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ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ
SPACES

GE DONG

Abstract. This article shows the existence of solutions to the nonlinear el-

liptic problem A(u) = f in Orlicz-Sobolev spaces with a measure valued right-
hand side, where A(u) = − div a(x, u,∇u) is a Leray-Lions operator defined

on a subset of W 1
0 LM (Ω), with general M .

1. Introduction

Let M : R → R be an N -function; i.e. M is continuous, convex, with M(u) > 0
for u > 0, M(t)/t → 0 as t → 0, and M(t)/t → ∞ as t → ∞. Equivalently, M
admits the representation M(u) =

∫ u

0
φ(t)dt, where φ is the derivative of M , with

φ non-decreasing, right continuous, φ(0) = 0, φ(t) > 0 for t > 0, and φ(t) →∞ as
t→∞.

The N -function M̄ conjugate to M is defined by M̄(v) =
∫ t

0
ψ(s)ds, where ψ is

given by ψ(s) = sup{t : φ(t) ≤ s}.
The N -function M is said to satisfy the ∆2 condition, if for some k > 0 and

u0 > 0,
M(2u) ≤ kM(u), ∀u ≥ u0.

Let P,Q be two N -functions, P � Q means that P grows essentially less rapidly
than Q; i.e. for each ε > 0, P (t)/Q(εt) → 0 as t→∞. This is the case if and only
if limt→∞Q−1(t)/P−1(t) = 0.

Let Ω ⊂ RN be a bounded domain with the segment property. The class
W 1LM (Ω) (resp., W 1EM (Ω)) consists of all functions u such that u and its distri-
butional derivatives up to order 1 lie in LM (Ω) (resp., EM (Ω)).

Orlicz spaces LM (Ω) are endowed with the Luxemburg norm

‖u‖(M) = inf
{
λ > 0 :

∫
Ω

M
( |u(x)|

λ

)
dx ≤ 1

}
.

The classes W 1LM (Ω) and W 1EM (Ω) of such functions may be given the norm

‖u‖Ω,M =
∑
|α|≤1

‖Dαu‖(M).
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These classes will be Banach spaces under this norm. I refer to spaces of the
forms W 1LM (Ω) and W 1EM (Ω) as Orlicz-Sobolev spaces. Thus W 1LM (Ω) and
W 1EM (Ω) can be identified with subspaces of the product of N+1 copies of LM (Ω).
Denoting this product by ΠLM , we will use the weak topologies σ(ΠLM ,ΠEM̄ )
and σ(ΠLM ,ΠLM̄ ). If M satisfies ∆2 condition, then LM (Ω) = EM (Ω) and
W 1LM (Ω) = W 1EM (Ω).

The space W 1
0EM (Ω) is defined as the (norm) closure of C∞0 (Ω) in W 1EM (Ω)

and the space W 1
0LM (Ω) as the σ(ΠLM ,ΠEM̄ ) closure of C∞0 (Ω) in W 1LM (Ω).

Let W−1LM̄ (Ω) (resp. W−1EM̄ (Ω)) denote the space of distributions on which
can be written as sums of derivatives of order ≤ 1 of functions in LM̄ (Ω) (resp.
EM̄ (Ω)). It is a Banach space under the usual quotient norm (see [12]).

If the open set Ω has the segment property, then the space C∞0 (Ω) is dense in
W 1

0LM (Ω) for the modular convergence and thus for the topology σ(ΠLM ,ΠLM̄ )
(cf. [12, 13]).

Let A(u) = −div a(x, u,∇u) be a Leray-Lions operator defined on W 1,p(Ω),
1 < p <∞. Boccardo-Gallouet [7] proved the existence of solutions for the Dirichlet
problem for equations of the form

A(u) = f in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

where the right hand f is a bounded Radon measure on Ω (i.e. f ∈ Mb(Ω)). The
function a is supposed to satisfy a polynomial growth condition with respect to u
and ∇u.

Benkirane [4, 5] proved the existence of solutions to

A(u) + g(x, u,∇u) = f, (1.3)

in Orlicz-Sobolev spaces where

A(u) = −div(a(x, u,∇u)) (1.4)

is a Leray-Lions operator defined on D(A) ⊂ W 1
0LM (Ω), g is supposed to satisfy

a natural growth condition with f ∈W−1EM̄ (Ω) and f ∈ L1(Ω), respectively, but
the result is restricted to N -functions M satisfying a ∆2 condition. Elmahi extend
the results of [4, 5] to general N -functions (i.e. without assuming a ∆2-condition
on M) in [8, 9], respectively.

The purpose of this paper is to solve (1.1) when f is a bounded Radon measure,
and the Leray-Lions operator A in (1.4) is defined on D(A) ⊂ W 1

0LM (Ω), with
general M . We show that the solutions to (1.1) belong to the Orlicz-Sobolev space
W 1

0LB(Ω) for any B ∈ PM , where PM is a special class of N -function (see below).
Specific examples to which our results apply include the following:

−div(|∇u|p−2∇u) = µ in Ω,

−div(|∇u|p−2∇u logβ(1 + |∇u|)) = µ in Ω

−div
M(|∇u|)∇u

|∇u|2
= µ inΩ

where p > 1 and µ is a given Radon measure on Ω.
For some classical and recent results on elliptic and parabolic problems in Orlicz

spaces, I refer the reader to [2, 3, 6, 10, 11, 12, 14, 16, 18].
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2. Preliminaries

We define a subset of N -functions as follows.

PM =
{
B : R+ → R+ is an N -function, B′′/B′ ≤M ′′/M ′

and
∫ 1

0

B ◦H−1(1/t1−1/N )dt <∞
}

where H(r) = M(r)/r. Assume that

PM 6= ∅ (2.1)

Let Ω ⊂ RN be a bounded domain with the segment property, M,P be two
N -functions such that P � M , M̄, P̄ be the complementary functions of M,P ,
respectively, A : D(A) ⊂W 1

0LM (Ω) →W−1LM̄ (Ω) be a mapping given by A(u) =
−div a(x, u,∇u) where a : Ω×R×RN → RN be a Caratheodory function satisfying
for a.e. x ∈ Ω and all s ∈ R, ξ, η ∈ RN with ξ 6= η:

|a(x, s, ξ)| ≤ βM(|ξ|)/|ξ| (2.2)

[a(x, s, ξ)− a(x, s, η)][ξ − η] > 0 (2.3)

a(x, s, ξ)ξ ≥ αM(|ξ|) (2.4)

where α, β, γ > 0.
Furthermore, assume that there exists D ∈ PM such that

D ◦H−1 is an N -function. (2.5)

Set Tk(s) = max(−k,min(k, s)), ∀s ∈ R, for all k ≥ 0. Define by Mb(Ω) as the
set of all bounded Radon measure defined on Ω and by T 1,M

0 (Ω) as the set of
measurable functions Ω → R such that Tk(u) ∈W 1

0LM (Ω) ∩D(A).
Assume that f ∈ Mb(Ω), and consider the following nonlinear elliptic problem

with Dirichlet boundary
A(u) = f in Ω. (2.6)

The following lemmas can be found in [4].

Lemma 2.1. Let F : R → R be uniformly Lipschitzian, withF (0) = 0. Let M be
an N -function, u ∈ W 1LM (Ω) (resp. W 1EM (Ω)). Then F (u) ∈ W 1LM (Ω) (resp.
W 1EM (Ω)). Moreover, if the set D of discontinuity points of F ′ is finite, then

∂(F ◦ u)
∂xi

=

{
F ′(u) ∂u

∂xi
a.e. in {x ∈ Ω : u(x) 6∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.2. Let F : R → R be uniformly Lipschitzian, with F (0) = 0. I suppose
that the set of discontinuity points of F ′ is finite. Let M be an N -function, then
the mapping F : W 1LM (Ω) →W 1LM (Ω) is sequentially continuous with respect to
the weak∗ topology σ(ΠLM ,ΠEM̄ ).

3. Existence theorem

Theorem 3.1. Assume that (2.1)-(2.5) hold and f ∈Mb(Ω). Then there exists at
least one weak solution of the problem

u ∈ T 1,M
0 (Ω) ∩W 1

0LB(Ω), ∀B ∈ PM∫
Ω

a(x, u,∇u)∇φdx = 〈f, φ〉, ∀φ ∈ D(Ω)
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Proof. Denote V = W 1
0LM (Ω). (1) Consider the approximate equations

un ∈ V
−div a(x, un,∇un) = fn

(3.1)

where fn is a smooth function which converges to f in the distributional sense that
such that ‖fn‖L1(Ω) ≤ ‖f‖Mb(Ω). By [4, Theorem 3.1] or [8], there exists at least
one solution {un} to (3.1).

For k > 0, by taking Tk(un) as test function in (3.1), one has∫
Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)dx ≤ Ck.

In view of (2.4), we get ∫
Ω

M(|∇Tk(un)|)dx ≤ Ck. (3.2)

Hence ∇Tk(un) is bounded in (LM (Ω))N . By [9] there exists u such that un → u
almost everywhere in Ω and

Tk(un) ⇀ Tk(u) weakly in W 1
0LM (Ω) for σ (ΠLM ,ΠEM̄ ). (3.3)

For t > 0, by taking Th(un − Tt(un)) as test function, we deduce that∫
t<|un|≤t+h

a(x, un,∇un)∇undx ≤ h‖f‖Mb(Ω)

which gives
1
h

∫
t<|un|≤t+h

M(|∇un|)dx ≤ ‖f‖Mb(Ω)

and by letting h→ 0,

− d

dt

∫
|un|>t

M(|∇un|)dx ≤ ‖f‖Mb(Ω).

Let now B ∈ PM . Following the lines of [17], it is easy to deduce that∫
Ω

B(|∇un|)dx ≤ C, ∀n. (3.4)

We shall show that a(x, Tk(un),∇Tk(un)) is bounded in (LM̄ (Ω))N . Let ϕ ∈
(EM (Ω))N with ‖ϕ‖(M) = 1. By (2.2) and Young inequality, one has∫

Ω

a(x, Tk(un),∇Tk(un))ϕdx ≤ β

∫
Ω

M̄
(M(|∇Tk(un)|)

|∇Tk(un)|

)
dx+ β

∫
Ω

M(|ϕ|)dx

≤ β

∫
Ω

M(|∇Tk(un)|)dx+ β

This last inequality is deduced from M̄(M(u)/u) ≤ M(u), for all u > 0, and∫
Ω
M(|ϕ|)dx ≤ 1. In view of (3.2),∫

Ω

a(x, Tk(un),∇Tk(un))ϕdx ≤ Ck + β,

which implies {a(x, Tk(un),∇Tk(un))}n being a bounded sequence in (LM̄ (Ω))N .
(2) For the rest of this article, χr, χs and χj,s will denoted respectively the

characteristic functions of the sets Ωr = {x ∈ Ω; |∇Tk(u(x))| ≤ r}, Ωs = {x ∈
Ω; |∇Tk(u(x))| ≤ s} and Ωj,s = {x ∈ Ω; |∇Tk(vj(x))| ≤ s}. For the sake of
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simplicity, I will write only ε(n, j, s) to mean all quantities (possibly different) such
that

lim
s→∞

lim
j→∞

lim
n→∞

ε(n, j, s) = 0.

Take a sequence (vj) ⊂ D(Ω) which converges to u for the modular convergence in
V (cf. [13]). Taking Tη(un − Tk(vj)) as test function in (3.1), we obtain∫

Ω

a(x, un,∇un)∇Tη(un − Tk(vj))dx ≤ Cη (3.5)

On the other hand,∫
Ω

a(x, un,∇un)∇Tη(un − Tk(vj))dx

=
∫
{|un−Tk(vj)|≤η}∩{|un|≤k}

a(x, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(vj))dx

+
∫
{|un−Tk(vj)|≤η}∩{|un|>k}

a(x, un,∇un)(∇un −∇Tk(vj))dx

=
∫
{|Tkun−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(vj))dx

+
∫
{|un−Tk(vj)|≤η}∩{|un|>k}

a(x, un,∇un)∇undx

−
∫
{|un−Tk(vj)|≤η}∩{|un|>k}

a(x, un,∇un)∇Tk(vj)dx

By (2.4) the second term of the right-hand side satisfies∫
{|un−Tk(vj)|≤η}∩{|un|>k}

a(x, un,∇un)∇undx ≥ 0.

Since a(x, Tk+η(un),∇Tk+η(un)) is bounded in (LM̄ (Ω))N , there exists some hk+η ∈
(LM̄ (Ω))N such that

a(x, Tk+η(un),∇Tk+η(un)) ⇀ hk+η

weakly in (LM̄ (Ω))N for σ (ΠLM̄ ,ΠEM ). Consequently the third term of the right-
hand side satisfies∫

{|un−Tk(vj)|≤η}∩{|un|>k}
a(x, un,∇un)∇Tk(vj)dx

=
∫
{|un−Tk(vj)|≤η}∩{|un|>k}

a(x, Tk+η(un),∇Tk+η(un))∇Tk(vj)dx

=
∫
{|u−Tk(vj)|≤η}∩{|u|>k}

hk+η∇Tk(vj)dx+ ε(n)

since

∇Tk(vj)χ{|un−Tk(vj)|≤η}∩{|un|>k} → ∇Tk(vj)χ{|u−Tk(vj)|≤η}∩{|u|>k}

strongly in (EM (Ω))N as n→∞. Hence∫
{|Tkun−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))[∇Tk(un)−∇Tk(vj)]dx
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≤ Cη + ε(n) +
∫
{|u−Tk(vj)|≤η}∩{|u|>k}

hk+η∇Tk(vj)dx

Let 0 < θ < 1. Define

Φn,k = [a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)].

For r > 0, I have

0 ≤
∫

Ωr

{[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)]}θdx

=
∫

Ωr

Φθ
n,kχ{|Tk(un)−Tk(vj)|>η}dx+

∫
Ωr

Φθ
n,kχ{|Tk(un)−Tk(vj)|≤η}dx

Using the Hölder Inequality (with exponents 1/θ and 1/(1 − θ)), the first term of
the right-side hand is less than( ∫

Ωr

Φn,kdx
)θ( ∫

Ωr

χ{|Tk(un)−Tk(vj)|>η}dx
)1−θ

.

Noting that∫
Ωr

Φn,kdx

=
∫

Ωr

a(x, Tk(un),∇Tk(un))∇Tk(un)dx−
∫

Ωr

a(x, Tk(un),∇Tk(u))∇Tk(un)dx

−
∫

Ωr

a(x, Tk(un),∇Tk(un))∇Tk(u)dx+
∫

Ωr

a(x, Tk(un),∇Tk(u))∇Tk(u)dx

≤ Ck + β

∫
Ωr

M̄
(M(|∇Tk(u)|)

|∇Tk(u)|

)
dx+ β

∫
Ωr

M(|∇Tk(un)|)dx

+ β

∫
Ωr

M̄
(M(|∇Tk(un)|)

|∇Tk(un)|

)
dx+ β

∫
Ωr

M(|∇Tk(u)|)dx

+ β

∫
Ωr

M(|∇Tk(u)|)dx

≤ Ck + β

∫
Ωr

M(|∇Tk(u)|)dx+ β

∫
Ω

M(|∇Tk(un)|)dx

+ β

∫
Ω

M(|∇Tk(un)|)dx+ β

∫
Ωr

M(|∇Tk(u)|)dx+ β

∫
Ωr

M(|∇Tk(u)|)dx

≤ (2β + 1)Ck + 3M(r) meas Ω

it follows that∫
Ωr

Φθ
n,kχ{|Tk(un)−Tk(vj)|>η}dx ≤ C̃(meas{|Tk(un)− Tk(vj)| > η})1−θ,

where C̃ = [(2β + 1)Ck + 3M(r) meas Ω]θ.
Using the Hölder Inequality (with exponents 1/θ and 1/(1− θ)),∫

Ωr

Φθ
n,kχ{|Tk(un)−Tk(vj)|≤η}dx

≤
( ∫

Ωr

Φn,kχ{|Tk(un)−Tk(vj)|≤η}dx
)θ( ∫

Ωr

dx
)1−θ
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≤
( ∫

Ωr

Φn,kχ{|Tk(un)−Tk(vj)|≤η}dx
)θ(

meas Ω
)1−θ

Hence

0 ≤
∫

Ωr

{[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)]}θdx

≤ C̃
(
meas{|Tk(un)− Tk(vj)| > η}

)1−θ

+
( ∫

Ωr

Φn,kχ{|Tk(un)−Tk(vj)|≤η}dx
)θ(

meas Ω
)1−θ

= C̃
(
meas{|Tk(un)− Tk(vj)| > η}

)1−θ

+
( ∫

Ωr∩{|Tk(un)−Tk(vj)|≤η}

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

]
×

[
∇Tk(un)−∇Tk(u)

]
dx

)θ(
meas Ω

)1−θ

For each s ≥ r one has

0 ≤
∫

Ωr∩{|Tk(un)−Tk(vj)|≤η}

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

]
×

[
∇Tk(un)−∇Tk(u)

]
dx

≤
∫

Ωs∩{|Tk(un)−Tk(vj)|≤η}

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

]
×

[
∇Tk(un)−∇Tk(u)]dx

=
∫

Ωs∩{|Tk(un)−Tk(vj)|≤η}

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)

]
×

[
∇Tk(un)−∇Tk(u)χs

]
dx

≤
∫

Ω∩{|Tk(un)−Tk(vj)|≤η}

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)

]
×

[
∇Tk(un)−∇Tk(u)χs]dx

=
∫
{|Tk(un)−Tk(vj)|≤η}

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χj,s)

]
×

[
∇Tk(un)−∇Tk(vj)χj,s

]
dx

+
∫
{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))
[
∇Tk(vj)χj,s −∇Tk(u)χs

]
dx

+
∫
{|Tk(un)−Tk(vj)|≤η}

[
a(x, Tk(un),∇Tk(vj)χj,s)

− a(x, Tk(un),∇Tk(u)χs)
]
∇Tk(un)dx

−
∫
{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(vj)χj,s)∇Tk(vj)χj,sdx

+
∫
{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(u)χs)∇Tk(u)χsdx

= I1(n, j, s) + I2(n, j, s) + I3(n, j, s) + I4(n, j, s) + I5(n, j, s)
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On the other hand,∫
{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))[∇Tk(un)−∇Tk(vj)]dx

=
∫
{|Tk(un)−Tk(vj)|≤η}

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χj,s)

]
×

[
∇Tk(un)−∇Tk(vj)χj,s

]
dx

+
∫
{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(vj)χj,s)
[
∇Tk(un)−∇Tk(vj)χj,s

]
dx

−
∫
{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))∇Tk(vj)χ{|∇Tk(vj)|>s}dx

The second term of the right-hand side tends to∫
{|Tk(u)−Tk(vj)|≤η}

a(x, Tk(u),∇Tk(u)χs)[∇Tk(u)−∇Tk(vj)χs]dx

since a(x, Tk(un),∇Tk(u)χs)χ{|Tk(un)−Tk(vj)|≤η} tends to

a(x, Tk(u),∇Tk(u)χs)χ{|Tk(u)−Tk(vj)|≤η}

in (EM̄ (Ω))N while ∇Tk(un)−∇Tk(vj)χs tends weakly to ∇Tk(u)−∇Tk(vj)χs in
(LM (Ω))N for σ(ΠLM ,ΠEM̄ ).

Since a(x, Tk(un),∇Tk(un)) is bounded in (LM̄ (Ω))N there exists some hk ∈
(LM̄ (Ω))N such that (for a subsequence still denoted by un)

a(x, Tk(un),∇Tk(un)) ⇀ hk weakly in (LM̄ (Ω))N for σ(ΠLM̄ ,ΠEM ).

In view of the fact that ∇Tk(vj)χ{|Tk(un)−Tk(vj)|≤η} → ∇Tk(vj)χ{|Tk(u)−Tk(vj)|≤η}
strongly in (EM (Ω))N as n→∞ the third term of the right-hand side tends to

−
∫
{|Tk(u)−Tk(vj)|≤η}

hk∇Tk(vj)χ{|∇Tk(vj)|>s}dx.

Hence in view of the modular convergence of (vj) in V , one has

I1(n, j, s) ≤ Cη + ε(n) +
∫
{|u−Tk(vj)|≤η}∩{|u|>k}

hk+η∇Tk(vj)dx

+
∫
{|Tk(u)−Tk(vj)|≤η}

hk∇Tk(vj)χ{|∇Tk(vj)|>s}dx

−
∫
{|Tk(u)−Tk(vj)|≤η}

a(x, Tk(u),∇Tk(u)χs)[∇Tk(u)−∇Tk(vj)χs]dx

= Cη + ε(n) + ε(j) +
∫

Ω

hk∇Tk(u)χ{|∇Tk(u)|>s}dx

−
∫

Ω

a(x, Tk(u), 0)χ{|∇Tk(u)|>s}dx

Therefore,
I1(n, j, s) = Cη + ε(n, j, s) (3.6)

For what concerns I2, by letting n→∞, one has

I2(n, j, s) =
∫
{|Tk(u)−Tk(vj)|≤η}

hk[∇Tk(vj)χj,s −∇Tk(u)χs]dx+ ε(n)
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since

a(x, Tk(un),∇Tk(un)) ⇀ hk weakly in (LM̄ )N for σ(ΠLM̄ ,ΠEM )

while χ{|Tk(un)−Tk(vj)|≤η}[∇Tk(vj)χj,s −∇Tk(u)χs] approaches

χ{|Tk(u)−Tk(vj)|≤η}[∇Tk(vj)χj,s −∇Tk(u)χs]

strongly in (EM )N . By letting j →∞, and using Lebesgue theorem, then

I2(n, j, s) = ε(n, j). (3.7)

Similar tools as above, give

I3(n, j, s) = −
∫

Ω

a(x, Tk(u),∇Tk(u)χs)∇Tk(u)χsdx+ ε(n, j) (3.8)

Combining (3.6), (3.7), and (3.8), we have∫
Ωr∩{|Tk(un)−Tk(vj)|≤η}

[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

]
×

[
∇Tk(un)−∇Tk(u)

]
dx

≤ ε(n, j, s).

Therefore,

0 ≤
∫

Ωr

{[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)]}θdx

≤ C̃(meas{|Tk(un)− Tk(vj)| > η})1−θ + (meas Ω)1−θ(ε(n, j, s))θ

Which yields, by passing to the limit superior over n, j, s and η,

lim
n→∞

∫
Ωr

{[
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))

]
×

[
∇Tk(un)−∇Tk(u)

]}θ
dx = 0 .

Thus, passing to a subsequence if necessary, ∇un → ∇u a.e. in Ωr, and since r is
arbitrary,

∇un → ∇u a.e. in Ω.

By (2.2) and (2.5),∫
Ω

D ◦H−1
( |a(x, un,∇un)|

β

)
dx ≤

∫
Ω

D(|∇un|)dx ≤ C

Hence

a(x, un,∇un) ⇀ a(x, u,∇u) weakly for σ(ΠLD◦H−1ΠE
D◦H−1).

Going back to approximate equations (3.1), and using φ ∈ D(Ω) as the test function,
one has ∫

Ω

a(x, un,∇un)∇φdx = 〈fn, φ〉

in which I can pass to the limit. This completes the proof. �
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