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MONOTONE SOLUTIONS FOR A NONCONVEX FUNCTIONAL
DIFFERENTIAL INCLUSIONS OF SECOND ORDER

AHMED G. IBRAHIM, FERYAL A. AL-ADSANI

Abstract. We give sufficient conditions for the existence of a monotone solu-
tion for second-order functional differential inclusions. No convexity condition,

on the values of the multifunction defining the inclusion, is involved in this
construction.

1. Introduction

Let K be a closed subset of Rn, Ω an open subset of Rn, and P a lower semi-
continuous set-valued map (multifunction) from K to the family of all non-empty
subsets of K, with closed graph satisfying the following two conditions:

(i) for all x ∈ K, x ∈ P (x)
(ii) for all x, y ∈ K, y ∈ P (x) ⇒ P (y) ⊆ P (x).

Under these conditions, a preorder (reflexive and transitive relation) on K is defined
as

x � y ⇔ y ∈ P (x) .

Let σ > 0 and C([−σ, 0],Rn) be the space of continuous functions from [−σ, 0]
to Rn with the uniform norm ‖x‖σ = sup{‖x(t)‖ : t ∈ [−σ, 0]}. For each t ∈
[0, T ];T > 0, we define the operator τ(t) from C([−σ, T ],Rn) to C([−σ, 0],Rn) as

(τ(t)x)(s) = x(t+ s), for all s ∈ [−σ, 0].

Here, τ(t)x represents the history of the state from the time t−σ to the present
time t.

Let K0 = {ϕ ∈ C([−σ, T ],Rn) : ϕ(0) ∈ K} and F be a set-valued map (mul-
tifunction) defined from K0 × Ω to the family of non-empty compact subsets (not
necessarily convex) in Rn and (ϕ0, y0) be a given element in K0 × Ω. We consider
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the second-order functional differential inclusion

x′′(t) ∈ F (τ(t)x, x′(t)), a.e. on [0, T ]

x(t) = ϕ0(t), ∀t ∈ [−σ, 0]

x′(0) = y0

x(t) ∈ P (x(t)) ⊂ K, ∀t ∈ [0, T ]

x(s) � x(t) whenever 0 ≤ s ≤ t ≤ T

(1.1)

In the present work, we prove under reasonable conditions that there are a
positive real number T and a continuous function x : [−σ, T ] → Rn such that

(1) the function x is absolutely continuous on [0, T ] with absolutely continuous
derivative

(2) τ(t)x ∈ K0, for all t ∈ [0, T ]
(3) x′(t) ∈ Ω, a.e. on [0, T ]
(4) the functions x, x′, x′′ satisfy (1.1).

Ibrahim and Alkulaibi [13] proved the existence of a monotone solution for (1.1)
without delay. They consider the problem

x′′(t) ∈ F (x(t), x′(t)), a.e. on [0, T ]

x(0) = x0, x′(0) = y0

x(t) ∈ K, ∀t ∈ [0, T ]

x(s) � x(t), whenever 0 ≤ s ≤ t ≤ T .

Further, Lupulescu [17] proved the existence of a local solution, not necessarily
monotone, for (1.1) in the particular case P (x) = K, for all x ∈ K. Thus, the
result, we are going to prove, generalizes the results of Ibrahim and Alkulaibi [13]
and Lupulescu [17].

We mention, among others the works, [9, 11, 12, 13, 18] for the proof of ex-
istence of monotone solutions for differential inclusions or functional differential
inclusions and the works [3, 4, 7, 8, 10, 14, 15, 16, 17, 19] for solutions not necessar-
ily monotone. Note that the case where the solutions are not necessarily monotone
has been widely investigated compared with that of monotone solutions which has
been rarely investigated.

The present paper is organized as follows: In section 2, some definitions and
facts to be used later are introduced. In section 3, the main result is proved.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space with norm ‖ · ‖ and scalar product
〈·, ·〉. For x ∈ Rn and r > 0 let B(x, r) = {y ∈ Rn : ‖y − x‖ < r} denote the open
ball centered at x of radius r, and B(x, r) its closure.

For ϕ ∈ C([−σ, 0],Rn) let Bσ(ϕ, r) = {ψ ∈ C([−σ, 0],Rn) : ‖ψ − ϕ‖σ < r} and
Bσ(ϕ, r) = {ψ ∈ C([−σ, 0],Rn) : ‖ψ − ϕ‖σ ≤ r}.

We also, denote by d(x,A) = inf{‖x− y‖ : y ∈ A} the distance from x ∈ Rn to
a closed subset A ⊆ Rn .

A function V : Rn → R ∪ {∞} is said to be proper if its effective domain
D(V ) = {x ∈ Rn : V (x) <∞} is non-empty.
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The subdifferential of a proper convex lower semicontinuous function V : Rn → R
at a point x ∈ Rn is defined (in the sense of convex analysis) by

∂V (x) =
{
ξ ∈ Rn : V (y)− V (x) ≥ 〈ξ, y − x〉, ∀y ∈ Rn

}
The second-order contingent cone of a non-empty closed subset C ⊂ Rn at a point
(x, y) ∈ C × Rn is defined by

T 2
C(x, y) =

{
z ∈ Rn : lim

t→0+
inf

d(x+ ty + t2

2 z, C)
t2

= 0
}
.

For the properties of the second-order contingent cone see for example [2, 3, 7, 14].
A multifunction F : K0×Ω → 2Rn

is said to be upper semicontinuous at a point
(ϕ, y) ∈ K0 × Ω if for every ε > 0 there exists δ > 0, such that

F (ψ, z) ⊂ F (ϕ, y) +B(0, ε),

for all (ψ, z) ∈ Bσ(ϕ, δ) × B(y, δ). For more information about the continuity
properties for multifunctions we refer the reader to [1, 2, 6].

3. Main Result

Lemma 3.1. Let K be a non-empty closed subset of Rn, Ω a non-empty open
subset of Rn, P a set-valued map from K to the family of non-empty closed subsets
of K and K0 = {ϕ ∈ C([−σ, 0],Rn), ϕ(0) ∈ K}. Let F be an upper semicontinuous
set-valued map from K0 × Ω to the family of non-empty compact subsets of Rn.
Assume also the following conditions:

(H1) For all x ∈ K, x ∈ P (x)
(H2) There exists a proper convex lower semicontinuous function V : Rn → R

such that F (ϕ, y) ⊆ ∂V (y), for every (ϕ, y) ∈ K0 × Ω
(H3) For (ϕ, y) ∈ K0×Ω, F (ϕ, y) ⊆ T 2

P (ϕ(0))(ϕ(0), y), where T 2
P (ϕ(0))(ϕ(0), y) is

the second order contingent cone of the closed subset P (ϕ(0)) at the point
(ϕ(0), y).

Let (ϕ0, y0) be a fixed element in K0 × Ω. Then there are two positive numbers
r and T such that for each positive integer m there are:

(1) A positive integer νm.
(2) A set of points

Pm = {tm0 = 0 < tm1 < · · · < tmνm−1 ≤ T < tmνm
}

(3) Three sets of elements in Rn:

Xm = {xm
p : p = 0, 1, . . . , νm − 1},

Ym = {ym
p : p = 0, 1, . . . , νm − 1},

Zm = {zm
p : p = 0, 1, . . . , νm − 1},

with xm
0 = ϕ0(0) and ym

0 = y0
(4) A continuous function xm : [−σ, T ] → Rn with xm(t) = ϕ0(t), for all

t ∈ [−σ, 0], such that for each p = 0, 1, . . . , νm − 1, the following properties
are satisfied:
(i) hm

p+1 = tmp+1 − tmp < 1
m

(ii) zm
p = um

p + wm
p where um

p ∈ F (τ(tmp )xm, y
m
p ) and wm

p ∈ 1
mB(0, 1)

(iii) xm(t) = xm
p + (t− tmp )ym

p + 1
2 (t− tmp )2zm

p , for all t ∈ [tmp , t
m
p+1]

(iv) xm
p+1 = xm

p + hm
p+1y

m
p + 1

2 (hm
p+1)

2 zm
p = xm(tmp+1)
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(v) xm
p+1 ∈ P (xm

p ) ∩B(ϕ0(0), r) ⊆ K and
ym

p+1 = ym
p + hm

p+1z
m
p ∈ B(y0, r) ⊆ Ω

(vi) xm(t) ∈ B(ϕ0(0), r), for all t ∈ [tmp , t
m
p+1].

(vii) τ(tmp+1)xm ∈ Bσ(ϕ0, r) ∩K0.

Proof. We follow the techniques developed in [18]. From [6, Prop. I.26], for each
y ∈ Rn, the subset ∂V (y) is closed, convex and bounded. Moreover, by [1, Thm.
0.7.2] the multifunction y → ∂V (y) is upper semicontinuous. So, by [1, Prop. 1.1.3]
there are two positive real numbers r and M such that

sup{‖z‖ : z ∈ ∂V (y)} ≤M ,

for all y ∈ B(y0, r). Using condition (H2), we get

sup{‖z‖ : z ∈ F (ψ, y)} < M , (3.1)

for all (ψ, y) ∈ (K0 ∩ Bσ(ϕ0, r)) × B(y0, r). Since Ω is open we can choose r such
that B(y0, r) ⊆ Ω. It is obvious that the closedness of K implies the closedness of
K0 in C([−σ, 0],Rn). From the continuity of ϕ0 on [−σ, 0], there is µ > 0 such that
for all t, s ∈ [−σ, 0] we have

|t− s| < µ =⇒ ‖ϕ0(t)− ϕ0(s)‖ <
r

4
. (3.2)

Put

T = min
{
µ,

r

4(M + 1)
,

r

8(‖y0‖+ 1)
,

√
r

4(M + 1)

}
(3.3)

Thus the numbers r and T are well defined. Now let m be a fixed positive integer.
We put tm0 = 0, xm

0 = ϕ0(0) and ym
0 = y0. The sets Pm, Xm, Ym and Zm will be

defined by induction. We first define xm
1 , tm1 , ym

1 , zm
0 and xm on [0, tm1 ] such that

the properties (i)–(vii) are satisfied for p = 0.
Using condition (H3), there is um

0 ∈ F (ϕ0, y0) such that

lim
h↓0

inf
1
h2
d(ϕ0(0) + h ym

0 +
h2

2
um

0 , P (ϕ0(0))) = 0.

So, a positive number hm
1 is found such that hm

1 ≤ min{ 1
m , T} and

d(ϕ0(0) + hm
1 ym

0 +
(hm

1 )2

2
um

0 , P (ϕ0(0))) ≤ (hm
1 )2

4m
.

Since P (ϕ0(0)) is closed, there is xm
1 ∈ P (ϕ0(0)) with

‖ϕ0(0) + hm
1 y

m
0 +

(hm
1 )2

2
um

0 − xm
1 ‖ ≤

(hm
1 )2

4m
.

Consequently there is wm
0 ∈ Rn such that ‖wm

0 ‖ ≤ 1
2m and

xm
1 = ϕ0(0) + hm

1 y
m
0 +

(hm
1 )2

2
um

0 +
(hm

1 )2

2
wm

0 .

Now we define zm
0 = um

0 +wm
0 , therefore zm

0 ∈ F (ϕ0, y0) + 1
2mB(0, 1) and xm

1 =

ϕ0(0) + hm
1 y

m
0 + (hm

1 )2

2 zm
0 . We put ym

1 = ym
0 + hm

1 z
m
0 and tm1 = tm0 + hm

1 and for
t ∈ [tm0 , t

m
1 ] we define

xm(t) = ϕ0(0) + (t− tm0 )ym
0 + (t−tm

0 )2

2 zm
0 .
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Thus, the properties (i)–(iv) are clearly satisfied for p = 0.
Since τ(tm0 )xm = ϕ0, using relation (3.1), we obtain

sup{‖v‖ : v ∈ F (τ(tm0 )xm, y0)} ≤M.

Therefore, ‖zm
0 ‖ ≤M+ 1

2m < M+1. We get from the definition of ym
1 , ‖ym

1 −ym
0 ‖ ≤

hm
1 ‖zm

0 ‖ ≤ T (M + 1) ≤ r. Thus ym
1 ∈ B(y0, r). Since, xm

1 ∈ P (xm
0 ) ⊆ K then to

prove property (v) for p = 0, it is sufficient to show that

‖xm
1 − ϕ0(0)‖ < r.

We get using (3.1), (3.3)

‖xm
1 − ϕ0(0)‖ = hm

1 ‖ym
0 ‖+

(hm
1 )2

2
‖zm

0 ‖

≤ T‖ym
0 ‖+

T 2

2
(M + 1)

≤ r

8(‖y0‖+ 1)
‖y0‖+

r

8(M + 1)
(M + 1)

<
r

8
+
r

8
< r

and hence (v) is satisfied for p = 0. To prove (vi) for p = 0, we note that, for
t ∈ [tm0 , t

m
1 ],

‖xm(t)− ϕ0(0)‖ ≤ (t− tm0 )‖ym
0 ‖+

(t− tm0 )2

2
‖zm

0 ‖

≤ hm
1 ‖ym

0 ‖+
(hm

1 )2

2
‖zm

0 ‖

≤ T‖y0‖+
T 2

2
(M + 1)

≤ r

8(‖y0‖+ 1)
‖y0‖+

1
2

r

4(M + 1)
(M + 1)

<
r

8
+
r

8
< r,

which proves (vi) for p = 0.
To prove property (vii) for p = 0, we note that if −σ ≤ s ≤ −tm1 , then tm1 +s ≤ 0

and by (3.2), (3.3), we get

‖τ(tm1 )xm−ϕ‖σ = sup
−σ≤s≤0

‖xm(tm1 +s)−ϕ0(s)‖ = sup
−σ≤s≤0

‖ϕ0(tm1 +s)−ϕ0(s)‖ <
r

4
.

while if −tm1 ≤ s ≤ 0, then 0 ≤ tm1 + s ≤ tm1 and hence by (3.3) we get

‖xm(tm1 + s)− ϕ0(s)‖ ≤ ‖xm(tm1 + s)− ϕ0(0)‖+ ‖ϕ0(0)− ϕ0(s)‖

≤ (hm
1 + s)‖ym

0 ‖+
(hm

1 + s)2

2
‖zm

0 ‖+
r

4

≤ T‖ym
0 ‖+

T 2

2
‖zm

0 ‖+
r

4
≤ r

8(‖y0‖+ 1)
‖y0‖+

r

8(M + 1)
(M + 1) +

r

4

<
r

8
+
r

8
+
r

4
=
r

2
,

which shows that τ(tm1 )xm ∈ Bσ(ϕ0, r) and hence (vii) is proved.



6 A. G. IBRAHIM, F. A. AL-ADSANI EJDE-2008/144

Now we suppose that tmp+1, x
m
p+1, y

m
p+1, z

m
p are well defined for p = 0, 1, . . . , (q−1)

and xm is defined on the interval [−σ, tmq ] such that all the properties (i)–(vii) are
satisfied for p = 0, 1, . . . , (q − 1).

We define tmq+1, x
m
q+1, y

m
q+1, z

m
q and xm on [tmq , t

m
q+1] such that the properties

(i)–(vii) are satisfied for p = q. We denote by Hm
q the set of all h ∈]0, 1

m [ for which
the following conditions are satisfied:

(a) h < T − tmq .
(b) there exists um

q ∈ F (τ(tmq )xm, y
m
q ) such that

d(xm
q + hym

q +
h2

2
um

q , p(x
m
q )) ≤ h2

4m
.

From the fact that (v) and (vii) are true for p = q − 1, we get ym
q ∈ Ω and

τ(tmq )xm ∈ K0. Moreover, since (iv) is true for p = q − 1, then

τ(tmq )xm(0) = xm(tmq ) = xm
q .

So, the condition (H3) gives:

F (τ(tmq )xm, y
m
q ) ⊆ T 2

P (xm
q )(x

m
q , y

m
q ).

Therefore there is um
q ∈ F (τ(tmq )xm, y

m
q ) such that

lim inf
h↓0

1
h2
d(xm

q + h ym
q +

h2

2
um

q , P (xm
q )) = 0,

which shows that there is a positive number h such that h < min{ 1
m , T − tmq } and

d(xm
q + hym

q +
h2

2
um

q , P (xm
q )) ≤ h2

4m
.

Hence h ∈ Hm
q . Since Hm

q is bounded by the number T , there is a number dm
q

such that dm
q = sup{α : α ∈ Hm

q }. Since Hm
q ∩ [dm

q

2 , d
m
q ] 6= φ, an element hm

q+1 ∈
Hm

q ∩ [dm
q

2 , d
m
q ] is found such that

d(xm
q + hm

q+1y
m
q +

(hm
q+1)

2

2
um

q , P (xm
q )) ≤

(hm
q+1)

2

4m
.

From the closedness of P (xm
q ), there is xm

q+1 ∈ P (xm
q ) ⊆ K with

‖xm
q + hm

q+1y
m
q +

(hm
q+1)

2

2
um

q − xm
q+1‖ ≤

(hm
q+1)

2

4m
.

Consequently, there is wm
q ∈ Rn with ‖wm

q ‖ ≤ 1
2m < 1

m such that

xm
q+1 = xm

q + hm
q+1y

m
q +

(hm
q+1)

2

2
um

q +
(hm

q+1)
2

2
wm

q

= xm
q + hm

q+1y
m
q +

(hm
q+1)

2

2
(um

q + wm
q ).

We define zm
q = um

q + wm
q . So that

zm
q ∈ F (τ(tmq )xm, y

m
q ) +

1
m
B(0, 1),

xm
q+1 = xm

q + hm
q+1y

m
q +

(hm
q+1)

2

2
zm
q .
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We put ym
q+1 = ym

q + hm
q+1z

m
q and tmq+1 = tmq + hm

q+1 and for t ∈ [tmq , t
m
q+1], we define

xm(t) = xm
q + (t− tmq )ym

q +
(t− tmq )2

2
zm
q .

Obviously the relations (i)–(iv) are satisfied for p = q.
Now we prove that (v) is true for p = q. Since (v) and (vii) are true for p = q−1,

then τ(tmq )xm ∈ Bσ(ϕ0, r) and ym
q ∈ B(y0, r), and hence by (3.1) we get ‖zm

q ‖ ≤
M + 1.

Let us prove that ‖ym
q+1 − y0‖ < r. We note that ym

q+1 = ym
q + hm

q+1z
m
q =

ym
q−1 + hm

q z
m
q−1 + hm

q+1z
m
q . By iterating we get

ym
q+1 = ym

0 +
q∑

s=0

hm
s+1z

m
s . (3.4)

Thus,

‖ym
q+1 − ym

0 ‖ ≤
q∑

s=0

hm
s+1‖zm

s ‖ ≤ (M + 1)
q∑

s=0

hm
s+1 ≤ (M + 1)T <

r

4
< r.

To prove that xm
q+1 ∈ Bσ(ϕ0(0), r) we first use the induction technique to prove the

relation

xm
p+1 = ϕ0(0) +

( p∑
j=0

hm
j+1

)
y0 +

1
2

p∑
j=0

(hm
j+1)

2 zm
j +

p−1∑
i=0

p∑
j=i+1

hm
i+1h

m
j+1z

m
i , (3.5)

for p = 1, . . . , q. For p = 1 we note that

xm
2 = xm

1 + hm
2 y

m
1 +

1
2
(hm

2 )2zm
1

= xm
1 + hm

2 (ym
0 + hm

1 z
m
0 ) +

1
2
(hm

2 )2zm
1

= (xm
0 + hm

1 y
m
0 +

1
2
(hm

1 )2zm
0 ) + hm

2 (ym
0 + hm

1 z
m
0 ) +

1
2
(hm

2 )2 zm
1

= xm
0 + (hm

1 + hm
2 )ym

0 +
1
2
((hm

1 )2zm
0 + (hm

2 )2zm
1 ) + hm

1 h
m
2 z

m
0

= ϕ0(0) + (
1∑

j=0

hm
j+1)y

m
0 +

1
2

1∑
j=0

(hm
j+1)

2 zm
j +

1∑
j=1

hm
1 h

m
j+1z

m
0 .

Then relation (3.5) is true for p = 1. Suppose that (3.5) is true for p = q− 1. This
gives us

xm
q = ϕ0(0) +

q−1∑
j=0

hm
j+1)y0 +

1
2

q−1∑
j=0

(hm
j+1)

2 zm
j +

q−2∑
i=0

q−1∑
j=i+1

hm
i+1h

m
j+1z

m
i .

So, according to the definition of xm
q+1 we have

xm
q+1 = xm

q + hm
q+1y

m
q +

1
2
(hm

q+1)
2zm

q

= ϕ0(0) + (
q−1∑
j=0

hm
j+1)y

m
0 +

1
2

q−1∑
j=0

(hm
j+1)

2 zm
j +

q−2∑
i=0

q−1∑
j=i+1

hm
i+1h

m
j+1z

m
i
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+ hm
q+1(y0 +

q−1∑
s=0

hm
s+1z

m
s ) +

1
2
(hm

q+1)z
m
q

= ϕ0(0) + (
q∑

j=0

hm
j+1)y

m
0 +

1
2

q∑
j=0

(hm
j+1)

2 zm
j +

q−2∑
i=0

q−1∑
j=i+1

hm
i+1h

m
j+1z

m
i

+ hm
q+1(h

m
1 z

m
0 + hm

2 z
m
1 + · · ·+ hm

q z
m
q−1)

= ϕ0(0) +
q∑

j=0

hm
j+1)y

m
0 +

1
2

q∑
j=0

(hm
j+1)

2zm
j +

q−1∑
i=0

q∑
j=i+1

hm
i+1h

m
j+1z

m
i .

This implies that the relation (3.5) is true for p = q. Now, from the fact that
‖zm

p ‖ ≤M + 1, for all p = 0, 1, . . . , q we get

‖xm
q+1 − ϕ0(0)‖

≤ ‖y0‖(
q∑

j=0

hm
j+1) +

1
2

q∑
j=0

(hm
j+1)

2(M + 1) + (M + 1)
q−1∑
i=0

q∑
j=i+1

hm
i+1h

m
j+1

≤ ‖y0‖T +
1
2
(M + 1)T 2 + (M + 1)

[
hm

1

q∑
j=1

hm
j+1 + hm

2

q∑
j=2

hm
j+1 + . . .

+ hm
q

q∑
j=q

hm
j+1

]
≤ ‖y0‖T +

1
2
(M + 1)T 2 + (M + 1)T 2

= ‖y0‖T +
3
2
(M + 1)T 2

<
r

8
+

3r
8

=
r

2
.

Thus (v) is true for p = q.
Let us prove (vi) for p = q, namely ‖xm(t) − ϕ0(0)‖ < r, for all t ∈ [tmq , t

m
q+1].

Let t ∈ [tmq , t
m
q+1]. We have

xm(t) = xm
q + (t− tmq )ym

q +
1
2
(t− tmq )2 zm

q

= ϕ0(0) + (
q−1∑
j=0

hm
j+1)y0 +

1
2

q−1∑
j=0

(hm
j+1)

2 zm
j +

q−2∑
i=0

q−1∑
j=i+1

hm
i+1h

m
j+1z

m
i

+ (t− tmq )(y0 +
q−1∑
j=0

hm
j+1z

m
j ) +

1
2
(t− tmq )2zm

q .

Thus,

‖xm(t)− ϕ0(0)‖

≤ ‖y0‖(
q−1∑
j=0

hm
j+1) +

1
2

q−1∑
j=0

(hm
j+1)

2‖zm
j ‖
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+
q−2∑
i=0

q−1∑
j=i+1

hm
i+1h

m
j+1‖zm

i ‖+ hm
q+1(y0 +

q−1∑
j=0

hm
j+1‖zm

j ‖) +
1
2
(hm

q+1)
2‖zm

q ‖

≤ ‖y0‖(
q∑

j=0

hm
j+1) +

1
2

q∑
j=0

(hm
j+1)

2‖zm
j ‖+

q−1∑
i=0

q∑
j=i+1

hm
i+1h

m
j+1‖zm

i ‖

≤ ‖y0‖T +
1
2
T 2(M + 1) + T 2(M + 1)

≤ ‖y0‖T +
3(M + 1)

2
T 2

<
r

8
+
r

8
=
r

4
.

We prove (vii) for p = q.

‖τ(tmq+1)xm − ϕ0‖σ

= sup
−σ≤s≤0

‖τ(tmq+1)xm(s)− ϕ0(s)‖.

= sup
−σ≤s≤0

‖xm(tmq+1 + s)− ϕ0(s)‖.

≤ sup
−σ≤s≤−tm

q+1

‖τ(tmq+1)xm(s)− ϕ0(s)‖+ sup
−tm

q+1≤s≤0
‖τ(tmq+1)xm(s)− ϕ0(s)‖.

≤ sup
−σ≤s≤−tm

q+1

‖ϕ0(tmq+1 + s)− ϕ0(s)‖+ sup
−tm

q+1≤s≤0
‖xm(tmq+1 + s)− ϕ0(s)‖

+ sup
−tm

q+1≤s≤0
‖ϕ0(0)− ϕ0(s)‖.

≤ r

4
+
r

4
+
r

4
< r.

It remains to show that there is a positive number νm such that tmνm−1 ≤ T < tmνm
.

Therefore, we have to prove that the iterative process is finite. For this purpose
suppose that the iterative process is not finite. So, for each non negative integer
number p, there are tmp ∈ [0, T [, xm

p , ym
p , zm

p such that the relations (i)–(vii) are
satisfied. Since the sequence {tmp }p≥1 is bounded and increasing, there is tmα ∈
]0, T ] such that limp→∞ tmp = tmα . Let us show that {xm

p }p≥1, {ym
p }p≥1 are Cauchy

sequences. Let p and q be two positive integers such that p > q. From the relation
(3.5) we have

‖xm
p − xm

q ‖

= ‖(
p−1∑
j=0

hm
j+1)y0 +

1
2

p−1∑
j=0

(hm
j+1)

2 zm
j +

p−2∑
i=0

p−1∑
j=i+1

hm
i+1h

m
j+1z

m
i

− (
q−1∑
j=0

hm
j+1)y0 −

1
2

q−1∑
j=0

(hm
j+1)

2 zm
j −

q−2∑
i=0

q−1∑
j=i+1

hm
i+1h

m
j+1z

m
i ‖.

= ‖(
p−1∑
j=q

hm
j+1)y0 +

1
2

p−1∑
j=q

(hm
j+1)

2zm
j +

q−1∑
i=0

p−1∑
j=q

hm
i+1h

m
j+1z

m
i ‖.

≤
p−1∑
j=q

hm
j+1)‖y0‖+

1
2

p−1∑
j=q

(hm
j+1)

2‖zm
j ‖+

p−2∑
i=q−1

p−1∑
j=i+1

hm
i+1h

m
j+1‖zm

i ‖.
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≤ ‖y0‖(tmp − tmq ) +
1
2
(M + 1)(tmp − tmq )2 + (M + 1)

p−1∑
j=q

hm
q h

m
j+1

+ (M + 1)
p−1∑

j=q+1

hm
q+1h

m
j+1 + · · ·+ (M + 1)

p−1∑
j=p−2

hm
p−2h

m
j+1.

= ‖y0‖(tmp − tmq ) +
1
2
(M + 1)(tmp − tmq )2 + (M + 1)hm

q (tmp − tmq )

+ (M + 1)hm
q+1(t

m
p − tmq ) + · · ·+ (M + 1)hm

p−2(t
m
p − tmq ).

= ‖y0‖(tmp − tmq ) +
1
2
(M + 1)(tmp − tmq )2

+ (M + 1)(tmp − tmq )(hm
q + hm

q+1 + · · ·+ hm
p−2).

= ‖y0‖(tmp − tmq ) +
1
2
(M + 1)(tmp − tmq )2 + (M + 1)(tmp − tmq )2.

Since the sequence {tmp }p≥1 is convergent, the sequence {xm
p }p≥1 is Cauchy. Then

there is xm
α ∈ Rn such that limp→∞ xm

p = xm
α . Also,

‖ym
p − ym

q ‖ = ‖
p−1∑
s=q

hm
s+1z

m
s ‖ ≤ (M + 1)(tmp − tmq ).

Thus the sequence {ym
p }p≥1 is a Cauchy sequence in Rn. Hence there is ym

α ∈ Rn

such that ym
α = limp→∞ ym

p .
From property (v) we note that

xm
p ∈ P (xm

p ) ∩B(ϕ0(0), r) ⊆ K, (3.6)

and
ym

p ∈ B(y0, r) ⊂ Ω.

Thus xm
α ∈ K and ym

α ∈ B(y0, r) ⊂ Ω.
Now we put xm(tmα ) = xm

α . To show that xm is continuous at tmα let {sm
p : p ≥ 1}

be a sequence in [0, tmα [ such that limp→∞ sm
p = tmα and tmp ≤ sm

p ≤ tmp+1 for every
p ≥ 1. We have

‖xm(sm
p )− xm(tmα )‖ ≤ ‖xm(sm

p )− xm(tmp )‖+ ‖xm(tmp )− xm
α ‖

≤ (sm
p − tmp )‖ym

p ‖+
1
2
(sm

p − tmp )2(M + 1) + ‖xm
p − xm

α ‖.

By taking the limit as p→∞, we obtain

lim
p→∞

‖xm(sm
p )− xm(tmα )‖ = 0

which prove that xm is continuous at tmα . Hence xm is continuous on [−σ, tmα ].
Consequently,

lim
p→∞

τ(tmp )xm = τ(tmα )xm.

Note that from (vii), τ(tmp )xm ∈ K0 ∩ Bσ(ϕ0, r). Since the subset K0 ∩ Bσ(ϕ0, r),
is closed, we obtain

τ(tmα )xm ∈ K0 ∩Bσ(ϕ0, r) .

Furthermore, by (ii) and the relation (3.1), the sequences {zp}p≥1 and {up}p≥1

are bounded in Rn. So, there are two convergent subsequences, denoted again



EJDE-2008/144 MONOTONE SOLUTIONS 11

by, {zp}p≥1, {up}p≥1. Thus there are two elements zm
α , um

α of Rn such that
limp→∞ zm

p = zm
α , limp→∞ um

p = um
α .

Now since F is upper semicontinuous on K0 ×Ω with compact values and since
um

p ∈ F (τ(tmp )xm, y
m
p ), for all p ≥ 1, it follows that um

α ∈ F (τ(tmα )xm, y
m
α ). Apply-

ing condition (H3),

lim
h→0+

d(xm(tmα ) + hym
α +

h2

2
um

α , P (xm(tmα ))) = 0.

Hence, there is h ∈]0, T − tmα [ such that

d(xm
α + hym

α +
h2

2
um

α , P (xm
α )) ≤ h2

16m
. (3.7)

We prove that h belongs to Hm
p for every p sufficient large. Since {tmp }p is an

increasing sequence to tmα and since limp→∞ xm
p = xm

α , limp→∞ ym
p = ym

α and
limp→∞ um

p = um
α . Then we can find a natural number p1 such that for every

p > p1 we have tmp < tmα < tmp + h < tmα + h,

‖xm
p − xm

α ‖ ≤
h2

24m
, (3.8)

‖ym
p − ym

α ‖ ≤
h

24m
, (3.9)

‖um
p − um

α ‖ ≤
1

12m
. (3.10)

From the lower semicontinuity of P at xm
p , there is a natural number p2 such

that P (xm
α ) ⊆ P (xm

p ) + h2

16mB(0, 1), for all p > p2. This gives that if z ∈ Rn, then

d(z, P (xm
p )) ≤ d(z, P (xm

α )) +
h2

16m
,∀p > p2. (3.11)

Now let p > max(p1, p2). By (3.7)–(3.11), we have

d(xm
p + hym

p +
h2

2
um

p , P (xm
p ))

≤ d(xm
p + hym

p +
h2

2
um

p , x
m
α + hym

α +
h2

2
um

α )

+ d
(
xm

α + hym
α +

h2

2
um

α , P (xm
α )

)
+

h2

16m

≤ ‖xm
p − xm

α ‖+ h‖ym
p − ym

α ‖+
h2

2
‖um

p − um
α ‖+

h2

8m
+

h2

16m

≤ h2

24m
+

h2

24m
+

h2

24m
+

h2

16m
+

h2

16m

=
h2

8m
+
h2

8m
=

h2

4m
.

Thus h ∈ Hm
p , for all p ≥ max(p1, p2). From the choice of hm

p we have

1
2

supHm
p ≤ hm

p ≤ supHm
p .

Hence, hm
p ≥ h

2 > h
4 for all p ≥ max(p1, p2). This means that limp→∞ hm

p =
limp→∞(tmp+1 − tmp ) can not equal to zero, which contradicts with the fact that the
sequence {tmp }p≥1 is convergent. So, the process must be finite. �
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Theorem 3.2. In addition to the assumptions of lemma 3.1 we suppose that the
graph of P is closed and the following condition is satisfied.

(H4) for all x ∈ K and all y ∈ P (x)we have P (y) ⊆ P (x).

Then for all (ϕ0, y0) ∈ K0 × Ω there exist T > 0 and an absolutely continuous
function x : [0, T ] → K, with absolutely continuous derivative such that

x′′(t) ∈ F (τ(t)x, x′(t)) a.e. on [0, T ]

x(t) = ϕ0(t), ∀t ∈ [−σ, 0]

x′(0) = y0.

Moreover, x is monotone with respect to P in the sense that for all t ∈ [0, T ] and
all s ∈ [t, T ] we have x(s) ∈ P (x(t)); i.e., 0 ≤ t ≤ s ≤ T ⇒ x(t) � x(s).

Proof. According to the definition of xm, for all m ≥ 1, all p = 0, 1, 2, . . . , νm − 1
and all t ∈ [tmp , t

m
p+1] we have

x′m(t) = ym
p + (t− tmp )zm

p , x′′m(t) = zm
p ∈ F (τ(tmp )xm, y

m
p ) +

1
m
B(0, 1).

Then from (ii) and (v) of lemma 3.1 we get

‖x′m(t)‖ ≤ ‖ym
p ‖+ hm

p+1‖zm
p ‖ ≤ ‖y0‖+ r + T (M + 1)

≤ ‖y0‖+ r +
r

4
, ∀t ∈ [0, T ]

(3.12)

and

‖x′′m(t)‖ ≤M +
1
m
≤M + 1, ∀t ∈ [0, T ]. (3.13)

Then the sequences (xm) and (x′m) are equicontinuous in C([0, T ],Rn). Applying
Ascoli-Arzela theorem, there is a subsequence of (xm),denoted again by (xm), and
an absolutely continuous function x : [0, T ] → Rn with absolutely continuous de-
rivative x′ such that (xm) converges uniformly to x on [0, T ] and (x′m) converges
uniformly to x′ on [0, T ] and (x′′m) converges weakly to x′′ in L2([0, T ],Rn). Further-
more, since all the functions xm equal ϕ0 on [−σ, 0], we can say that xm converges
uniformly to x on [−σ, T ] where x = ϕ0 on [−σ, 0].

Now, for each t ∈ [0, T ] and each m ≥ 1, let δm(t) = tmp , θm(t) = tmp+1, if
t ∈]tmp , t

m
p+1] and δm(0) = θm(0) = 0. For t ∈]tmp , t

m
p+1] we get

x′′m(t) = zm
p ∈ F (τ(tmp )xm, y

m
p ) +

1
m
B(0, 1).

= F (τ(δm(t))xm, x
′
m(tmp )) +

1
m
B(0, 1).

Thus for all m ≥ 1 and a.e. on [0, T ],

x′′m(t) ∈ F (τ(δm(t))xm, x
′
m(δm(t))) +

1
m
B(0, 1) (3.14)

Also, for all m ≥ 1 and all t ∈ [0, T ],

τ(θm(t))xm ∈ Bσ(ϕ0, r) ∩K0 (3.15)

xm(t) ∈ B(ϕ0(0), r) (3.16)

xm(θm(t)) ∈ P (xm(δm(t))) ⊆ K (3.17)
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Claim: For each t ∈ [0, T ], limm→∞ τ(θm(t))xm = τ(t)x in C([−σ, 0],Rn). Let
t ∈ [0, T ]. then

‖τ(θm(t))xm − τ(t)x‖σ

≤ ‖τ(θm(t))xm − τ(t)xm‖σ + ‖τ(t)xm − τ(t)x‖σ

≤ sup
−σ≤s≤0

‖xm(θm(t) + s)− xm(t+ s)‖+ ‖τ(t)xm − τ(t)x‖σ

≤ sup
−σ≤s1≤s2≤T ,|s2−s1|≤ 1

m

‖xm(s2)− xm(s1)‖+ ‖τ(t)xm − τ(t)x‖σ

≤ sup
−σ≤s1≤s2≤0, |s2−s1|≤ 1

m

‖xm(s2)− xm(s1)‖

+ sup
−σ≤s1≤0≤s2≤T, |s2−s1|≤ 1

m

‖xm(s2)− xm(s1)‖

+ sup
0≤s1≤s2≤T, |s2−s1|≤ 1

m

‖xm(s2)− xm(s1)‖+ ‖τ(t)xm − τ(t)x‖σ

≤ sup
−σ≤s1≤s2≤0 ,|s2−s1|≤ 1

m

‖ϕ0(s2)− ϕ0(s1)‖

+ sup
−σ≤s1≤0, |s1|≤ 1

m

‖xm(0)− xm(s1)‖+ sup
0≤s2≤T, |s2|≤ 1

m

‖xm(s2)− xm(0)‖

+ sup
0≤s1≤s2≤T, |s2−s1|≤ 1

m

‖xm(s2)− xm(s1)‖+ ‖τ(t)xm − τ(t)x‖σ

≤ 2 sup
−σ≤s1≤s2≤0, |s2−s1|≤ 1

m

‖ϕ0(s2)− ϕ0(s1)‖

+ 2 sup
0≤s1≤s2≤T, |s2−s1|≤ 1

m

‖xm(s2)− xm(s1)‖+ ‖τ(t)xm − τ(t)x‖σ .

Using the continuity of ϕ0, the fact that (x′m) is uniformly bounded, the uniform
convergence of (xm) towards x and the preceding estimate, we get

lim
m→∞

‖τ(θm(t))xm − τ(t)x‖σ = 0.

Similarly, for each t ∈ [0, T ], limm→∞ τ(δm(t))xm = τ(t)x in C([−σ, 0],Rn). Also,
since limm→∞ δm(t) = t and (x′′m) is uniformly bounded, then

lim
m→∞

x′m(δm(t)) = x′(t) ∀t ∈ [0, T ]. (3.18)

Thus by the upper semicontinuity of F , and by (3.12), we obtain

x′′(t) ∈ CoF (τ(t)x, x′(t)) ⊆ ∂V (x′(t))a.e. on [0, T ]. (3.19)

Our aim now is proving the relation

x′′(t) ∈ F (τ(t)x, x′(t)) a.e. on [0, T ]. (3.20)

Since F is upper semicontinuous with closed values, then by [1, prop. 1.1.2], the
graph of F is closed in [0, T ]×Rn×Rn. So, if we prove that the sequence (x′′m) has
a subsequence converges strongly point wise to x′′ then the relation (3.14) assures
that the relation (3.20) is true.

In order to show that (x′′m) has a subsequence converges strongly point wise to
x′′, we note that the condition (H2) and property (ii) of Lemma 3.1 give

zm
p − wm

p ∈ F (τ(tmp )xm, y
m
p ) ⊆ ∂V (ym

p ) = ∂V (x′m(tmp )), (3.21)

for p = 0, 1, 2, . . . , νm − 2.
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From the definition of the subdifferential of V , for p = 0, 1, 2, . . . , νm − 2, we
have

V (x′m(tmp+1))− V (x′m(tmp )) ≥ 〈zm
p − wm

p , x
′
m(tmp+1)− x′m(tmp )〉

= 〈zm
p − wm

p ,

∫ tm
p+1

tm
p

x′′m(s) ds〉

= 〈zm
p , z

m
p (tmp+1 − tmp )〉 − 〈wm

p ,

∫ tm
p+1

tm
p

x′′m(s) ds〉

= hm
p+1‖zm

p ‖2 − 〈wm
p ,

∫ tm
p+1

tm
p

x′′m(s)ds〉

=
∫ tm

p+1

tm
p

‖x′′m(s)‖2ds− 〈wm
p ,

∫ tm
p+1

tm
p

x′′m(s)ds〉 (3.22)

Analogously,

V (x′m(T ))− V (x′m(tmνm−1)) ≥ 〈zm
νm−1 − wm

νm−1,

∫ T

tm
νm−1

x′′m(s) ds〉

=
∫ T

tm
νm−1

‖x′′m(s)‖2 ds− 〈wm
νm−1,

∫ T

tνm−1

x′′m(s) ds〉

(3.23)
By adding the νm − 1 inequalities from (3.22) and the inequality (3.23), we get

V (x′m(T ))− V (x′m(0))

= V (x′m(T ))− V (x′m(tmνm−1)) + V (x′m(tmνm−1))− V (x′m(tmνm−2)) + . . .

+ V (x′m(tm1 ))− V (x′m(0))

≥
∫ T

0

‖x′′m(s)‖2 ds−
νm−2∑
p=0

〈wm
p ,

∫ tm
p+1

tm
p

x′′m(s)ds〉 − 〈wm
νm−1,

∫ T

tm
νm−1

x′′m(s) ds〉

(3.24)
Now,

νm−2∑
p=0

|〈wm
p ,

∫ tm
p+1

tm
p

x′′m(s) ds〉|+ |〈wm
νm−1,

∫ T

tm
νm−1

x′′m(s) ds〉|

≤
νm−2∑
p=0

‖wm
p ‖(M + 1)(tmp+1 − tmp ) + ‖wm

νm−1‖(M + 1)(T − tmνm−1)

≤ T (M + 1)
m

Hence, by passing to the limit as m→∞ in (3.24) we obtain

V (x′m(T ))− V (y0) ≥ lim
m→∞

sup
∫ T

0

‖x′′m(s)‖2ds. (3.25)

On the other hand from relation (3.19) and [5, Lemma 3.3], we obtain

d

dt
V (x′(t)) = ‖x′′(t)‖2, a.e. on [0, T ] .
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Thus, V (x′(T ))− V (x′(0)) =
∫ T

0
‖x′′(s)‖2ds, which yields directly that

V (x′(T ))− V (y0) =
∫ T

0

‖x′′(s)‖2ds (3.26)

Therefore, by (3.25) and (3.26), we get∫ T

0

‖x′′(s)‖2ds ≥ lim sup
m→∞

∫ T

0

‖x′′m(s)‖2 ds (3.27)

Since (x′′m) converges weakly to x′′ in L2([0, T ],Rn). hence∫ T

0

‖x′′(s)‖2 ds ≤ lim inf
m→∞

∫ T

0

‖x′′m(s)‖2 ds (3.28)

By (3.27) and (3.28), we obtain

lim
m→∞

∫ T

0

‖x′′m(s)‖2 ds =
∫ T

0

‖x′′(s)‖2 ds,

this means that the sequences (x′′m) converges strongly to x′′ in L2([0, T ],Rn). Con-
sequently there is a subsequence of (x′′m), denoted again by (x′′m), converges point
wise to x′′. From the facts that the graph of F is closed, τ(t)xm converges uni-
formly to τ(t)x, (x′m) converges uniformly to x′ and (x′′m) converges point wise to
x′′the relation(18) is proved.

It remains to prove the following two properties:
(1) (x(t), x′(t)) ∈ K × Ω, for all t ∈ [0, T ].
(2) x(s) ∈ P (x(t)) for all t, s ∈ [0, T ] and t ≤ s.

To prove the first property we note that the property (iii) of l Lemma 3.1 im-
plies that xm(δm(t)) ∈ B(ϕ0(0), r) ∩ K and x′m(δm(t)) ∈ B(y0, r) ∩ Ω. Since
limm→∞ xm(δm(t)) = x(t) and limm→∞ x′m(δm(t)) = x′(t) then x(t) ∈ B(ϕ0(0), r)∩
K and x′(t) ∈ B(y0, r) ∩ Ω.

To prove the second property, let t, s ∈ [0, T ] be such that t ≤ s. Then for m
large enough, we can find p, q ∈ {0, 1, 2, . . . , νm − 2} such that p > q, t ∈ [tmq , t

m
q+1]

and s ∈ [tmp , t
m
p+1]. Assume that j = p − q. Using property (v) of Lemma 3.1 and

condition (H4) we get

P (xm(tmp )) ⊆ P (xm(tmp−1)) ⊆ P (xm(tmp−2)) ⊆ · · · ⊆ P (xm(tmq )).

This implies P (xm(δm(s))) ⊆ P (xm(δm(t))). Since xm(δm(s)) ∈ P (xm(δm(s))), it
follows that P (xm(δm(t))) and hence the second property is proved. �

AS an example, let K = R and P (x) = [x,∞). Then x � y if and only if
y ∈ P (x); i.e., if and only if x ≤ y. Then the solution obtained above is monotone
in the usual sense.
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