
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 74, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS FOR SYSTEMS OF NONLINEAR
SINGULAR DIFFERENTIAL EQUATIONS

YANYAN YUAN, CHENGLONG ZHAO, YANSHENG LIU

Abstract. By constructing a special cone and using the fixed point theorem

of cone expansion and compression, this paper shows the existence of positive

solutions for two-point boundary-value problems of nonlinear singular differen-
tial systems. To illustrate the applications of our main results, some examples

are given.

1. Introduction

Recently, singular boundary value problems (SBVP for short) have been stud-
ied extensively (see [1, 3, 4, 5, 6, 7, 8, 9, 10] and references therein). Under the
superlinear effect, Wei and Zhang [8] obtained necessary and sufficient conditions
for the existence of C2[0, 1] and C3[0, 1] positive solutions for fourth-order singular
boundary value problems by using the fixed point theorem of cone expansion and
compression. Under the sublinear effect, Wei [7] obtained necessary and sufficient
conditions for the existence of positive solutions for fourth-order singular boundary
value problems by using the upper and lower solution method and the maximal
principal. However, in this paper, we will investigate the existence of positive so-
lutions of second and fourth order singular boundary value problems of nonlinear
singular differential systems. We obtain necessary and sufficient conditions for the
existence of C2[0, 1]×C[0, 1] and C3[0, 1]×C1[0, 1] positive solutions for the coupled
systems. Two examples are given to show the applications of our results.

In this article, we investigate the boundary-value problem

u(4) = f(t, u, v);

−v′′ = g(t, u, v);

u(0) = u(1) = u′′(0) = u′′(1) = 0;

v(0) = v(1) = 0,

(1.1)

where t ∈ (0, 1), f, g ∈ C[(0, 1)×[0,∞)×[0,∞), [0,∞)]; that is, f, g may be singular
at t = 0 and t = 1.
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Let

E =
{
(u, v) ∈ C2[0, 1]× C[0, 1] : u(0) = u(1) = u′′(0) = u′′(1) = 0,

v(0) = v(1) = 0
}
,

with the norm ‖(u, v)‖ = ‖u‖2 + ‖v‖0, where ‖u‖2 = maxt∈J |u′′(t)|, ‖v‖0 =
maxt∈J |v(t)|, J = [0, 1]. Then (E, ‖ · ‖) is a Banach space. In this paper, E
will be the basic space to study (1.1). Define

P =
{

(u, v) ∈ E : v(t) ≥ t(1− t)v(s), u(t) ≥ t(1− t)u(s),

u(t) ≥ −t(1− t)u′′(s)/30, u′′(t) ≤ t(1− t)u′′(s) ≤ 0 and

u(t), v(t) are nonnegative concave functions, for all t, s ∈ J
}

.

It is easy to see that P is a cone of E.
A pair (u, v) is said to be a C2[0, 1] × C[0, 1] positive solution of (1.1) if u ∈

C2[0, 1] ∩ C(4)(0, 1), v ∈ C[0, 1] ∩ C2(0, 1) satisfy (1.1) and u(t) > 0, u′′(t) ≤ 0,
v(t) > 0 for t ∈ (0, 1). In addition, if (u, v) is a C2[0, 1] × C[0, 1] positive solution
of (1.1) and both u′′′(0+), u′′′(1−), v′(0+) and v′(1−) exist, then (u, v) is said to
be a C3[0, 1]× C1[0, 1] positive solution of (1.1).

Now, we state a lemma which will be used in Section 2.

Lemma 1.1 ([1]). Let P be a cone of real Banach space E, Ω1, Ω2 be bounded open
sets of E, and θ be in Ω1 ⊂ Ω2. Suppose that A : P ∩ (Ω2 \ Ω1) → P is completely
continuous such that one of the following two conditions is satisfied:

(i) ‖Ax‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω1; ‖Ax‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω2.
(ii) ‖Ax‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω2; ‖Ax‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω1.

Then, A has a fixed point in P ∩ (Ω2 \ Ω1).

2. Main Results

Let us list some conditions to be used later.

(H1) g ∈ C[(0, 1)× [0,∞)× [0,∞), [0,∞)] and satisfy∫ 1

0

t(1− t)f(t, t(1− t), 1)dt < ∞,

∫ 1

0

t(1− t)g(t, t(1− t), 1)dt < ∞.

(H2) ∫ 1

0

f(t, t(1− t), t(1− t))dt < ∞,

∫ 1

0

g(t, t(1− t), t(1− t))dt < ∞.

(H3) f is quasi-homogeneous with respect to the last two variables, that is, there
are constants λ1, µ1, α1, β1, N1,M1, N2,M2 with 0 ≤ λ1 ≤ µ1 < +∞, 0 ≤
α1 ≤ β1 ≤ 1, µ1 + β1 < 1, 0 < N1 ≤ 1 ≤ M1, 0 < N2 ≤ 1 ≤ M2 such that
for all 0 < t < 1, u ≥ 0, v ≥ 0 satisfying
(a) cµ1f(t, u, v) ≤ f(t, cu, v) ≤ cλ1f(t, u, v), 0 < c ≤ N1;

cλ1f(t, u, v) ≤ f(t, cu, v) ≤ cµ1f(t, u, v), c ≥ M1;
(b) cβ1f(t, u, v) ≤ f(t, u, cv) ≤ cα1f(t, u, v), 0 < c ≤ N2;

cα1f(t, u, v) ≤ f(t, u, cv) ≤ cβ1f(t, u, v), c ≥ M2.
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(H4) g is quasi-homogeneous with respect to the last two variables; that is, there
are constants λ2, µ2, α2, β2, N3,M3, N4,M4 with 0 ≤ λ2 ≤ µ2 < +∞, 0 ≤
α2 ≤ β2 ≤ 1, µ2 + β2 < 1, 0 < N3 ≤ 1 ≤ M3, 0 < N4 ≤ 1 ≤ M4 such that
for all 0 < t < 1, u ≥ 0, v ≥ 0 satisfying
(a) cµ2g(t, u, v) ≤ g(t, cu, v) ≤ cλ2g(t, u, v), 0 < c ≤ N3;

cλ2g(t, u, v) ≤ g(t, cu, v) ≤ cµ2g(t, u, v), c ≥ M3;
(b) cβ2g(t, u, v) ≤ g(t, u, cv) ≤ cα2g(t, u, v), 0 < c ≤ N4;

cα2g(t, u, v) ≤ g(t, u, cv) ≤ cβ2g(t, u, v), c ≥ M4.
(H5) There exist 0 < γi < 1, ki ≥ 0(i = 1, 2) such that

f(t, u, v) ≥ k1(u + v)γ1 , g(t, u, v) ≥ k2(u + v)γ2

for any t ∈ J, (u, v) ∈ P .
The main results of this paper are as follows.

Theorem 2.1. Suppose (H3)-(H5) hold. Then (1.1) has a C2[0, 1]×C[0, 1] positive
solution (u, v), if and only if (H1) holds.

Theorem 2.2. Suppose (H3)-(H5) hold. Then (1.1) has a C3[0, 1]×C1[0, 1] positive
solution (u, v), if and only if (H2) holds.

To prove Theorems 2.1 and 2.2, we need some preliminary lemmas.

Lemma 2.3. The functions u ∈ C2[0, 1] ∩ C(4)(0, 1), v ∈ C[0, 1] ∩ C2(0, 1) form
a solution to (1.1) if and only if (u, v) is a fixed point of the integral operator
A(u, v) = (A1(u, v), A2(u, v)) in C2[0, 1]× C[0, 1], where

A1(u, v)(t) =
∫ 1

0

G(t, s)
∫ 1

0

G(s, τ)f(τ, u(τ), v(τ))dτds,

A2(u, v)(t) =
∫ 1

0

G(t, s)g(s, u(s), v(s))ds,

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1;
s(1− t), 0 ≤ s ≤ t ≤ 1,

(2.1)

The proof of the above lemma is obvious; we omit it.

Lemma 2.4. Assume that (H1), (H3), (H4) hold. Then A : P → P is a completely
continuous operator.

Proof. First of all, we show that A(P ) ⊂ P . Note that G(t, s) ≥ t(1− t)G(s, τ) for
all τ, s ∈ J . Then

A1(u, v)(t) =
∫ 1

0

G(t, τ)
∫ 1

0

G(τ, ξ)f(ξ, u(ξ), v(ξ))dξdτ

≥ t(1− t)
∫ 1

0

G(s, τ)
∫ 1

0

G(τ, ξ)f(ξ, u(ξ), v(ξ))dξdτ

= t(1− t)A1(u, v)(s), ∀t, s ∈ J, (u, v) ∈ P.

(A1(u, v))′′(t) = −
∫ 1

0

G(t, τ)f(τ, u(τ), v(τ))dτ

≤ −t(1− t)
∫ 1

0

G(s, τ)f(τ, u(τ), v(τ))dτ
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= t(1− t)(A1(u, v))′′(s) ≤ 0, ∀t, s ∈ J, (u, v) ∈ P.

A2(u, v)(t) =
∫ 1

0

G(t, s)g(s, u(s), v(s))ds

≥ t(1− t)
∫ 1

0

G(s, τ)g(τ, u(τ), v(τ))dτ

= t(1− t)A2(u, v)(s), ∀t, s ∈ J, (u, v) ∈ P.

(A2(u, v))′′(t) = −g(t, u(t), v(t)) ≤ 0, ∀t ∈ J, (u, v) ∈ P.

It is easy to see that G(t, s) ≥ s(1− s)t(1− t). Then

A1(u, v)(t) = −
∫ 1

0

G(t, τ)(A1(u, v))′′(τ)dτ

≥ −
∫ 1

0

G(t, τ)τ(1− τ)(A1(u, v))′′(s)dτ

≥ −t(1− t)
∫ 1

0

τ2(1− τ)2(A1(u, v))′′(s)dτ

= − 1
30

t(1− t)(A1(u, v))′′(s), ∀t, s ∈ J, (u, v) ∈ P.

Therefore A(P ) ⊂ P .
Next we show that A is bounded. Suppose V is an any bounded set of P , then

there exists a M > 0 such that ‖(u, v)‖ ≤ M for any (u, v) ∈ V . It follows from
u(t) =

∫ 1

0
G(t, s)(−u′′(s))ds that u(t) ≤ 1

2 t(1−t)‖u‖2. On the other hand, it follows
from u(t) ≥ t(1− t)u(s), for all t, s ∈ J that u(t) ≥ t(1− t)‖u‖0. Hence

t(1− t)‖u‖0 ≤ u(t) ≤ 1
2
t(1− t)‖u‖2, t ∈ J. (2.2)

Choose positive numbers c1 ≥ max{M1,
M

2N1
} and c2 ≥ max{M2,

M
N2
}. For any

(u, v) ∈ V , t ∈ J , we can get

|(A1(u, v))′′(t)| =
∫ 1

0

G(t, s)f(s, u(s), v(s))ds

≤
∫ 1

0

s(1− s)f(s, c1
u(s)

c1s(1− s)
s(1− s), c2

v(s)
c2

)ds

≤ cµ1
1 cβ1

2

∫ 1

0

(
u(s)

c1s(1− s)
)λ1(

v(s)
c2

)α1s(1− s)f(s, s(1− s), 1)ds

≤ cµ1
1 (

1
2c1

)λ1‖u‖2
λ1cβ1

2 ‖v‖α1
0 c−α1

2

∫ 1

0

s(1− s)f(s, s(1− s), 1)ds

≤ 2−λ1cµ1−λ1
1 cβ1−α1

2 Mλ1+α1

∫ 1

0

s(1− s)f(s, s(1− s), 1)ds < +∞.

Let c3 ≥ max{M3,
M

2N3
} and c4 ≥ max{M4,

M
N4
}. For any (u, v) ∈ V , t ∈ J , we

have

|A2(u, v)(t)| =
∫ 1

0

G(t, s)g(s, u(s), v(s))ds

≤
∫ 1

0

s(1− s)g(s, c3
u(s)

c3s(1− s)
s(1− s), c4

v(s)
c4

)ds
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≤ 2−λ2cµ2−λ2
3 cβ2−α2

4 Mλ2+α2

∫ 1

0

s(1− s)g(s, s(1− s), 1)ds < +∞.

Consequently, A is bounded on P .
Thirdly, we show that AV is equicontinuous for arbitrary bounded set V ⊂ P .

Choose positive numbers c1 ≥ max{M1,
M

2N1
}, c2 ≥ max{M2,

M
N2
}, it follows from

A1(u, v)(t) =
∫ 1

0

G(t, s)
∫ 1

0

G(s, τ)f(τ, u(τ), v(τ))dτds

that

(A1(u, v))′′(t) = −
∫ 1

0

G(t, s)f(s, u(s), v(s))ds

= −
∫ t

0

s(1− t)f(s, u(s), v(s))ds−
∫ 1

t

t(1− s)f(s, u(s), v(s))ds,

(A1(u, v))′′′(t) =
∫ t

0

sf(s, u(s), v(s))ds−
∫ 1

t

(1− s)f(s, u(s), v(s))ds

≤
∫ t

0

sf(s, u(s), v(s))ds +
∫ 1

t

(1− s)f(s, u(s), v(s))ds

≤ c0

( ∫ t

0

sf(s, s(1− s), 1)ds +
∫ 1

t

(1− s)f(s, s(1− s), 1)ds
)
,

where c0 = 2−λ1cµ1−λ1
1 cβ1−α1

2 Mλ1+α1 . Assume

H(t) = c0

( ∫ t

0

sf(s, s(1− s), 1)ds +
∫ 1

t

(1− s)f(s, s(1− s), 1)ds
)
.

So we can obtain∫ 1

0

H(t)dt = c0

( ∫ 1

0

dt

∫ t

0

sf(s, s(1− s), 1)ds

+
∫ 1

0

dt

∫ 1

t

(1− s)f(s, s(1− s), 1)ds
)

= 2c0

∫ 1

0

s(1− s)f(s, s(1− s), 1)ds < +∞.

(2.3)

Thus for any given t1, t2 ∈ J with t1 ≤ t2 and all (u, v) ∈ V , we obtain

‖(A1(u, v))′′(t2)− (A1(u, v))′′(t1)‖ = |
∫ t2

t1

A1(u, v))′′′(t)dt| ≤
∫ t2

t1

H(t)dt.

From this inequality, (2.3) and the absolute continuity of integral, it follows that
A1V is equicontinuous on J .

On the other hand

|(A2(u, v))′(t)| = −
∫ t

0

sg(s, u(s), v(s))ds +
∫ 1

t

(1− s)g(s, u(s), v(s))ds

≤
∫ t

0

sg(s, u(s), v(s))ds +
∫ 1

t

(1− s)g(s, u(s), v(s))ds
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Let G(t) =
∫ t

0
sg(s, u(s), v(s))ds +

∫ 1

t
(1 − s)g(s, u(s), v(s))ds, c3 ≥ max{M3,

M
2N3

}
and c4 ≥ max{M4,

M
N4
}, then∫ 1

0

G(t)dt = 2
∫ 1

0

s(1− s)g(s, u(s), v(s))ds

≤ 21−λ2cµ2−λ2
3 cβ2−α2

4 Mλ2+α2

∫ 1

0

s(1− s)g(s, s(1− s), 1)ds < +∞.

(2.4)
Thus for any given t1, t2 ∈ J with t1 ≤ t2 and all (u, v) ∈ V , we obtain

‖A2(u, v)(t2)−A2(u, v)(t1)‖ =
∣∣ ∫ t2

t1

(A2(u, v))′(t)dt
∣∣ ≤ ∫ t2

t1

G(t)dt.

From this inequality, (2.4), and the absolute continuity of integral, it follows that
A2V is equicontinuous on J . Therefore AV are equicontinuous on J . It follows
from the Ascoli-Arzela theorem that A1V and A2V is relatively compact.

Finally, we show that A : P → P is a continuous operator. Notice that A is
continuous on C2[0, 1] × C[0, 1] if and only if A1 is continuous on C2[0, 1] and A2

is continuous on C[0, 1].
Suppose {(un, vn)} ⊂ P, (u, v) ∈ P and ‖un−u‖2 → 0, ‖vn−v‖0 → 0 as n →∞.

It follows from (2.2) that ‖u‖0 ≤ 1
2‖u‖2. So we can get ‖un − u‖0 → 0(n → ∞)

from ‖un − u‖2 → 0(n → ∞). Then un(t) → u(t) and vn(t) → v(t) as n → ∞
uniformly with respect to t ∈ J . Therefore

|(A1(un, vn))′′(t)− (A1(u, v))′′(t)|

=
∣∣ ∫ 1

0

G(t, s)f(s, un(s), vn(s))ds−
∫ 1

0

G(t, s)f(s, u(s), v(s))ds
∣∣

≤
∫ 1

0

G(t, s)
∣∣f(s, un(s), vn(s))− f(s, u(s), v(s))

∣∣ds.

From (H1), (H3) and the Lebesgue dominated convergence theorem, it follows
that

|(A1(un, vn))′′(t)− (A1(u, v))′′(t)| → 0 as n →∞.

Hence one can conclude that

‖A1(un, vn)−A1(u, v)‖2 → 0 as n →∞.

In fact, if this is not true, then there exist ε0 and {uni
} ⊂ {un}, {vni

} ⊂ {vn} such
that ‖A1(uni

, vni
)− A1(u, v)‖2 ≥ ε0 (i = 1, 2 . . . ). Since {A1(un, vn)} is relatively

compact, there exists a sequence of {A1(un, vn)} which convergence in C2[0, 1] to
some y. Not loss of generality, we may assume that {A1(uni

, vni
)} itself converge

to y, then y = A1(u, v). This is a contradiction. Consequently A1 is continuous.
In the same way, we can get A2 is continuous, too. This completes the proof. �

Lemma 2.5 ([2]). Suppose (u, v) ∈ P and µ ∈ (0, 1
2 ). Then u(t) + v(t) ≥ µ(1 −

µ)(‖u‖0 + ‖v‖0), t ∈ [µ, 1− µ].

The proof of the above lemma is obvious; we omit it.
In the following we prove Theorem 2.1.
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Proof. Sufficiency. From Lemma 2.5, we can choose µ = 1
4 . Then u(t) + v(t) ≥

3
16 (‖u‖0 + ‖v‖0), t ∈ [ 14 , 3

4 ]. First of all, we prove

‖A(u, v)‖ ≥ ‖(u, v)‖, ∀(u, v) ∈ ∂Pr, (2.5)

where Pr =
{
‖(u, v)‖ < r

}
,

r ≤ min
{

2N1, N2, 2N3, N4,
( k1

2(160)γ1

∫ 3/4

1/4

[s(1− s)]1+γ1ds
) 1

1−γ1

,

( k2

2(160)γ2

∫ 3/4

1/4

[s(1− s)]1+γ2ds
) 1

1−γ2 }
.

From the definition of P , we know that ‖u‖0 ≥ 1
30 t(1−t)‖u‖2 for any (u, v) ∈ P, t ∈

J . By condition (H5) and Lemma 2.5, we obtain

−(A1(u, v))′′(t) =
∫ 1

0

G(t, s)f(s, u(s), v(s))ds

≥ 1
4

∫ 3/4

1/4

s(1− s)f(s, u(s), v(s))ds

≥ 1
4

∫ 3/4

1/4

k1s(1− s)(u(s) + v(s))γ1ds

≥ k1

4

∫ 3/4

1/4

s(1− s)(
3
16

(‖u‖0 + ‖v‖0))γ1ds

≥ k1

4(160)γ1
rγ1

∫ 3/4

1/4

[s(1− s)]1+γ1ds

≥ r

2
=
‖(u, v)‖

2
, ∀t ∈ J, (u, v) ∈ ∂Pr.

Consequently

‖A1(u, v)‖2 ≥
‖(u, v)‖

2
, ∀(u, v) ∈ ∂Pr.

For any t ∈ J , (u, v) ∈ ∂Pr, by virtue of (H5) and Lemma 2.5, one can see

A2(u, v)(t) =
∫ 1

0

G(t, s)g(s, u(s), v(s))ds

≥ 1
4

∫ 3/4

1/4

s(1− s))g(s, u(s), v(s))ds

≥ k2

4

∫ 3/4

1/4

s(1− s)(
3
16

(‖u‖0 + ‖v‖0))γ2ds

≥ k2

4(160)γ2
rγ2

∫ 3/4

1/4

[s(1− s)]1+γ2ds

≥ r

2
=
‖(u, v)‖

2
, ∀t ∈ J, (u, v) ∈ ∂Pr.

Therefore, ‖A2(u, v)‖0 ≥ ‖(u,v)‖
2 , for all (u, v) ∈ ∂Pr. Consequently, (2.5) holds.

Next we claim that

‖A(u, v)‖ ≤ ‖(u, v)‖,∀(u, v) ∈ ∂PR, (2.6)
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where

R ≥ max
{

2N1M1, M2N2, 2N3M3, M4N4,(
21−µ1Nλ1−µ1

1 Nα1−β1
2

∫ 1

0

s(1− s)f(s, s(1− s), 1)ds
) 1

1−(µ1+β1) ,

(
21−µ2Nλ2−µ2

3 Nα2−β2
4

∫ 1

0

s(1− s)g(s, s(1− s), 1)ds
) 1

1−(µ2+β2)
}

,

PR =
{
‖(u, v)‖ < R

}
.

Let c1 = R
2N1

and c2 = N2
R . Then for any (u, v) ∈ ∂PR, by virtue of (H3), we

have

−(A1(u, v))′′(t) =
∫ 1

0

G(t, s)f(s, u(s), v(s))ds

≤
∫ 1

0

s(1− s)f(s, u(s), v(s))ds

=
∫ 1

0

s(1− s)f(s, c1
u(s)

c1s(1− s)
s(1− s),

c2v(s)
c2

)ds

≤
∫ 1

0

s(1− s)cµ1
1 (

u(s)
c1s(1− s)

)
λ1

(
1
c2

)
β1

(c2v(s))α1f(s, s(1− s), 1)ds

≤ 2−λ1cµ1−λ1
1 cα1−β1

2 Rλ1+α1

∫ 1

0

s(1− s)f(s, s(1− s), 1)ds

= 2−µ1Nλ1−µ1
1 Nα1−β1

2 Rµ1+β1

∫ 1

0

s(1− s)f(s, s(1− s), 1)ds

≤ R

2
=
‖(u, v)‖

2
.

Therefore, for any (u, v) ∈ ∂PR, we have

‖A1(u, v)‖2 ≤
‖(u, v)‖

2
.

For any (u, v) ∈ ∂PR, t ∈ J , by virtue of (H4), one can also see

A2(u, v)(t) =
∫ 1

0

G(t, s)g(s, u(s), v(s))ds

≤
∫ 1

0

s(1− s)g(s, u(s), v(s))ds

≤ 2−µ2Nλ2−µ2
3 Nα2−β2

4 Rµ2+β2

∫ 1

0

s(1− s)g(s, s(1− s), 1)ds

≤ R

2
=
‖(u, v)‖

2
.

Then for any (u, v) ∈ ∂PR, we have

‖A2(u, v)‖0 ≤
‖(u, v)‖

2
.

Consequently, (2.6) holds. By Lemma 1.1 and Lemma 2.4, we obtain that A has
a fixed point (u, v) in PR \ Pr and satisfies u′′(t) < 0, u(t) > 0, v(t) > 0, for all
t ∈ (0, 1).
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Necessity. Let u ∈ C2[0, 1]∩C(4)(0, 1), v ∈ C[0, 1]∩C2(0, 1) be a positive solution
of (1.1). It follows from u(0) = u(1) = 0 and u′′(t) ≤ 0 for t ∈ J that there exist
0 < m1 < 1 < m2 such that m1t(1− t) ≤ u(t) ≤ m2t(1− t). In the same way, there
also exist 0 < n1 < 1 < n2 such that n1t(1 − t) ≤ v(t) ≤ n2t(1 − t). There exists
t0 ∈ (0, 1) such that v′(t0) = 0. This together with v′′(t) ≤ 0 for t ∈ (0, 1) yields
that v′(t) ≥ 0 as t ∈ (0, t0) and v′(t) ≤ 0 as t ∈ (t0, 1). Choose positive numbers
c3 ≤ min{N3,

1
m2M3

}, c4 ≤ min{N4,
1

M4n2
}. Then

g(t, t(1− t), 1) = g(t, c3
t(1− t)
c3u(t)

u(t), c4
1

c4v(t)
v(t))

≤ cλ2
3 (

t(1− t)
c3u(t)

)
µ2

cα2
4 (

1
c4v(t)

)
β2

g(t, u(t), v(t))

≤ cλ2
3 (

1
c3m1

)
µ2

cα2−β2
4 (

1
v(t)

)
β2

g(t, u(t), v(t))

= cλ2−µ2
3 cα2−β2

4 m−µ2
1 (v(t))−β2g(t, u(t), v(t)).

Namely,

(v(t))β2g(t, t(1− t), 1) ≤ cλ2−µ2
3 cα2−β2

4 m−µ2
1 g(t, u(t), v(t)). (2.7)

Hence, integrate (2.7) from t0 to t to obtain∫ t

t0

(v(s))β2g(s, s(1− s), 1)ds ≤ cλ2−µ2
3 cα2−β2

4 m−µ2
1

∫ t

t0

g(s, u(s), v(s))ds

= cλ2−µ2
3 cα2−β2

4 m−µ2
1 v′(t).

Since v(t) is decreasing on [t0, 1], we get

(v(t))β2

∫ t

t0

g(s, s(1− s), 1)ds ≤ −cλ2−µ2
3 cα2−β2

4 m−µ2
1 v′(t);

namely, ∫ t

t0

g(s, s(1− s), 1)ds ≤ −cλ2−µ2
3 cα2−β2

4 m−µ2
1

v′(t)

(v(t))β2
. (2.8)

Note that β2 < 1, then integrate (2.8) from t0 to 1 to have∫ 1

t0

dt

∫ t

t0

g(s, s(1− s), 1)ds ≤ −cλ2−µ2
3 cα2−β2

4 m−µ2
1

∫ 1

t0

v′(t)

(v(t))β2
dt.

Therefore,∫ 1

t0

(1− s)g(s, s(1− s), 1)ds ≤ cλ2−µ2
3 cα2−β2

4 m−µ2
1 (1− β2)

−1(v(t0))
1−β2 < ∞.

On the other hand, we can also prove∫ t0

0

sg(s, s(1− s), 1)ds < ∞.

Thus ∫ 1

0

s(1− s)g(s, s(1− s), 1)ds < ∞.
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Next, we prove that ∫ 1

0

s(1− s)f(s, s(1− s), 1)ds < ∞.

Let c1 ≤ min{N1,
1

m2M1
}, c2 ≤ min{N2,

1
M2n2

}, then

f(t, t(1− t), 1) = f(t, c1
t(1− t)
c1u(t)

u(t), c2
1

c2v(t)
v(t))

≤ cλ1
1 (

t(1− t)
c1u(t)

)
µ1

cα1
2 (

1
c2v(t)

)
β1

f(t, u(t), v(t))

≤ cλ1
1 (

1
c1m1

)
µ1

cα1−β1
2 (

1
v(t)

)
β1

f(t, u(t), v(t))

= cλ1−µ1
1 cα1−β1

2 m−µ1
1 (v(t))−β1f(t, u(t), v(t)).

There exists t0 ∈ (0, 1) such that u′′′(t0) = 0 from u′′(0) = u′′(1) = 0. This together
with u(4) ≥ 0 for t0 ∈ (0, 1) yields that u′′′(t) ≥ 0 as t ∈ (0, t0) and u′′′(t) ≤ 0 as
t ∈ (t0, 1). Integrate u(4)(t) = f(t, u(t), v(t)) from t to t0, we can get

−u(3)(t) =
∫ t0

t

f(s, u(s), v(s))ds, t ∈ (0, t0).

However,∫ t0

0

tf(t, t(1− t), 1)dt =
∫ t0

0

dt

∫ t0

t

f(s, s(1− s), 1)ds

≤
∫ t0

0

∫ t0

t

cλ1−µ1
1 cα1−β1

2 m−µ1
1 (v(s))−β1f(s, u(s), v(s))ds.

On the other hand

v(t) =
∫ 1

0

G(t, s)g(s, u(s), v(s))ds

≥ 1
4

∫ 3/4

1/4

s(1− s)g(s, s(1− s)c5
u(s)

c5s(1− s)
, c6

v(s)
c6

)ds.

Let c5 ≥ max{M1,
m2
N1
}, c6 ≥ max{M2,

‖v‖0
N2

}. Then

v(t) ≥ 1
4
cλ2−µ2
5 cα2−β2

6 m1
µ2

∫ 3/4

1/4

s(1− s)((v(s))β2g(s, s(1− s), 1)ds.

However, one can see that v(t) ≥ 1
16‖v‖0 as t ∈ [ 14 , 3

4 ]. Hence, for t ∈ J ,

v(t) ≥ 2−(2+4β2)cλ2−µ2
5 cα2−β2

6 m1
µ2‖v‖β2

0

∫ 3/4

1/4

s(1− s)g(s, s(1− s), 1)ds.

Let

k0 = cλ1−µ1
1 cα1−β1

2 m1
−µ1

(
2−(2+4β2)cα2−µ2

5 cα2−β2
6 m1

µ2‖v‖β2
0

×
∫ 3/4

1/4

s(1− s)g(s, s(1− s), 1)ds
)−β1

.



EJDE-2008/74 POSITIVE SOLUTIONS 11

Thus∫ t0

0

tf(t, t(1− t), 1)dt ≤ k0

∫ t0

0

dt

∫ t0

t

f(s, u(s), v(s))ds = k0(−u′′(t0)) < ∞.

In the same way, we can also prove∫ 1

t0

(1− t)f(t, t(1− t), 1)dt < +∞.

Hence ∫ 1

0

t(1− t)f(t, t(1− t), 1)dt < +∞.

�

Proof of Theorem 2.2. Sufficiency. First of all, we prove that∫ 1

0

f(t, t(1− t), t(1− t))dt < +∞

implies ∫ 1

0

t(1− t)f(t, t(1− t), 1)dt < +∞.

Choose positive number c ≥ max{M2,
1

4N2
}. Then

f(t, t(1− t), t(1− t)) = f(t, t(1− t), c
t(1− t)

c
)

≥ cα1−β1(t(1− t))β1f(t, t(1− t), 1)

≥ cα1−β1t(1− t)f(t, t(1− t), 1).

Consequently, we can get∫ 1

0

f(t, t(1− t), t(1− t))dt ≥ cα1−β1

∫ 1

0

t(1− t)f(t, t(1− t), 1)dt,

namely, ∫ 1

0

t(1− t)f(t, t(1− t), 1)dt < +∞.

On the other hand, we can also prove that∫ 1

0

g(t, t(1− t), t(1− t))dt < +∞.

This implies ∫ 1

0

t(1− t)g(t, t(1− t), 1)dt < +∞.

From above inequalities, we know that (1.1) exists a C2[0, 1] × C[0, 1] positive
solution (u, v). Therefore it suffices to show that u′′′(0+), u′′′(1−), v′(0+) and v′(1−)
exist. The same reason as the proof of Theorem 2.1 of necessity asserts that there
exist 0 < m1 < 1 < m2 and 0 < n1 < 1 < n2 satisfying m1t(1 − t) ≤ u(t) ≤
m2t(1− t) and n1t(1− t) ≤ v(t) ≤ n2t(1− t), t ∈ J .

Let c1 ≥ max{M1,
m2
N1
} and c2 ≥ max{M2,

n2
N2
}, then we have∫ 1

0

|u(4)(t)|dt =
∫ 1

0

f(t, u(t), v(t))dt
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=
∫ 1

0

f(t, c1
u(t)

c1t(1− t)
t(1− t), c2

v(t)
c2t(1− t)

t(1− t))dt

≤ cµ1
1 (

u(t)
c1t(1− t)

)
λ1

cβ1
2 (

v(t)
c2t(1− t)

)
α1 ∫ 1

0

f(t, t(1− t), t(1− t))dt

≤ cµ1−λ1
1 cβ1−α1

2 m2
λ1n2

α1

∫ 1

0

f(t, t(1− t), t(1− t))dt < +∞.

This guarantees u′′′(0+) and u′′′(1−) exist.
On the other hand, let c3 ≥ max{M3,

m2
N3
} and c4 ≥ max{M4,

n2
N4
}, then∫ 1

0

| − v′′(t)|dt =
∫ 1

0

g(t, u(t), v(t))dt

=
∫ 1

0

g(t, c3
u(t)

c3t(1− t)
t(1− t), c4

v(t)
c4t(1− t)

t(1− t))dt

≤ cµ2−λ2
3 cβ2−α2

4 m2
λ2n2

α2

∫ 1

0

g(t, t(1− t), t(1− t))dt < +∞.

This means that v′(0+) and v′(1−) exist.
Necessity. Let (u, v) be a C3[0, 1]× C1[0, 1] positive solution of (1.1). The same
reason as the beginning of the proof of sufficiency asserts that there exist 0 <
m1 < 1 < m2 and 0 < n1 < 1 < n2 satisfying m1t(1 − t) ≤ u(t) ≤ m2t(1 − t)
and n1t(1 − t) ≤ v(t) ≤ n2t(1 − t), t ∈ J . Suppose c1 ≤ min{N1,

1
M1m2

}, c2 ≤
min{N2,

1
M2n2

}, c3 ≤ min{N3,
1

M3m2
} and c4 ≤ min{N4,

1
M4n2

}. Then we have

f(t, t(1− t), t(1− t)) = f(t, c1
t(1− t)
c1u(t)

u(t), c2
t(1− t)
c2v(t)

v(t))

≤ c1
λ1(

t(1− t

c1u(t)
)
µ1

c2
α1(

t(1− t

c1v(t)
)
β1

f(t, u(t), v(t))

≤ c1
λ1−µ1c2

α1−β1m1
−µ1n1

−β1f(t, u(t), v(t)).

Consequently,∫ 1

0

f(t, t(1− t), t(1− t))dt ≤ c1
λ1−µ1c2

α1−β1m1
−µ1n1

−β1 [u′′′(1−)−u′′′(0+)] < +∞.

On the other hand, we can also prove∫ 1

0

g(t, t(1− t), t(1− t))dt ≤ c3
λ2−µ2c4

α2−β2m1
−µ2n1

−β2 [v′(1−)− v′(0+)] < +∞.

Therefore, our conclusion follows. �

In the following we give some examples to illustrate the theorems obtained in
Section 2.

Example 2.6. Consider (1.1) with

f(t, u, v) = p(t)u10v1/3 + (u + v)1/3, g(t, u, v) = a(t)u2v2/5 + (u + v)2/5,

where p, a ∈ C[(0, 1), R+] and∫ 1

0

[p(t)(t(1− t))11 + (t(1− t))(t(1− t) + 1)1/3]dt < +∞,
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0

[a(t)(t(1− t))3 + (t(1− t))(t(1− t) + 1)2/5]dt < +∞.

It is obvious that f, g satisfy (H3)-(H5). So it is easy to see, by Theorem 2.1, that
(1.1) has a C2[0, 1]× C[0, 1] positive solution.

Example 2.7. In (1.1), let

f(t, u, v) = q(t)u3v1/4 + (u + v)1/4, g(t, u, v) = e(t)u3v2/3 + (u + v)2/3,

where q, e ∈ C[(0, 1), R+] and∫ 1

0

[q(t)(t(1− t))13/4 + (2t(1− t))1/4]dt < +∞,∫ 1

0

[e(t)(t(1− t))11/3 + (2t(1− t))2/3]dt < +∞.

It is obvious that f, g satisfy (H3)-(H5). So it is easy to see, by Theorem 2.2, that
(1.1) has a C3[0, 1]× C1[0, 1] positive solution.

Acknowledgements. The authors are grateful to the anonymous referees for their
helpful comments.
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