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POWER SERIES SOLUTION FOR THE MODIFIED KDV
EQUATION

TU NGUYEN

ABSTRACT. We use the method developed by Christ [3] to prove local well-
posedness of a modified Korteweg de Vries equation in FL*®P spaces.

1. INTRODUCTION
The modified Korteweg de Vries (mKdV) equation on a torus T has the form
Oyu + 8§u +uld,u=0

"o 0) — (1.1)

where (z,t) € T X R, u is a real-valued function. If u is a smooth solution of (1.1),
then |lu(:,t)||z2(r) = lluol|z2¢ry for all ¢; therefore, u(x,t) = u(z + %Huoﬂizmt,t)
is a solution of

1
3 2 _ 2 _
Oru+ 0ou + (u o /Tu (m,t)dm)@zu 0
u(-,0) = ug

Thus, and are essentially equivalent. Using Fourier restriction norm
method, Bourgain [I] proved that is locally well-posed for initial data ug €
H*(T) when s > 1/2, and the solution map is uniformly continuous. In [2], he
also showed that the solution map is not C? in H*(T) when s < 1/2. Takaoka and
Tsutsumi [I0] proved local-wellposedness of when 1/2 > s > 3/8, and they
showed that solution map is not uniformly continuous for this range of s. For (L.1]),
Kappeler and Topalov [§] used inverse scattering method to show wellposedness
when s > 0 and Christ, Colliander and Tao [4] showed that uniformly continuous
dependence on the initial data does not hold when s < 1/2. Thus, there is a gap
between known local well-posedness results and the space H 1/ 2(T) suggested by
the standard scaling argument.

Recently, Griinrock and Vega [7] showed local well-posedness of the mKdV equa-
tion on R with initial data in

H{(R) = {f € D'(R): [|fll gz = ()" F Ol o < o0},

(1.2)
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when 2 > r > 1 and s > § — 5. (for r > 2, this was obtained by Griinrock
[5]). This is an extension of the result of Kenig, Ponce and Vega [9] that local-
wellposedness holds in H*(R) when s > 1/4. Furthermore, as H\g scales like H?
with 0 = s + % - %, this result covers spaces that have scaling exponent 7%+.

There is also a related recent work of Grinrock and Herr [6] on the derivative
nonlinear Schrédinger equation on T. Both [7] and [6] used a version of Bourgain’s
method.

In this paper, we apply the new method of solution developed by Christ [3] to
investigate the local well-posedness of with initial data in

FL(T) = {f € D'(T) : || fllzror == 1()* F()liw < o0}

Let B(0, R) be the ball of radius R centered at 0 in FL*P(T). Our main result is
the following.

Theorem 1.1. Suppose s > 1/2, 1 < p < oo and p'(s+1/4) > 1. Let W be the
solution map for smooth initial data of (L.2)). Then for any R > 0 there is T > 0

such that the solution map W extends to a uniformly continuous map from B(0, R)
to C([0,T], FL*P(T)).

We note that the FL*P(T) spaces that are covered by Theorem 1.1 have scaling
index i+. The restriction s > 1/2 is due to the presence of the derivative in the
nonlinear term, and is only used to bound the operator S in section 3. The same
restriction on s is also required in the work on the derivative nonlinear Schrédinger
equation on T by Griinrock and Herr [6]. We believe that the range of p in Theorem
1.1 is not sharp.

Concerning , we have the following result.

Corollary 1.2. Suppose s > 1/2, 1 <p < oo and p'(s+1/4) > 1. Let W be the
solution map for smooth initial data of (L.1). Then for any R > 0 there is T > 0

such that for any ¢ > 0, the solution map W extends to a uniformly continuous
map from B(0,R) N{y: ||¢|lr2z = ¢} € FL*P(T) to C([0,T], FL*P(T)).

As in [3], the solution map W obtained in Theorem 1.1 gives a weak solution
of in the following sense. Let Ty be defined by Tyu = (x—n,nu)". Let
Nu = (u? — 5= [pu?(z,t)dz) yu be the limit in C([0,7],D'(T)) of N(Tnu) as
N — oo, provided it exists.

Proposition 1.3. Let s and p be as in Theorem 1.1. Let p € FL*P andu := Wy €
C([0,T),FL5P). Then Nu exists and u satisfies (1.2)) in the sense of distribution
in (0,T) x T.

To prove these results, we formally expand the solution map into a sum of
multilinear operators. These multilinear operators are described in the section 2.
Then we will show that if u(-,0) € FL*P then the sum of these operators converges
in FL*P for small time ¢, when s and p satisfy the conditions of Theorem 1.1.
Furthermore, this gives a weak solution of , justifying our formal derivation.



EJDE-2008/71 POWER SERIES SOLUTION 3

2. MULTILINEAR OPERATORS

We rewrite (1.2) as a system of ordinary differential equations of the spatial
Fourier series of u (see [I0, formula (1.9)], and [I, Lemma 8.16]).

di(n,t)

T in3a(n,t)
=—i a(ny, t)a(ng, t)ngt(ns, t) +1i Yy d(ng, t)a(—nqy,t)na(n,t)
n1+n22+:n3:n ; (21)

_m STl tya(ng, tya(ns, t) + ind(n, tya(—n, t)i(n, ),
nit+na+ng=n
where the star means the sum is taken over the triples satisfying n; # n, j = 1,2, 3.
We note that these are precisely the triples with o(ny,ns,n3) # 0.
Let a(n,t) = e~™"ta(n,t), then a, () satisfy

d t ] * _
a(CZ; ) __m Z e’bo(nl,nz,n?,)ta(nl,t)a(ng,t)a(n3,t)

n1+na+nz=n
+ina(n, t)a(—n,t)a(n,t),
where
o(ni,ng,n3) = n3 +n3 +nj — (ng +ng +n3)> = =3(n1 + na)(ng + nz)(nz +ny).
Or, in integral form,

. t *
ant)=aln,0) =3 [ 3 el sja(na, s)ang, o)ds
0 ni+ns+nz=n (2.2)

t
+ m/ la(n, s)[>a(n, s)ds.
0

If, a is sufficiently nice, say a € C([0,7T7],1') (which is the case if u € C([0, T], H*(T))
for large s) then we can exchange the order of the integration and summation to
obtain

. * t
a(nﬂt) = a(ﬂ/’()) _ % Z / eia(nlanzms)sa(nl’ s)a(ng, s)a(ng” s)ds
ni+nzt+nz=n 0 (23)

t
+ m/ la(n, s)[>a(n, s)ds.
0

Replacing the a(nj, s) in the right hand side by their equations obtained using (2.3,
we get

*

. t
a(n,t) = a(n,0) — % Z a(ni,0)a(nz, 0)a(ns, 0)/ eio(namz.na)s g
0

ni+nztnz=n

¢
+in|a(n,0)\2a(n,0)/ ds + additional terms
0 (2.4)

n i a(nl,O)a(ng,O)a(ng,O) (eia(nl,ng,ng)t _ 1)

=a(n,0) — =
3 3 b= a(nl,ng,ng)

+ int|a(n,0)|?a(n,0) + additional terms
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The additional terms are those which depend not only on a(-,0). An example of
the additional terms is

_ % Z CL(TLl, O)CL(TLQ, 0) Z / io(ni,na, ng)s/ io(my,ma,m3)s’
ni+nz+nzy=n mi+mat+ms=ns

x a(my, s’ )a(ms, s")a(ms, s')ds'ds

Then we can again use for each appearance of a(m,-) in the additional terms,
and obtain more and more complicated additional terms. We refer to section 2 of
[3] for more detailed description of these additional terms. Continuing this process
indefinitely, we get a formal expansion of a(n,t) as a sum of multilinear operators
of a(-,0).

We will now describe these operators and then show that their sum converges.
Again, we refer to section 3 of [3] for more detailed explanations. Each of our
multilinear operators will be associated to a tree, which has the property that each
of its node has either zero or three children. We will only consider trees with this
property. If a node v of T" has three children, they will be denoted by v1, ve, v3. We
denote by T° the set of non-terminal nodes of T, and T the set of terminal nodes
of T. Clearly, if |T| = 3k + 1 then |T°| = k and |T°°| = 2k + 1.

Definition 2.1. Let T be a tree. Then J(T) is the set of 5 € ZT such that if
v € T° then

Jv = Juy + Jug + Juss
and either j,, # j, for all 4, or j,, = —Ju, = Jus = ju. We will denote by v(T') be
the root of T and j(T) = j(v(T)). For j € J(T) and v € T°,

o(j,v) := o (j(v1),7(v2),j(vs)).
Also define
R(T7t)={S€RIOZ if v <w then 0 < s, < 5, < t}.
Using the above definitions, we can rewrite as

a(n,t) = a(n,0) Z wr Z na(j(v(T)1),0)a(j(v(T)2),0)

IT|=4  jeJ(T),j(T)=n

x a(j(v(T)s),0) / ¢(4,v(T), s)ds + additional terms,
R(T,b)

here ¢(j,v,s) = €°U¥) and wr is a constant with |wp| < 1.
Continuing this replacement process, it leads to

a(na t) = a(nv 0) + Z wr Z H Ju H ]1)7 / C(j7 S)ds
IT|<3k+1  JET(T)j(T)=nu€T® vET> R(T't)
+ additional terms

where

C(j, S) = H C(j,U, S’U)
veT0
We will show that the series

a0+ Ywr S [T I] ain0) [ clio)ds
T jeJ(T).j(T)=nueT® veT> R(T:t)
converges in C([0,T7],1”) when a(-,0) € IP.
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3. [P CONVERGENCE
Let T be a tree and j € J(T'). We define

Ir(t,j) = / c(j, s)ds,
R(T\,t)

and
Sr(t)(a)ver=m) =wr Y [ du [] @wlo)Ir(t ).
FJET(T),j(T)=nueT? veT >
We first give an estimate for I7(¢,7) which allows us to bound Sr.

Lemma 3.1. For0<t<1,
12 (j, )] < () T2 T (o(G.0) 2

veTO

Proof. For v € T°, define the level of v, denoted I(v), to be the length of the unique
path connecting v(T) and v. Let O be the set of v € T? for which {(v) is odd, and
E those v for which [(v) is even.

First we fix the variables s, with v € E, and take the integration in the variables
sy with v € O. For each v € O, the result of the integration is

1
o(j,v)
if 0(j,v) # 0, and

(eia'(j,/l))S{, _ eia(j,v) max{sv(l),sv(z),s,u(3>})

55 — max{sy(1), Su(2)s Su(3) }-
if o(j,v) = 0. Here ¥ is the parent of v. Thus, we obtain the factor
[TeGv™
veO

and an integral in s, v € E where the integrand is bounded by 2/°!. As the domain
of integration in s, with v € E has measure less than t/®|  we see that

(e o) < 2T T o).
veOD
By switching the role of O and E, we get

7)) < 21O T (o (o) .

vEE
Combining these two estimates, we obtain the lemma. O
By Lemma [3.1]
0 . — . .
|S7(8)(av)ver=(n)] < (CHT12 37 IT @Gow) 25 TT lawGo)l-
JET(T):§(T)=nueT? veT>
Let

Sr(aer=m) =" > [ (Gw) 2l I] lawG)l,

FJEIT(T):j(T)=nueTO veT >
and

*

3 3
S(ar,az,a5)(n) = Y |n\<0(n17n27n3)>_1/2n|ai(ni)| + |n|H|ai(”)|-

ni+nst+nz=n
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It is clear that
§T(av)vET°° = §(§T1 (aU)UETf’O ) §T2 (a’v)vETQf’o ) §T3 (av)veT:?")'
where T; is the subtree of T' that contains all nodes u such that « < v(T'); (recall

that v(T) is the root of T). Hence, to bound S, it suffices to bound S. For this
purpose, we will use the following simple lemma.

Lemma 3.2. Let S be the multilinear operator defined by

3
S(a17a27a3)(n) = Z m(n17n27n3) Haj(nj)’
ni+nz+nzy=n j=1
Let 1 < p < co. Then for any pair of indices i # j € {1,2,3},
3
15(a1, az, az)|liw < sup |[m(ni,n2,ns)|l,» H llaklze-
" " =1
Proof. By Holder’s inequality, for any n,
3
|S (a1, az, as)(n)| < [lm(ny, nz,ns)ll,p | TT arllie,
k=1 ’
3
< sup [[m(n1,n2,n3)|, || H akll
" " k=1 ’
Taking {P-norm in n we obtain the lemma. (]
Showing that S is a bounded multilinear map on 57 = {a : ()®a € IP} is
equivalent to showing that S is bounded on [P where S is the operator with kernel

(n)°[n|
(o(n1,n2,m3)) /2 TTh_y (na)®

where 1y 4+ ny +n3 = n. We split S into sum of two operators S; and So where S
has kernel

m(nlv na, n3) =

{n)*|n]

Hi:l <nk>s<n — nk>1/2

my(ni,na,ng) = ifn=mn1+nz2+n3 n; #n
and Sy has kernel

2s

ma(ny,na,n3) = n/(n) if ng = —ng =nz =n.

Clearly, S5 is bounded on (P if and only if s > 1/2.
It remains to bound S7, for which we have the following result.

Proposition 3.3. Sy is bounded in I[P x [P x P to [P when s > 1/4 and p/(s+31) > 1.

Proof. In the proof, all the sums are taken over the triples (n1,n2,ng) that satisfy
the additional property that n; # n, for all 1 < ¢ < 3. Clearly, we can assume
n > 0. Note that if say |n1| > 5n then as |ny + ng| = |n — ny| > 4n, at least one of
ny and ng has absolute value bigger than 2n. Also, we cannot have |n;| < n/4 for
all . Thus, up to permutation, there are four cases.

1) |nal,nzl, [ns| € [n/4, 5n]

2) |n1l, |n2| € [n/4,5n], |n3| < n/4

3) |n1| € [n/4,5n], |na|, ng| < n/4

4) |nal,na| = 2n

(
(
(
(
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By Lemma[3.2] it suffices to show that in each of these four regions, for some i # j
the lf’/j—norm of m is bounded.

Case 1. As 3n = Y (n—mn;) for some index i, say ¢ = 3, we must have |n—ng| ~ n.
Since we also have |nq],|nz| 2 n,

<n>1/2—s

|m(n1,n2,n3)| S (n3)°|(n — n1)(n — ng)[1/2°

We will use the inequality

| 1 ‘_‘1(1 1 )‘<L(L+ 1 )
ng(nan) n1 \Ns n—mno - |TL1| |n3| |T7J7n2| )

(1) If 1/4 < s < 1/2: then (ng)P (1/279) < (p)p'(1/2=5) g0
(n)?'(1/2=5)

’
s 2 >
e

|n1|<5n |na|<5n ((n3)n — naf

<y S e (e )
h Ini|<5n [ = maf/2 [na|<5n [ P72 [n —mng|P'/2 " |n —ny — nglP/?
s e,

- In1|<5n |(n = na)ma|P'/?

1 p'/2
< (129 4, Z( nfn1|+m))

[n1|<5n

<n3>1"(1/2*5)

)P’/2

< <n>p’(1/2*2S)Ai.
where Zo<j<5nj*p//2 =A,. As

nl=P' /2 iy < 2
Ap S qlog(n)  ifp’ =2
1 if /> 2
we easily check that (n)(1/2729P" A2 is bounded by a constant, under our hypothesis
on s and p'.

(2) If s > 1/2: then (n — n2>P'(5—1/2) < <n>p’(s—l/2) 0
ml?, < 3 (myr (/2= v e ng)? =1/
e " In1|<5n [ = m /2 In2|<5n ((n3)In — n2\)
n p’(1/2—s) n\pP "(s—1/2) 1 1
- In1|<5n I — |7/ |na|<5n [P In —nalP's |0 —ng — nplP's
B
< n
- n1|2<5n [ = na [P"/2[ny [P's
1 1 p's
< B, n_npsl/2)( 74_7)
n§<:5n| ‘ (|n nll |n1|)

< (n)P/2B2,
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e
where B, =3 o, 5,7 7% As

nl=P's ifpls <1
B, S qlog(n) ifp's=1
1 if p's > 1
we easily check that (n)fp,/ 2B2 is bounded by a constant, under our hypothesis on
s and p’.
Case 2 This case can be treated in exactly the same way as the first case, except
when n3 = 0. In the region n3z = 0,

, ¥ /2-5) W 1 1
LS (n)— < P s( )
s ; i < 22 e T e

ni

S A 51
Case 3 As |ny|, |n — na|, |n — n3| ~ n,
1
n2>5<n3>s|n2 —|—n3|1/2'

Without loss of generality, we assume that |[n3| > |na|.
(1) If |’I’L2| < |n3|/2:

/ 1 1
P < e —
Imlly S >0 w2 e

|m(n17n27n3)| 5 <

2,3 %)
’ 0<|n2|<n/4 n/4>|ng|>2nq
1
< E PEE—, |
~ <n2>p’(2s+1/2)—1 ~
0<|n2|<n/4

if (s +1/4)p’ > 1.
(2) I [na] > [ng/2:

/ 1 1
p, < E _ E - -
||mHlp ~ <n3>2p’s <TL3 +n2>pl/2

[n3|>n2>|ns|/2

N Z M;zp/smax{logmg),<n3>fp’/2+1}

Ins|<n/4
log(ns) 1
< <
~ Z <n3>2p’s + Z <n3>p’(23+1/2)71 ~ 1
Ing|<n/4 |ng|<n/4

as 2p’'s > p'(s+1/4) > 1.
Case 4 |nq],|nz2| > 2n: Note that in this case, |n1| ~ |n —n1| and |ng| ~ |n — ns].
(1) If |nsl,|n — ns| > n/2: we have
<n>1/2
<n1>3+1/2<n2>3+1/2’

‘m(n17n27n3)| S,

hence

/ , 1
< p'/2
”m”l‘ffz S (n) E : (ny )P GH1/2) (g )2 (5+1/2)

|n1],|na|>2n
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(2) If |n3| < n/2: then |ni| ~ |ng| and |n — ng| > n/2, so
ns+1/2
Im(n1,n2,n3)| < <

n1>25+1<n3>s ’

hence

np/(s+1/2) Bn <1

p/
Hm““f,/s < By <n1>p'(28+1) ~ pp(s+1/2)-1 ~

n1|>2n

(3) If |n — ng| < n/2: then |n1| ~ |n2| and |ng| ~ n. Hence,
n

n) 25 (n — ng) /2

|m(nlan2an3)‘ S <

Therefore,
’ np/
s Y%
P~ p’(2s+1) _ /2
PP |>2nn/2<ns <3n/2 (1) (n —ns)
p/
=Y A o _An o
N‘ = <n1>p/(25+1) ~ nQP'S—l ~
ni|=2n
This concludes the proof of the proposition. .

Proof of Theorem 1.1. Let ug € FL*P and a(n) = ug(n). By Proposition
187 ((@e)uer=)lir < STV T o

[s:p.

vET>®
Hence,
o)+ Swr > Ta I] aGo) [ eis)dslios
T FET(T),J(T)=nueT® veT> R(Tt)
S ||a Is:p +Z||ST((Z,...,(I) 1s:p (31)
T

o0
U(]”]—'L&P
< Yo (Cals = —)
kz::o T 1= VCtuo| %

for all ¢ < min{1, |[uo||FLe}-
Let T ~ min{1, ||ug||z1s., }, then for ¢ € [0,T] we can define

o) =a()+ Swr S TLa [] ato) [ .o
T JET(T),§(T)=nueTO veT> R(Tt)
and the solution map u = Wug by
a(n,t) = e~ ta(n,t).

It follows from (3.1)) that W is uniformly continuous. The same argument as that
of [3] shows that w is limit of classical solutions. O

The proof of Proposition 1.2 is basically the same as that of [3| Proposition 1.4],
hence we omit it.
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