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FLUCTUATIONS IN A MIXED IS-LM BUSINESS
CYCLE MODEL

ABDELILAH KADDAR, HAMAD TALIBI ALAOUI

Abstract. In the present paper, we extend a delayed IS-LM business cycle
model by introducing an additional advance (anticipated capital stock) in the

investment function. The resulting model is represented in terms of mixed

differential equations. For the deviating argument τ (advance and delay) be-
ing a bifurcation parameter we investigate the local stability and the local

Hopf bifurcation. Also some numerical simulations are given to support the

theoretical analysis.

1. Introduction

Differential equations with delayed and advanced argument (also called mixed
differential equations) occur in many problems of economy, biology and physics (see
for example [8, 12, 10, 1, 6]), because mixed differential equations are much more
suitable than delay differential equations for an adequate treatment of dynamic
phenomena. The concept of delay is related to a memory of system, the past events
are importance for the present current behavior, and the concept of advance is
related to a potential future events which can be known at the current present time
which could useful for decision making. The study of various problems for mixed
differential equations can be found in many works, we cite for example [20, 19, 18,
11, 7, 2].

In the present paper, we extend a delayed IS-LM business cycle model (see [13]),
by introducing an additional advance (anticipated capital stock) in the investment
function as follows:

dY

dt
= α[I(Y (t),K(t + τ), R(t))− S(Y (t), R(t))],

dK

dt
= I(Y (t− τ),K(t− τ), R(t− τ))− δK(t),

dR

dt
= β[L(Y (t), R(t))− M̃ ],

(1.1)

where Y is the gross product, K is the capital stock, R is the interest rate , M̃ is
the constant money supply, α is the adjustment coefficient in the goods market, β
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is the adjustment coefficient in money market, δ is the depreciation rate of capital
stock, I(Y, K,R) is the investment function, S(Y,R) is the saving function, L(Y, R)
is the demand for money and τ is the Kalecki’s time delay (1935, [15]); i.e. there
is a time lag needed for new capital to be installed.

The need of incorporation of an anticipated capital stock K(t + τ) in business
cycle model is of great interest for government to know by anticipation the capital
stock at future time (see [6], 2004).

The first dynamic IS-LM model is proposed by ordinary differential equations
by Torre in (1977, [22]) as follows:

dY

dt
= α[I(Y (t), R(t))− S(Y (t), R(t))],

dR

dt
= β[L(Y (t), R(t))− M̃ ],

(1.2)

In (1989, [9]), Gabisch and Lorenz considered the following augmented IS-LM busi-
ness cycle model:

dY

dt
= α[I(Y (t),K(t), R(t))− S(Y (t), R(t))],

dK

dt
= I(Y (t),K(t), R(t))− δK(t),

dR

dt
= β[L(Y (t), R(t))− M̃ ],

(1.3)

Recently, there have been many works devoted on the introduction of Kalecki’s
time delay into dynamic of investment processus (see [17, 21, 3, 23, 14]).

In (2008, [13]), we proposed a delayed IS-LM model by introducing time delay
into capital stock, interest rate and gross product in capital accumulation equation
as follows:

dY

dt
= α[I(Y (t),K(t), R(t))− S(Y (t), R(t))],

dK

dt
= I(Y (t− τ),K(t− τ), R(t− τ))− δK(t),

dR

dt
= β[L(Y (t), R(t))− M̃ ],

(1.4)

Clearly, this reformulation of Gabisch and Lorenz model is more reasonable, because
the change in the capital stock is due to the past investment decisions.

In this work, the dynamics of the system (1.1) are studied in terms of local
stability and of the description of the Hopf bifurcation, that is proven to exist as
the deviating argument τ (advance and delay) cross some critical value. A numerical
illustrations are given to support the theoretical analysis.

2. Steady state and local stability analysis

As in Cai (2005, [3]), we assume that the investment function I, the saving
function S, and the demand for money L are given by

I(Y,K,R) = ηY − δ1K − β1R,

S(Y,R) = l1Y + β2R,

L(Y, R) = l2Y − β3R,
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with δ1, l1, l2, β1, β2, β3 are positive constants. Then system (1.1) becomes

dY

dt
= α[(η − l1)Y (t)− δ1K(t + τ)− (β1 + β2)R(t))],

dK

dt
= ηY (t− τ)− δ1K(t− τ)− δK(t)− β1R(t− τ),

dR

dt
= β[l2Y (t)− β3R(t)− M̃ ].

(2.1)

In the following proposition, we give a sufficient conditions for the existence and
uniqueness of positive equilibrium E∗ of the system (2.1).

Theorem 2.1 ([13]). Define

Θ = δ(β3η − β1l2)− (δ + δ1)(β2l2 + β3l1),

and suppose that
(H1) : Θ < 0;
(H2) : (δ + δ1)l1 − δη ≤ 0.

Then there exists a unique positive equilibrium E∗ = (Y ∗,K∗, R∗) of system (2.1),
where Y ∗,K∗, R∗ are given by

Y ∗ =
−((β1 + β2)δ + β2δ1)M̃

Θ
, (2.2)

K∗ =
−(β1l1 + β2η)M̃

Θ
, (2.3)

R∗ =
((δ + δ1)l1 − δη)M̃

Θ
. (2.4)

In the next, we will study the stability of the positive equilibrium E∗ with respect
to the time parameter τ . Introducing the variable change Ka(t) = K(t + τ), the
system (2.1) leads:

dY

dt
= α[(η − l1)Y (t)− δ1Ka(t)− (β1 + β2)R(t))],

dKa

dt
= ηY (t)− δ1Ka(t− τ)− δKa(t)− β1R(t),

dR

dt
= β[l2Y (t)− β3R(t)− M̃ ].

(2.5)

The characteristic equation associated to system (2.5) takes the general form

λ3 + Aλ2 + Bλ + C + (Dλ2 + Eλ + F )exp(−λτ) = 0, (2.6)

where

A = δ + ββ3 − α(η − l1),

B = αδ1η − αββ3(η − l1) + αβ(β1 + β2)l2 − α(η − l1)δ + ββ3δ,

C = αβ{δ[(β1 + β2)l2 − β3(η − l1)] + δ1[β3η − β1l2]},
D = δ1, E = δ1(ββ3 − α(η − l1)),

F = αβδ1[(β1 + β2)l2 − β3(η − l1)].

We begin by considering the case τ = 0. This case is of importance, because if the
positive equilibrium of (2.1) is stable when τ = 0, we seek conditions on the model
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parameters to obtain the local stability for all nonnegative values of τ , or to find a
critical values τ0 of the delay which could destabilize the equilibrium.

When τ = 0 the characteristic equation (2.6) reads as

λ3 + (A + D)λ2 + (B + E)λ + (C + F ) = 0. (2.7)

From (H1) in proposition 2.1, we have C + F > 0. Hence, according to the Routh-
Hurwitz criterion, we have the following result.

Theorem 2.2 ([13]). For τ = 0, the equilibrium E∗ is locally asymptotically stable
if and only if

(H3) A + D > 0;
(H4) (A + D)(B + E)− (C + F ) > 0;

where A,B,C, D, E, F are defined in (2.6).

We assume in the sequel, that hypotheses (H1), (H2), (H3) and (H4) hold, and
we return to the study of (2.6) with τ > 0. Clearly, λ(τ) = u(τ) + iv(τ) is a root
of equation (2.6) if and only if

u3 − 3uv2 + Au2 −Av2 + Bu + C

= − exp(−uτ){Du2 cos(vτ)−Dv2 cos(vτ) + Eu cos(vτ)

+ F cos(vτ) + 2Duv sin(vτ) + Ev sin(vτ)},
(2.8)

and
3u2v − v3 + 2Auv + Bv

= − exp(−uτ){2Duv cos(vτ) + Ev cos(vτ)

−Du2 sin(vτ) + Dv2 sin(vτ)− Eu sin(vτ)− F sin(vτ)},
(2.9)

We set u = 0 into the two equation (2.8) and (2.9) to get

−Av2 + C = (Dv2 − F ) cos(vτ)− Ev sin(vτ), (2.10)

v3 −Bv = Ev cos(vτ) + (Dv2 − F ) sin(vτ). (2.11)

Squaring and adding the squares together, we obtain

v6 + av4 + bv2 + c = 0, (2.12)

with a = A2 −D2 − 2B, b = B2 − 2AC −E2 + 2DF , c = C2 − F 2. Letting z = v2,
equation (2.12) becomes the cubic equation

h(z) := z3 + az2 + bz + c = 0, (2.13)

Using the results from [4], we have the following two lemmas.

Lemma 2.3. Suppose that (H1)-(H4) hold, then the following taxonomy holds:
(i) If (2.13) has no positive solutions, then no stability switches exists.
(ii) If (2.13) has one or two positive solutions, then there exists only one sta-

bility switch.
(iii) If (2.13) has three positive solutions, then there exists at least a stability

switch.

Lemma 2.4. If τ∗ is a stability switch and v∗ corresponding to τ∗ is a simple root
of equation (2.13), then a Hopf bifurcation occurs at τ∗.
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Now, define

∆ = a2 − 3b, (2.14)

z1 :=
1
3
(−a +

√
∆), (2.15)

z2 :=
1
3
(−a−

√
∆). (2.16)

Lemma 2.5. Suppose that c < 0.
(i) If one of the following two conditions

(S1) ∆ < 0
(S2) ∆ > 0, z1 < 0 or z1 > 0 and z2 < 0; or z2 > 0 and h(z1)h(z2) > 0;

is satisfied, then (2.13) has unique simple positive root.
(ii) If

(S3) ∆ > 0, z2 > 0 and h(z1)h(z2) < 0,
then (2.13) has three simple positive roots.

Proof. By differentiating h(z), we have

dh(z)
dz

= 3z2 + 2az + b .

Set
3z2 + 2az + b = 0. (2.17)

If ∆ < 0, then equation (2.17) does not have real roots, so the function h is
monotone increasing in z. It follows from h(0) = c < 0 that equation (2.13) has
unique simple positive root. If ∆ > 0, then the equation (2.17) has two roots z1

and z2, where z1 > z2, are defined by (2.15) and (2.16).
Clearly, z1 is the local minimum of h(z). Thus, if z1 < 0 or z1 > 0 and z2 < 0,

or z2 > 0 and h(z1)h(z2) > 0, then equation (2.13) has unique simple positive root.
(ii) If ∆ > 0, z1 > 0, z2 > 0 and h(z1)h(z2) < 0, then equation (2.13) has three
simple positive roots. �

By similar arguments the following lemma can be proved.

Lemma 2.6. Suppose that c > 0. If
(S4) ∆ > 0, z1 > 0 and h(z1) < 0,

then (2.13) has two simple positive roots.

Suppose that equation (2.13) has simple positive roots. Without loss of general-
ity, we assume that it has three positive roots, denoted by z1, z2 and z3, respectively.
Then equation (2.6) has three positive roots, say v1 =

√
z1; v2 =

√
z2; v3 =

√
z3.

Let

τl =
1
vl

[arccos(
(Av2

l − C)(F −Dv2
l ) + (v3

l −Bvl)Evl

(Dvl − F )2 + E2v2
l

)], l = 1, 2, 3.

Then ±ivl is a pair of purely imaginary roots of equation (2.6) corresponding to
τ = τl, l = 1, 2, 3. Define

τ0 = τl0 = min
l=1,2,3

(τl), v0 = vl0 , z0 = v2
0 . (2.18)

From lemmas 2.3, 2.4, 2.5 and 2.6, we have the following result.
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Theorem 2.7. Suppose that (H1)-(H4) hold. If one of the conditions (S1), (S2),
(S3) or (S4) holds, then there exists a critical positive deviating argument τ0 such
that, when τ ∈ [0, τ0) the steady state E∗ is locally asymptotically stable, and a Hopf
bifurcation occurs as τ passes through τ0, where τ0 is given by (2.18). Moreover,

d Re λ(τ0)
dτ

> 0.

Proof. We need to prove only

d Re λ(τ0)
dτ

> 0.

Let λ(τ) = u(τ) + iv(τ) be the root of (2.6) satisfying u(τ0) = 0, and v(τ0) = v0.
By differentiating (2.8) and (2.9) with respect to τ and then setting τ = τ0, we

obtain

G1
du(τ0)

dτ
+ G2

dv(τ0)
dτ

= H1, (2.19)

−G2
du(τ0)

dτ
+ G1

dv(τ0)
dτ

= H2, (2.20)

where

G1 = −3v2
0 + B + (E + Dv2

0τ0 − Fτ0) cos(v0τ0) + (2Dv0 − Ev0τ0) sin(v0τ0),

G2 = −2Av0 + (−2Dv0 + Ev0τ0) cos(v0τ0) + (E + Dv2
0τ0 − Fτ0) sin(v0τ0),

H1 = (−Dv3
0 + Fv0) sin(v0τ0)− Ev2

0 cos(v0τ0),

H2 = (−Dv3
0 + Fv0) cos(v0τ0) + Ev2

0 sin(v0τ0).

Solving for du(τ0)
dτ we get

du(τ0)
dτ

=
G1H1 −G2H2

G2
1 + G2

2

. (2.21)

Therefore, we have
du(τ0)

dτ
=

v2
0h′(z0)

G2
1 + G2

2

. (2.22)

Thus, we have the transversally condition

du(τ0)
dτ

6= 0.

If du(τ0)
dτ < 0, for τ < τ0 and sufficiently close to τ0, then equation (2.6) has a root

λ(τ) = u(τ)+iv(τ) satisfying u(τ) > 0, which contradicts the fact that E∗ is locally
asymptotically stable for all τ ∈ [0, τ0). This completes the proof. �

3. Hopf bifurcation

From theorem 2.7, we have the following result.

Theorem 3.1 ([5]). Suppose that (H1)-(H4) hold. If one of the conditions (S1),
(S2), (S3), (S4) holds, then there exists ε0 > 0 such that for each 0 ≤ ε < ε0,
system (2.1) has a family of periodic solutions p = p(ε) with period T = T (ε), for
the parameter values τ = τ(ε) such that p(0) = 0, T (0) = 2π

v0
and τ(0) = τ0.
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4. Numerical Application

In this section, we give a numerical simulation supporting the theoretical analysis
given in section 2 and 3. Consider the following parameters:

α = 1.5, β = 2, δ = 0.2, δ1 = 0.5, M̃ = 0.05,

l1 = 0.1, l2 = 0.2, β1 = β2 = β3 = 0.2, η = 0.4.

System (2.1) has the unique positive equilibrium E∗ = (0.2647, 0.1470, 0.0147). It
follows from 2, that the critical positive deviating argument τ0 = 2.030488132.
Thus from theorem 2.7 we know that when 0 ≤ τ < τ0, E∗ is asymptotically stable
(see Fig.1). When τ passes through the critical value τ0, E∗ loses its stability and
a family of periodic solutions with period T (0) = 7.627527841 bifurcating from E∗

occurs (see Fig.2 and Fig.3).
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Figure 1. For τ = 1.8, the solutions (Y (t) , K(t) , R(t)) of (1.2)
are asymptotically stable and converge to the equilibrium E∗.
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