdo are
linear functionals in w?, for w? > 0. Hence if we consider w = (#)Up, then
it belongs to W?(Q) and [, |w[’do = 1. Consequently, w is admissible in the
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definition of p1(\). On the other hand, by the convexity of x — |x|P we have by
calculation the following inequalities

1
/ Vw[Pdr = */ Iu”‘1Vu+vP—1w\p(up+vp)1—pdx
Q

= /| uP v? @p(up—i-vp)l_pd:c
uP P u vp+up v
uP P Vo (3.1)
Sﬁ/(?'*"’ Tl )
o \uP +vP vP +uP’ v
1
< f/(|w|p+ VolP)de
2 Ja
By the choice of w and v, we deduce that
Vu Vol|? Vu |’ Vol?
t— 1-1¢ =t|— 1-t¢ 3.2
R A AR IS (32)

with t = uP/(uP + vP).
Now, we claim that Now, we claim that u = v a.e. on . Indeed, consider the
auxiliary function

F(x1,x2) = tx1 + (1 = t)xa” — tIxa]” + (1 — 1) [x2/”.

Since t # 0, critical points of F' are solutions of the system

OF (x1, - -
OFCa,x2) _ oy (|tX1 + (1=t (a - bal’ X1) =0 (33)
ox1
OF (x1, - -
w =p(t=1) (Iba + (1= el (ha = el ) =0, (34)
X2

Thus (3.2)), (3.3) and (3.4) imply that (x1 = %,(Xg = %) is a solution of the

above system. Therefore,

VulP? Vu |V P72 gy
u u | v v
Hence
\Y \Y%
eV a.e. in Q.
u v
This implies easily that u = cv for some positive constant ¢. By normalization we
conclude that ¢ = 1. The proof is completed. (I

Remark 3.3. Various proofs of the uniqueness result were given in Direchlet p-
Laplacian case by using C''®-regularity and L>-estimation of the first eigenfunc-
tions and by applying either Picone’s identity [I]; or Diaz-Sad’s inequality [2] 10, [12],
and or an abstract inequality [15].

3.2. Isolation.

Proposition 3.4. For each A\ € R, u1(\) is the only eigenvalue associated with \,
having an eigenfunction that does not change sign on the boundary 0S).

Proof. Fix A € R and let u;(\) be the principal eigenfunction associated with
(A, p1(N)). Suppose that there exists an eigenfunction v corresponding to a pair
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(A, ) with v > 0 on 9Q and v € M. By the Maximum Principle, v > 0 on Q. For
simplify of notation, set u = u;(\). Let € > 0 be small enough, and write

Ue=u—+E€E, Ve =0+E¢, (3.5)
uP — P
(ZS(UQ’UE) = up,1 . (36)

It is clear that ¢(uc,v.) € WHP(Q2) and it is an admissible test function in (1.1)-
(1.2). Thus we obtain

[ 1Vl ou 0+ [ 0 o)
¢ @ (3.7)
= | Olo) + () o) o

and

/ |Vo[P~2 VoV é(ue, ve)dx—k/
Q

Upflqﬁ(ue,vs)dz:/ (Ap(z) 4 p))vP L (ue, ve)do.
Q o0

(3.8)
From (3.7) and (3.8)), we deduce by calculations that

[ 1Yot vy o+ [ [Fop VoVt e + [ P 2uou, v de
Q Q Q

_ /m M@ (277 = ()7 - wt)dor

Ue Ve
+ ,ul()\)/ uP~t [ue — (E)p_lve] do + u/ uP~t [ve — (%)p_lue]da.
o0 Ue o0 Ve
(3.9)
On the other hand, by a long calculation again, we obtain
V(ue,ve) = {1+ (p— 1)(%)”}% - p(%)”‘lwe (3.10)
and
/ [ (e, ve) + 0P b(uc, vc)] dx = / () = ()" (P ). (3.11)
Q O  Ue Ve
Therefore, , and yield
/Q {1+ = D) Tl + {1+ (p = V() } Vo |da
+ / [~ (2" Va2V To 4 p(2) | Vu P2 Vu Vo a1
0 UE UE
= Je + Ke - Iey
with
U=l Uyl D _ 4P
I = /Q ((UE) ;) ) (u? — oP) da, (3.13)
U =1V NN opp
Je=a [ @ ((H) - G e (a9
1 _ (Veyp—1 —1 _ (Ueyp-1
K. = (\) /agzup [ue (ue) ve}da—l—u aQu” {vé (Ue) ue]do
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It is clear that I, > 0. Now, thanks to the inequalities of Lindqvist [I5], we can
distinguish tow cases according to p.
First case: p > 2. From (3.12)) we have

1 1 1
Jo+ K. > — Pdx > 0. 3.16
+ K> T /Q ((qu 17 + o 1)p> |[uVo — vVulPdx > (3.16)

Second case: 1 <p < 2.
Py P
Je—&—ch(p)/ uv(uPf + vP)
o (v|Vu| +u|Vu| +1)
where the constant ¢(p) > 0 independent of w, v, A and g1 (N).
The Dominated Convergence Theorem implies

lim J. = lim K, = A) — P —oP)do =0,
Jim T =l K= ) =) [ (@ = 0)do

/ uPdo :/ vPdo = 1. (3.18)
a0 o0

Now, letting € — 0% in (3.16) and (3.17), we arrive at uVv = vVu a.e. on Q. Thus

\Y% (%) =0 a.e. on .

Hence, there exists ¢ > 0 such that u = tv a.e. on . By continuity v = v a.e. in
Q:; and by the normalization we deduce that ¢t = 1 and v = v a.e. on 9.
This implies that u = v a.e. on €. Finally, we conclude that p = p;(\). Which
completes the prof. (I

55 [uVv — vVu|*dz > 0, (3.17)

because

Remark 3.5. Proposition can also be shown by using Picone’s identity. A
similar result was given by [9] in the restrictive case A = 0.

Corollary 3.6. For each \ € R, if u is an eigenfunction associated with a pair
(A, 1) and p # p1(X), then u changes sign on the boundary 02. Moreover, we have
the estimate

min(|02~ [, [021]) > " (IMllplloo,00 + 1) 77, (3.19)

where

2 ifp>N;
cp is the best constant in the Sobolev trace embedding W'P(Q) in LP™(0Q); and

|0QE| denotes the (N — 1)-dimensional measure of 0QF. Here p* = ”(I{,Vi:pl) is the
critical Sobolev exponent.

Proof. Set u™ = max(u,0) and v~ = max(—u,0). It follows from (1.4), where we
put v = u~, that

/|Vu_|pdac+/ \u_|pdm:/ (Mo(x) + p)|u~|Pdo.
Q Q ro)

{N ifl<p<N
n=47r

Thus

[ [lp < ([A[llplloo,00 + |1) /mi ju”[Pdo

B _\p/P"
< (Wlpleon -+ o2 P ([ )™
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By the Sobolev embedding W' (9Q) — LP" (9€), we deduce that
10971 = ;™ ([Mlllpllo.a0 + 1)
For 0T the same estimate follows by taking v = ™ in (1.4). Hence (3.19)) follows.
(I

Remark 3.7. (i) The right-hand side of is positive because p # 0 and if
A = 0 then p shall be an eigenvalue of p-Laplacian related to trace embedding, so
— A1 > 0, with A; is the first eigenvalue of (1.1)—(1.2) in the case (A = 0).

(ii) As an easy consequence of Corollary we get that the number of the nodal
components of each eigenfunction of 1' is finite.

Using Proposition and Corollary we can state the following important
result.

Theorem 3.8. For each A\ € R, u1(\) is isolated.

4. VARIATIONS OF THE WEIGHT

Let pui1(A\) = p1(p) and ug(A) = wui(p) (for indicating the dependance of the
weight p).

Theorem 4.1. For each A € R, if (px)x is a sequence of functions in L>°(0Q) that
converges to p and p # 0, then

Hm g (pr) = pa(p) (4.1)
Jm fJun (o) —ui(p)llf ), = 0. (4.2)

Proof. If A = 0, the result is evident because p1(pr) = pi1(p), for all k € N*. If
A # 0, then for v € M,

A /a (= plude] < Al = pl o0

Using the convergence of py to p in L (912), for all € > 0, there exists k. € N such
that for all & > k.,

€
7 [ (o= lpaol < 3 =
o0 A
This implies

/\/ plvPdo < e—|—)\/ pr|v|Pdo, (4.3)
oN [219)

)\/ prlv|Pdo < e+)\/ plvPdo, (4.4)
o o0

foroe M,e>0and k > k..
On the other hand, we have p # 0. We take k. large enough so that p; # 0.
Thus

(o) < ol =2 [ pulolPde
Q
Combining (4.3)) and (4.4]), we obtain

() < ol =2 | plolo +-.
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Passing to the infimum over v € M, we find

pr(pr) < pip) +6 pi(p) < pilpr) +€, Ve>0, Vk > k.

Hence, we conclude the convergence (4.1J).
For the strong convergence (4.2) we argue as follows. We have for & large enough,
pr = 0 and

pur(pr) = llua (o) 17, — A/m pr(u1(pr))’do. (4.5)

Thus
lur (o) Y < Lpa (pr)] + [All] okl oo,00-

From (4.1) and the convergence of pi, to p in L (09), we deduce that (u;(px)) is a
bounded sequence in W1?(€). Since W1?(Q) is reflexive and compactly embedded
in LP(0Q) we can extract a subsequence of (ui(pk))r again labelled by k, such
that u(pr) — u (weakly) in WHP(Q) and wuy(pr) — u (strongly) in LP(09), as
k — oo. We can also suppose that ui(px) — u in LP(Q2). Passing to a subsequence
if necessary, we can assume that ui(px) — u a.e. in Q. Thus u > 0 a.e. in Q. We

will prove that u = u1(p). To do this, using the Dominated Convergence Theorem
in 09, we deduce that

[ mtatoyrds— [ pwrd,
o0 o

as k — oo. By (4.5), (4.1) and the lower weak semi-continuity of the norm we
obtain that

Jully < )+ [ purden (46)
The normalization faﬂ uPdo = 1 is proved. Moreover, © > 0 a.e. in €, because

u1(pr) > 0 in Q Thus u is an admissible function in the variational definition of
H1(A). So

i) <l [ purdo
o0
This and (4.6) yield
m(p) =ty = A [ v (4.7)
o0
By the uniqueness of the principal eigenfunction associated to 1 (), we must have
u = u1(p). Consequently the limit function u;(p) is independent of the choice of the
(sub)sequence. Hence, uj(py) converges to ui(p) at least in LP(9€) and in LP ().
To complete the proof of (4.2)), it suffices to use the Clarckson’s inequalities related

to uniform convexity of WP (). For this we distinguish two cases.
First case: p > 2. We have

/Q’VM(Pk)Q—Vul(P) ‘pder/Q

1 1
<3 / Vs (o) P+ / Vs () P de
Q Q

Vui(pr) + Vui(p) |
2

dx

and

Nl(Pk)/m (M)p(w
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é/ﬂ’vul(ﬂk)gvul(ﬂ) ’pdx—AAka(ul(pk)+u1(p))pda.

2
Moreover,
uy (pr.) *Ul p) P uy(pr) +ui(p) |P 1 1
/ o) o) gy < [ (RO g s ()l + 5 ()l
Q
Hence

[ur (pr) —ua ()T,
< —ul(pk)/m (Ul(Pk);‘ul(P)>pdo__ )\/89 pk(ul(ﬂk);-ul(f)))”da

+ %(Nl(pk) - A/@Q (@) (pi)do) + %(‘“(p) " o

Then, by using the Dominated Convergence Theorem we deduce that

pul do) :

limsup (o) —ur(p)Ilf,

— 400

Second case: 1 < p < 2. In this case, we have

/‘Vul pk)2 Vui(p ’ i } /’Vul pk);—Vul )‘pdsr},,lﬁ

1

<{5 [ wuara+ g [ [wura

and
u +u P
ul(pk)/ (—1(pk)2 1(p)) do
G19)
P P
< / ‘Vul(pk) +VU1(0)‘ _ )\/ pk(u1(pk) +u1(p)) do.
0 2 o9 2

Hence, by the definitions of 11 (pr) and p1(p); and the second Clarckson’s inequality
we obtain the convergence (4.2)). ([l

Corollary 4.2. For any bounded domain Q, the function A — ui(\) is differen-
tiable on R and the function A — u(\) is continuous from R into W1P(Q). More
precisely

wi(No) = 7/69 p(z)(u1(N))Pdo, Vg € R.

Proof. Denote by 11(A, p) the principal eigenvalue associated with A and the weight
p and by uq (A, p) the principal eigenfunction corresponding. Suppose that Ay — Ao
in R, then hy = Agp — Aop = h in L>°(02). From Theorem we deduce that

1 (Ae) = pa (1, hy) = pa (1, h) = pa(Xo),
U1()\k) = ul(l,hk) — ul(l,h) = ul(/\o) in Wl"p(Q).

For the differentiability, it suffices to use the variational characterization of pj(\)
and of p1 (), so that

(A= Ao) /aQ p(z)(u1(A)Pdo < p1(A) — p1(Ao) < (Ao — /\)./a (u1(Ao))Pdo,

Q
for all A\, Ay € R. This completes the proof. O
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