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ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ
SPACES

GE DONG

ABSTRACT. This article shows the existence of solutions to the nonlinear el-
liptic problem A(u) = f in Orlicz-Sobolev spaces with a measure valued right-
hand side, where A(u) = —diva(z,u, Vu) is a Leray-Lions operator defined
on a subset of W¢ Las(Q), with general M.

1. INTRODUCTION

Let M : R — R be an N-function; i.e. M is continuous, convex, with M (u) > 0
for u > 0, M(t)/t — 0ast — 0, and M(t)/t — oo as t — oco. Equivalently, M
admits the representation M (u) = fou @(t)dt, where ¢ is the derivative of M, with
¢ non-decreasing, right continuous, ¢(0) = 0, ¢(¢t) > 0 for ¢t > 0, and ¢(t) — oo as
t — 00.

The N-function M conjugate to M is defined by M (v) = fot Y(s)ds, where v is
given by ¥(s) = sup{t : ¢(t) < s}.

The N-function M is said to satisfy the Ay condition, if for some & > 0 and
ug > 0,

M(Q2u) < kM(u), Yu > up.

Let P,Q be two N-functions, P < ) means that P grows essentially less rapidly
than Q; i.e. for each € > 0, P(t)/Q(et) — 0 as t — oo. This is the case if and only
if limy_ oo Q71(t)/P71(t) = 0.

Let © ¢ RN be a bounded domain with the segment property. The class
WL () (resp., WIE(2)) consists of all functions u such that u and its distri-
butional derivatives up to order 1 lie in Ly () (resp., Ear(Q)).

Orlicz spaces Ly () are endowed with the Luxemburg norm

A
The classes WLy () and WL E(Q) of such functions may be given the norm

lulloar = > [1D%ull(ar)-

lof<1

1wl ary inf{)\>0:/QM(|u(x)|)dx§1}.
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These classes will be Banach spaces under this norm. I refer to spaces of the
forms WLy (Q) and WLE () as Orlicz-Sobolev spaces. Thus WL () and
W1LE)(Q) can be identified with subspaces of the product of N+1 copies of L, (£2).
Denoting this product by IIL,;, we will use the weak topologies o(ILL s, I1E ;)
and o(IILp;, Ly;). If M satisfies Ay condition, then Ly (Q2) = Epn(Q) and
WALy (Q) = WEEN ().

The space Wi Ey(Q) is defined as the (norm) closure of C§°(2) in W!Ey(Q)
and the space W3 Ly (Q) as the o(IIL s, IIE ;) closure of C§(Q) in WLy (Q).

Let WL (Q) (resp. W™L1E;;(€)) denote the space of distributions on which
can be written as sums of derivatives of order < 1 of functions in L;(£2) (resp.
E;7(9Q)). Tt is a Banach space under the usual quotient norm (see [12]).

If the open set  has the segment property, then the space C§°(€) is dense in
W4 Ly (Q) for the modular convergence and thus for the topology o(ILLyy, I1L )
(cf. [I2,13]).

Let A(u) = —diva(z,u, Vu) be a Leray-Lions operator defined on W1?((Q),
1 < p < 00. Boccardo-Gallouet [7] proved the existence of solutions for the Dirichlet
problem for equations of the form

A(u)=f inQ, (1.1)
u=0 on 04, (1.2)

where the right hand f is a bounded Radon measure on Q (i.e. f € Mp(Q2)). The
function a is supposed to satisfy a polynomial growth condition with respect to u
and Vu.

Benkirane [4, 5] proved the existence of solutions to

A(u) + g(z,u, Vu) = f, (1.3)
in Orlicz-Sobolev spaces where
A(u) = —div(a(z, u, Vu)) (1.4)

is a Leray-Lions operator defined on D(A) C WL (), g is supposed to satisfy
a natural growth condition with f € W=1E;;(Q) and f € LY(Q), respectively, but
the result is restricted to N-functions M satisfying a A, condition. Elmahi extend
the results of [4, 5] to general N-functions (i.e. without assuming a Ag-condition
on M) in [8, 9], respectively.

The purpose of this paper is to solve (1.1) when f is a bounded Radon measure,
and the Leray-Lions operator A in defined on D(A) C WLy (), with
general M. We show that the solutions to belong to the Orlicz-Sobolev space
W3 Lg(Q2) for any B € Py, where Py is a special class of N-function (see below).
Specific examples to which our results apply include the following;:

—div(|Vu[P™2Vu) = in Q,
—div(|Vul|P2Vulog? (1 + |[Vu|)) = ¢ in Q

M(|Vu|)Vu _

1v |V’u,|2

in)
where p > 1 and p is a given Radon measure on §2.

For some classical and recent results on elliptic and parabolic problems in Orlicz
spaces, I refer the reader to [2] Bl 6] 10} 1T}, 12} [14] [16] [18§].
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2. PRELIMINARIES

We define a subset of N-functions as follows.

Par = {B . R* — R* is an N-function, B"/B' < M" /M’

1
and / Bo H Y(1/t7 YNyt < oo}
0

where H(r) = M (r)/r. Assume that

Pu # 0 (2.1)

Let Q ¢ RY be a bounded domain with the segment property, M, P be two
N-functions such that P < M, M, P be the complementary functions of M, P,
respectively, A : D(A) C WLy (Q) — WL (9Q) be a mapping given by A(u) =
—diva(z,u, Vu) where a : Qx RxRY — RY be a Caratheodory function satisfying
for a.e. € Q and all s € R, &, € RY with ¢ #

la(z, s,€) < BM(I€])/I¢] (2.2)
la(z, 5,§) —a(z,s,n)][§ —n] >0
a(w,s,§)§ = aM([¢])
where «, 3,7 > 0.
Furthermore, assume that there exists D € Py, such that
Do H™!is an N-function. (2.5)

Set Ti(s) = max(—Fk, min(k, s)), Vs € R, for all £ > 0. Define by M,;(Q2) as the
set of all bounded Radon measure defined on € and by T, M(Q) as the set of
measurable functions 2 — R such that Ty (u) € W§ L (Q) N D(A).

Assume that f € M;(Q), and consider the following nonlinear elliptic problem
with Dirichlet boundary

A(u) = f in Q. (2.6)

The following lemmas can be found in [4].
Lemma 2.1. Let F : R — R be uniformly Lipschitzian, withF(0) = 0. Let M be
an N-function, u € WLy () (resp. WEEN(Q)). Then F(u) € WLy (Q) (resp.
W1LE) (). Moreover, if the set D of discontinuity points of F’ is finite, then
I(Fou) {F’(u)gz a.e. in{x € N:u(x) ¢ D}

Ox; 0 a.e. in{x €N :u(x)e€ D}

Lemma 2.2. Let F': R — R be uniformly Lipschitzian, with F(0) = 0. I suppose
that the set of discontinuity points of F' is finite. Let M be an N-function, then
the mapping F : WLy (Q) — WL (Q) is sequentially continuous with respect to
the weakx topology o(ILL s, ITE ;).

3. EXISTENCE THEOREM

Theorem 3.1. Assume that (2.1)-(2.5) hold and f € My(S2). Then there exists at
least one weak solution of the problem

ueTyM(Q)NWELE(Q), VB e Py

/Q a(e,u, Vu)Vodz = (f,6), Yo € D)
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Proof. Denote V = W¢ Ly (Q). (1) Consider the approximate equations
U, €V a1
—diva(x, u,, Vuy) = fn (3.1)

where f,, is a smooth function which converges to f in the distributional sense that
such that || fullz1) < || fllam, ). By [, Theorem 3.1] or [§], there exists at least
one solution {u,} to (3.1).

For k > 0, by taking T}, (uy) as test function in (3.I]), one has

/ a(x, Tg(un), VI (uy))VTE(uy)dx < Ck.
Q
In view of (2.4)), we get
/ M (VT (uy,)|)dx < Ck. (3.2)
Q

Hence VT (u,) is bounded in (L (2))Y. By [9] there exists u such that u, — u
almost everywhere in 2 and

Ty (un) — Tr(u) weakly in Wy Las(Q) for o (I1Lys, TTIE ). (3.3)
For ¢t > 0, by taking Tp,(u, — Tt (uy)) as test function, we deduce that

/ a(z, U, V) Vupdr < h| g, )
t<|un|<t+h

which gives

1
E/ M(|Vun|)dz < || £l a2
t<|un|<t+h
and by letting h — 0,
d
-2 M(|Vun|)dz < || flla,0)-
[un|>t

Let now B € Pys. Following the lines of [I7], it is easy to deduce that
/B(|Vun|)dx <C, Vn. (3.4)
Q

We shall show that a(z,Tk(un), VTk(u,)) is bounded in (Ly;(2)V. Let ¢ €
(Ean ()N with [J¢[/(ar) = 1. By and Young inequality, one has

(M (VT (un)|)
/Qa(x,Tk(un),VTk(un))godxSﬁ/QM(WT’Zun)l)dm—l—ﬁ/QM(hp\)dx

< ﬁ/QM(WTk(un)\)dx y

This last inequality is deduced from M (M (u)/u) < M(u), for all u > 0, and
Jo M(Jpl)dz < 1. In view of (3.2),

/ a(z, T (un), VI (un))pde < Ck + 3,
Q

which implies {a(z, Tk (), VTk(u,))}, being a bounded sequence in (L;(2))V.
(2) For the rest of this article, x,, xs and x; s will denoted respectively the

characteristic functions of the sets Q, = {z € Q;|VIy(u(z))| < r}, Qs = {z €

O |[VTi(u(z))] < s} and Q;s = { € Q;|VTi(vj(z))] < s}. For the sake of
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simplicity, I will write only €(n, j, s) to mean all quantities (possibly different) such
that

lim lim lim e(n,j,s) =0.

§—00 j—00 N—00

Take a sequence (v;) C D(€2) which converges to u for the modular convergence in
V' (cf. [13]). Taking T}, (u, — Tk (v;)) as test function in (3.1)), we obtain

/ a(x, U, Vi) VT (u, — Ti(v;))de < Cn (3.5)
Q
On the other hand,

/ a(z, wn, V) VT, (un — Ti(vy))dx
Q

/ a2, To(un), VT (1)) (VT () — VT (07)) e
{lun—Txk(v)|<nIN{|un|<k}

+ / a(z, Up, Vi) (Vu, — VTi(v;))dx
{|un_Tk(Uj)‘gn}ﬁ{lun‘>k}

/ a(, To(tn), VT () (VT () — VT (0;))da
{|Tkun—Tk(v;)|<n}

+ / a(z, Up, V) Vu,dz
{lwn =Tk (v)|<nin{|un| >k}

- / a(x, Un, Vi, ) VT (v;)dx
{n =Tk (v)| <0} {|un|>k}

By (2.4) the second term of the right-hand side satisfies

/ a(x, Uy, Vi, )Vugde > 0.
{lun =T, (v;)|<n}n{|un| >k}

Since a(z, T4y (tn ), VIjty(uy)) is bounded in (L;(2))Y, there exists some hy4,, €
(L (2))"N such that

a(@, Tin(un), Vg (tn)) = Mgty

weakly in (L;(Q))Y for o (IIL 5, [1E,,). Consequently the third term of the right-
hand side satisfies

/ a(z, un, Vu,) VT (vj)dx
{lun =Tk (v)I<n}0{|un|>k}

= / (@, Thoqn (Un )y Vet (un)) VI (v5)de
{ln =Tk (v)|<n}0{|un|>k}

_ / N VT (v;)da + (n)
{lu=Tx (vj)|<n}n{|u|>k}

since
VT (V)X un T (o) | <n3 0 un >k = VTR (U)X (T (05)| <m0 {[ul >k}

strongly in (Epr(2))Y as n — oo. Hence

/ a2, To(tn), VT3 (1)) [V Tk (1) — VT3 (0;)]d
{|Tkwn —Tr(v;)|<n}
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<Cn+eln)+ / Ry VT (vj)dx
{lu=Tk (v;)|<n}n{|u|>k}
Let 0 < 6 < 1. Define
Q. 1 = [a(z, Tk (un), VIg(un)) — al(z, Tr(uy), VI (w)] [V (un) — VIE(u)].
For » > 0, I have

0< /Q {la(z, Tk (un), VTk(un)) — a(z, T (un), VT (w)][VTE (un) — VTk(u)]}edx

0 0
—/Q ‘Pn,kX{\Tk<un>—n<vj)\>n}d$+/Q o 1 X T () = T (v;) | <} AT

r T

Using the Holder Inequality (with exponents 1/6 and 1/(1 — 8)), the first term of
the right-side hand is less than

6 1-6
(/ (I)”»kdx> (_/ X{lTk(un)—Tk(vj)|>n}d$> :
Q Qr

Noting that

/ @n,kdiﬂ
Q’V‘

:/Q‘a(m,Tk(un),VTk(un))VTk(un)dx—/ a(x, Tk (un), VI (w)) VT (up)d

Q’V‘

—/Q a(x,Tk(un),VTk(un))VTk(u)dx+/ a(x, Ty, (up), VI (uw)) VT (u)de

Q
ML)
|v:rk<un>\>
3 / )48 [ MOVTL )

15 / M|V T (u)))d
<Ch+ 5 [ MQVTL(w)dz + 6 | M(VTi(u,))ds
Q. Q

48 [ MQVIn)hdo+ 8 [ M(VTL@)Dda + 5 [ M(VTw))do
Q Q, Q.
< (284 1)Ck + 3M (r) meas
it follows that
/Q DY X (T ()~ T (o) > dx < C(meas{| Ty (un) — Th(v;)] > n})'~°

where C' = [(26 + 1)Ck 4 3M (r) meas ©]°.
Using the Holder Inequality (with exponents 1/6 and 1/(1 — 9)),

/Q (bfz,kXﬂTk (un)*Tk(Uj)\Sﬂ}dx

T

< (/Q @n,kmmun)Tk<vj><n}d$)a(/ﬂ dx)lie

s T
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o 1-0
< ( /Q P X ([T () Ty (o)<} 42 ) (meas Q)

T

Hence

0 / {la(z, Te(un), VTi(un)) — a(z, Tio(un), VTi(w)][VTi(un) — VTi(u)]}da

IA

C‘(meas{\Tk (un) — Th(vy)| > 77})1_0
0 1—6
+ ( Qo kX (| T (1)~ T (v) \<n}dx) (meaSQ)
= C~’(meas{\T;c (un) — Th(vy)| > 77})170
+

(f [a(e. Tilwn). V(1)) = (e, Ti(ua), Vi)
QN {| Tk (un) =T (v;)|<n}

X [VTi(un) — VT (u)}dm) (meas Q)lf@
For each s > r one has

0< / [a(z, T (un), VTk(un)) — alz, T (un), VT (u))]
Qe {| T (un) =T (v;)|<n}

x [VTi(un) — VT (u)|dx
la(z, T (un), VI (un)) — a(@, Ti(un), VT ()]

IN

~/Q NI Tk (un) =Tk (v;)|<n}
% [VTi(tn) — VT ()

[ (1'7 Tk(un)7 VTk(un)) - a‘(xv Tk(un)v VTk(u)Xs)]

~/Q ﬂ{lTk(un Tk UJ)‘<77}
VTk(un) VT (u)x ]dm

[ (ZL’, Tk(un)7 VTk(un)) - a‘(mv Tk(un)v VTk(u)Xs)]

X

IA

~/Qr1{|Tk(uL —Tk(v;)|<n}

/ [ (&, Tu(tn), VT () — (e, Ti(un), VT4 (0)x5.)]
{ITk (un) =Tk (v;)|<n}

VTk( ) VTk(v])XJS]dx

X

+ a(x, Ti(un), VI (uy)) [VTk (vi)xj,s — VT (u)xs] dz

\/{ITk(Un)Tk('Uj)l<7]}

+f [ala, i (un), VT (1))
{17k (wn) =Tk (v;)|<n}

a(x, T (un), VI (U)Xs)] VT (uy)dex

- / 0, Ti(tn), VTi(03)5.0) VT (0) X0
{T% (un)—Tr(v;)|<n}

4 / o, To(un), VT () x) VT (0) yodo
{ITk (un) =Tk (v;)|<n}

= Il(najvs) + IZ(naja S) + 13(n7j,s) + I4(77,,j,8) + I5(Tl,j, S)
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On the other hand,

/ a(z, Ty, (un), VTi(un)) [VTk(un) — VT (v;)]de
{ITk (un) =Tk (v;)|<n}

= / [a(x,Tk(un), VTi(un)) — alz, Tr(un), VTk(vj)Xj’S)]
{1 Tk (un) =Tk (v;)|<n}

X [VTi(un) = VTi(v))x5.s) de

+/ a(z, T (un), VT (v5)Xj,5) [VTk(un) — VT (v;) X, | d
U (un) =T (v;) | <0}

_/ (@, T (), VT (1)) VT (05) X973 (0,55
{1 ()~ T ()| <}

The second term of the right-hand side tends to

/ ale, To(uw), VT () xs) VT () — VT (o;)xslde
{ITk (u) =Tk (v;)|<n}

since a(:z:, Tk(un), VTk(U)XS)X{\Tk(un)—Tk(vj)|§17} tends to
a(@, Ty (w), VT (W)X )X {75 () ~ T (0)| <0}

in (Ey(Q)N while VTy(u,) — VT (v;)xs tends weakly to VT, (u) — VT (vj)xs in
(Lar ()N for o(IIL s, TIE ).

Since a(x, Tk (un), VTk(uy,)) is bounded in (L;;(2))V there exists some hy €
(L (2))Y such that (for a subsequence still denoted by u,,)

a(x, Ty (tn), VT (un)) = hp  weakly in (L (Q))Y for o(TIL 5, TIE);).

In view of the fact that VTk('Uj)X{ITk(un)ka(vj)\Sn} — VTk('Uj)X{lTk(u)ka(vj)lgn}
strongly in (Ep(Q2))Y as n — oo the third term of the right-hand side tends to

*/ hieNV Tk (0) X {1V T ()] > 5} A2
{I Tk (u)=Tx(v;)|<n}

Hence in view of the modular convergence of (v;) in V, one has

Li(n,j,s) < Cn+=(n) + / BV T ()
{lu—Tx (v;)|<nin{|u|>k}

+ / hvak}(/Uj)X{|ka('U]‘)|>S}dx
{ITk (u) =T (v;)|<n}

— / a(z, T (w), VI (u)Xxs) [V (u) — VT (v;)xs)d
{1 T (w) = Tx (v;)| <n}

:Cn+5(n)+€(j)+/Qhvak(u)X{\VTk(u)bs}dx

_/Qa(mvTk(u)70)X{\VTk(u)\>s}dx

Therefore,
Li(n,j,s) = Cn+e(n, j,s) (3.6)

For what concerns Is, by letting n — oo, one has

Ir(n,j,s) = / hi[V Tk (v)xi.s — VIk(u)xs]dr + e(n)
{1k (w) =Tk (v;)|<n}
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since
a(x, T (un), Vg (uy)) — by, weakly in (Ly)" for o(TIL y;, TIE),)
while X (|7 (un)—~Ti (0)| <0} [VTk(v5)X5,s — Vi (u)xs] approaches
X{ITk ()T (o) <0} [V Tk (03)X5.s = VT () X5]
strongly in (Ep7)N. By letting j — oo, and using Lebesgue theorem, then
Is(n,j,s) = e(n, 7). (3.7)

Similar tools as above, give
I3 (n7 j7 5) = / a(x, Tk: (U), VT/C (u)Xs)VTk: (U)Xsd.f + E(na j) (38)
Q
Combining (3.6)), (3.7), and (3.8]), we have

/ [a(;v,Tk(un),VTk(un)) — a(x,Tk(un),VTk(u))]
Qe {| Tk (un) =Tk (v;)|<n}

X [VTx(un) — VT (u)]dx
<e(n,j,s).

Therefore,

0< /Q {la(z, Tk (un), VT (un)) — a(z, Ty (un), VTE(w)][VTk (urn) — VTk(u)]}edx
< C(meas{|Ti(un) — T(v;)| > 1})' ™7 + (meas Q) (e(n, j, 5))°

Which yields, by passing to the limit superior over n, j, s and 7,

lim/ {[{a(z, Tr(un), VTi(un)) — alz, T (uy), Vi (w))]
Q.

X [VTi(tn) — V()] Y dz = 0.

Thus, passing to a subsequence if necessary, Vu,, — Vu a.e. in £, and since r is
arbitrary,

Vu, — Vu a.e. in €.

By (2.2) and (2.5),
[ Do (Mt Tlyg; < [ p(va, i <
Q B Q
Hence
a(x, un, V) — a(z,u, Vu) weakly for o(IILpo g1 I1E57=1)-

Going back to approximate equations (3.1]), and using ¢ € D() as the test function,
one has

/ a(x, up, Vi, )Vodr = (f, P)
Q

in which I can pass to the limit. This completes the proof. (I
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