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AMBROSETTI-PRODI TYPE RESULTS IN A SYSTEM OF
SECOND AND FOURTH-ORDER ORDINARY DIFFERENTIAL
EQUATIONS

YUKUN AN, JING FENG

ABSTRACT. In this paper, by the variational method, we study the existence,
nonexistence, and multiplicity of solutions of an Ambrosetti-Prodi type prob-
lem for a system of second and fourth order ordinary differential equations.

1. INTRODUCTION

Lazer and McKenna [I] presented the following (one-dimensional) mathematical
model for the suspension bridge:

Yt + Yeaaw + 01y + k(y —2)T = W(x), in(0,L) xR,
24t — Zgw + 022t — k(y — 2)T = h(x,t), in (0,L) x R,
Y(0,1) = y(L,1) = Y2 (0,1) = Yoa(L, 1) =0, tER,
2(0,t) = 2(L,t) =0, teR.

(1.1)

Where the variable z measures the displacement from equilibrium of the cable and
the variable y measures the displacement of the road bed. The constant k is spring
constant of the ties.

When the motion of the cable is ignored, the coupled system can be simpli-
fied into a single equation which describes the motion of the road bed of suspension
bridge, as follows

Yt + Yzxax + 5yt + ker = W(xat)v in (Oa L) X Rv
y(0,t) = y(L,t) = Y2z (0,t) = yua(L,t) =0, tER.

This Problem have been studied by many authors. In [2 [3] 4], the authors,
using degree theory and the variational method, investigated the multiplicity of
some symmetrical periodic solutions when 6 = 0 and W(x,t) = 1 4 eh(z,t) or
W(z,t) = acosx + Bcos2t cosze. In [5], the similar results for are obtained
in case of § # 0 and W(z,t) = h(x,t) = acosx + [cos2tcosz + 7sin 2t cos T.
Those results give the conditions impose on the spring constant k£ which guarantees
the existence of multiple periodic solutions, especially the sign-changing periodic

(1.2)
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solutions in the case of W(x,t) is single-sign. It is notable that the functions
cos x, cos 2t cos x, sin 2t cos ¢ are the eigenfunctions of linear principal operator of
(1.2) in some function spaces.
When we consider only the steady state solutions of problem (|L.1]), we arrive at
the system
Yzxax + k(y - Z)+ = hl(x)a in (Oa 7T)a
—zpz — k(y — 2)* = ha(z), in (0,7),
2(0) = z(m) = 0.
This problem has little been studied in [12, 13]. In [6l 5], the analogous partial
differential systems have been considered when the nonlinearities k(y —2)™, —k(y —
z)* are replaced by general fi(y,z2), f2(y,2). And also, in recently, literature [16]
studied the system

(1.3)

Yoz + k1yT +ezT =sinz, in (0,7),
Zew + €yt + ko2t =sinz, in (0,7),
y(0) = y(m) =0,

z(0) = z(m) = 0.

(1.4)

Where u™ = max{u, 0}, the constant € is small enough such that the matrix

kl €
€ k‘g
is a near-diagonal matrix and the positive numbers k1, ko satisfy

m? < ky < (my +1)%, m3 < ky < (my +1)?  for some my, my € N.

This is a first work in the direction of extending to systems some of well-known
results established on nonlinear equation with an asymmetric nonlinearity. Mean-
while in [I6] there are two open questions to be interesting:

Question 1. Can one obtain corresponding results if the second-order differential
operator is replaced with a fourth-order differential operator with corresponding
boundary conditions?

Question 2. Can one replace the near-diagonal matrix with something more gen-
eral and use information on the eigenvalues of matrix?
Following the above works and questions, we consider the system

—u" = fi(z,u,v) +tysinz + hi(x), in (0,7)
" = fo(z,u,v) + tasinz + ha(x), in (0,7)
u(0) = u(r) =0,

v(0) = v(m) =v"(0) =" (7) = 0,

(1.5)

where t;,t, are parameters and (f1, f2) : [0, 7] x R? — R? is asymptotically linear.
On the other hand, the second order elliptic systems as follows

—Au = fi(u,v) +tip1 + hi(z), inQ,
—Av = fo(u,v) +tapr + ha(z), inQ, (1.6)
u=v=0, ond)
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have been widely studied. Here we mention the papers [7, 8,0, [10] and the references
therein. If (f1, f2) : R? — R? is asymptotically linear and the asymptotic matrixes

at —oo and +oo are
a b b
c dj)’ d

Under some growth conditions on (fi, f2), in those papers, the Ambrosetti-Prodi
type results for (1.6)) have been given respectively.
We remind that let g € C*(£2 x R) be a given function such that

o Kl

lim sup M < A1 < liminf M

55— —00 S §—+00 S

uniformly in x € €, where \; is the first eigenvalue of the Laplacian on a bounded
domain ) under the Dirichlet condition and ¢, is the associated eigenfunction.
The Ambrosetti-Prodi type result in a Cartesian version states that for a given
h € C%(Q) there exists a real number ¢, such that the problem

—Au = g(z,u) +te1 +h, inQ
u=0, on 9dN

(i) has no solution if ¢ > to;
(ii) has at least two solutions if ¢ < tg.

With different variants and formulations this problem has been extensively studied.

Inspired, we consider the Ambrosetti-Prodi type problem for system . This
paper is organized as follows: in Section 2, we prepare the proper variational frame-
work and prove (PS) condition to the Euler-Lagrange functional associated to our
problem. In Section 3, we prove the main theorem. Finally, a piecewise linear
problem is considered as an example in Section 4.

2. PRELIMINARIES

In this section, we prepare the proper variational frame work for (|1.5)), that is

—u" = fi(z,u,v) + tysinz + hy(z), in (0,7)
V" = fo(x,u,v) + tasinz + ho(x), in (0,7)
u(0) = u(m) =0,

v(0) = v(r) =v"(0) =" (7) = 0.

Where t1,ty are parameters, hq, ho € C[0, 7| are fixed functions with fo7r hisinz =
foﬂ hosinz = 0.

We shall need some assumptions on the nonlinearities, which are necessary to
settle the existence or not of solutions in the case of the Ambrosetti-Prodi type
problem and to establish (PS) condition.

Let us order R? with the order defined by

€= (£1,6) >0 &,& >0.

and denote W = (u,v) and F(z, W) = (fi(x,u,v), fa(x, u,v)).
We will use the following hypotheses in this article.
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(H1) F = (f1, f2) : [0,7] x R? — R? is locally Lipschitzian function respect to
u,v, and there exists a function H : [0, 7] x R? — R such that

OH 0
VH(wu,0) = (o ) = (i), fo(e o))
(H2) For £ = (&1,&2) > 0 large enough,
F(z,€) > 0. (2.1)

(H3) F satisfies
|F(2,8)] < || + &2l +1), VEER?, z € (0,m) (2.2)

where ¢ > 0 is constant.
(H4) For £ = (&1,&) € R? and x € (0, ) there holds

F(z,8) > AS — ce, (2.3)

for some constant ¢ > 0. Where e = (1,1) and the matrix A = (i Z)
satisfies
b,c >0,
(A, ¢) < H|§\2, for some 0 < p < 1. (2.5)
(H5) For ¢ = (£1,&) € R? and € (0,7) there holds
F(z,8) > A — ce, (2.6)

for some constant ¢ > 0. Where e = (1,1) and the matrix A = (Z Z)
satisfies
b,¢ <0,
(A, €) > Tl¢?, for some i > 1. (2.8)
(If not mentioned, ¢ will always denote a generic positive constant.)

Remark 2.1. With a simple computation it is easy to show that (2.4)-(2.5) and

£.7)-@8) imply, respectively,

2.9

(A-1)7'€ <0, VEER? €20, &8

and L B
(1-a)(1—-d)—bc>0, a,d>1,
(A-1)7'¢>0, VEER? €20,

where [ is the identity matrix.

Let X = H}(0,7) x (Hg (0, m)NH?(0, 7)) be Hilbert space with the inner product

(2.10)

(W) = / (W + "9, YW = (uyv), T = (1, 40n) € X,

and the corresponding norm

T 2
W = / (W +0").
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Consider the second-order ordinary differential eigenvalue problem
—u" = Xu, in (0,7),
u(0) = u(m) =0,
and the fourth-order ordinary differential eigenvalue problem
""" =X, in (0,7),
v(0) = v(m) = 0"(0) =" (7) = 0.
It is well known that Ay = 1 and ¢; = sinz are the positive first eigenvalue

and the associated eigenfunction, respectively. Hence, it follows from the Poincare
inequality that, for all W € X,

/0 W2 < WA (2.11)

A vector W € X is a weak solution of (|1.5) if, and only if, it is a critical point
of the associated Euler-Lagrange functional

1 s s s
JW) = 5/ (W + ") — / H(z,u,v) — / [(t1sinx + hy)u + (tasinz + ho)v)
0 0 0
(2.12)
It is standard to show that the functional J(W) is well defined, J(W) € C*(X,R)
and X — R; W — [" H(z,u,v)+ [ [(t1 sin @+ hq )u+ (t2 sin 2+ he)v] has compact
derivative under the assumptions (H1) and (H3).

Lemma 2.2. Assume that (H1)-(H5) hold. Then J satisfies the (PS) condition.

Proof. Let {W,, = (un,vn)} C X be a sequence such that |J(W,,)| < ¢ and
J'(W,,) — 0. This implies

| /0 (o)~ /0 ' [(Fren + fatba) + (tasina + ha)n + (tasine + ha)io] |

< enl|¥|[x
(2.13)
for all ¥ = (¢1,19) € X, where €, — 0(n — o0). Then by the above discussion it
suffices to prove that {W,} is bounded.
Step 1: Show the boundedness of {W,, }. Let W, = (u,,,v, ), w~ = max{0, —w}.

n»'n

Since h1, ho are bounded, there exists My, Mo > 0 such that
[tisinx + hq| < My, |tesinz + ha| < Mo. (2.14)
Moreover, from and , we have
Fr(@,un, vn) (—uy) < aluy)? + bug vy + cuy,,
Fa(@, un, vn)(—vy) < d(v,)* + cuy v, +cvy.
Choosing ¢ > max{M;, M5} and taking ¢ = —u,, ,1o = —v,, in , then using
the above inequalities and , we obtain

W% < / (AW W) + / (cuy — Myug + evy — Myuy) + e[ Wi |lx

™
0

<u [P a [+l
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Where d > max{c— M;,c— My} is constant. Using Holder inequality and Poincare
inequality, we get
s ™ ™
[t < ety <o [,
0 0 0

/O \v;|§c</0 \m?)“zsd/o o[22,

Then from these two inequalities and (2.11)) we have
= wIWr % < cllwy lx,

since 0 < p < 1, ||W, | is bounded.

Step 2: Show the boundedness of {W,,}. Suppose by contradiction that {W,,} is
unbounded, then there exists a subsequence (still denote {W,, }) such that ||W,||x —
oo asmn — oo. Setting V,, = (zn,yn) = Wao/||Wallx, then |V, ||x = 1 and there
exists a subsequence such that

Vi = Vo = (z0,90), inX, (2.15)
V,, — Vo, in L*(0,7) x L*(0,7), (2.16)
Vi, — Vo, a.e. in (0,7),
with |z, (2)], |y (x)| < h(z) € L?, 2 € (0, 7). (2.17)

By step 1 we may assume that V- — 0 in L? x L? and V,” — 0 a.e.in (0, 7).
Clearly, Vi > 0. Denote

Gn(2) = (gn(2), gi(2))
(f1(z, Wy (x)) + t1sinz + hy, folx, We(x)) + tasina + hs)
Wllx

We claim that

Gn —v=(71,72) >0 in L?*x L% (2.18)

In fact, let A, = {z € (0,7);un(z) < 0 and v,(z) < 0} and let x, denotes its

characteristic function, then G,, = x,Grn + (1 — xn)Gr. By (H3), (2.16), (2.17) and
using the Lebesgue Dominated Convergence Theorem, we get

F(z,W,)

Xn T

HWn”X

Moreover, from (2.14)) we have

(tysinz + hy,tasinz + ho)
. Wallx
Hence x,G, — 0in L? x L?. With the same reasoning (1 — x,,)Gn — ¥ = (71,74)

in L? x L?. Therefore, we only need to prove that v/ > 0.
(i) If un(x) > 0 and v, (z) < 0, since @ > 1, from (2.6) we have

—0 in L?x L2

—0 in L? x L2

- tisine +hy _ _
1 — xn)g (2) + by (7)) + o — (1 = xn) ot T > ot (2) > 0
(1 = xn)gn (@) + b(y, (z)) Wilx (1= xn) Wilx (2)
and from (2.3]) and (2.4)), we obtain
_ c tosinx + ho
1—n,21x+dnx = (1= xp) o >cxl (x) >0
(1= Xn)gn () + d(y, ()) Wallx (1= xn) AT (x)
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Since V,- — 0 in L? x L? and

o c tysinz + hy

1= Xn)gn (@) +b AR A P

(=X () + By () + e = (=) T = =
tosinx + ho /

(1= a9 (@) + dlyn (2)) + e = (L= Xa) F = =

we get v > 0.
(ii) If up(z) < 0 and v, (z) > 0, we can handle in the same way to obtain that

~' > 0.

(iii) If u,(z) > 0 and v, (z) > 0, the assertion 4" > 0 can be inferred from (H2).

Now dividing (2.13)) by ||W, | x, using (2.15]), (2.18) and passing to the limit we

obtain
| @it = [ oot ), W= ex. @)
0 0
From (2.6) we have
(fr(z,Wy(x)) + t1sinz + hy, folx, Wy (x)) + tasine + ha) _ — ce
> AV, — .
[Wallx [Wallx
Passing to the limit in this inequality we get
v > AV, (2.20)
Taking 11 = sinx, 9 = 0 and then ¥; = 0, 1p3 = sinz in (2.19) and using (2.20)),
it is achieved that - )
(A -1 (fow Lo s x) <0. (2.21)
Jo yosinz

From Remarkﬁ applying (A—1)~* to (2.21)) we get ([ zosinz, [ yosinz) <O0.
Hence z¢g = yo = 0 a.e. So, from 1 , fo (7,¥) = 0 and taking ¥ > 0 we have

v =0.

Finally, consider ¥ = z,%2 = y, in (2.13). Dividing the resulting expression
by ||[Wh,llx, and passing to the limit we obtain 1 < 0, that is impossible. O
Lemma 2.3. Suppose (H5) hold. Then

’hrf J(ssinx, ssinz) = —oo. (2.22)

Proof. From (2.6) we have

H(z,u,v) > guz +buv — cu+ H(z,0,v) asu > 0,V, (2.23)
d
H(xz,u,v) > 51}2 +cuv —cv + H(xz,u,0) aswv >0,Vu. (2.24)

Adding (2.23)), (2.24]) and using them again,

- d
2H (z,u,v) > gu2+(b+6)uv+5112—cu—cv—l—H(w,O,v)—i—H(m,u,O)
> au® + (b+ ¢)uv + dv? — 2cu — 2cv + 2H (z,0,0)
> au® + (b+¢)uv + dv® — 2cu — 2cv + 2¢,  for u,v > 0.

Then by (2.8) we have
H(z,W) > %|W|2—cufcv+c. (2.25)
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Taking W = (ssinz, ssinx), where s > 0, from (2.14) and (2.25)) we get

71'82

J(ssinx,ssinx)§7(1—ﬁ)—|—(c+M1)/ ssinx+(c+M2)/ ssinx — ¢
0 0
s>
77(1—ﬁ)+cs—c
since 7 > 1, (2.22) holds. O

3. THE AMBROSETTI-PRODI TYPE RESULT

A

In this section, we state and prove the Ambrosetti-Prodi type result for system
(1.5). We need the following concepts.

Definition 3.1. (1) We say that a vector function W € X is a weak subsolution

of (L) if
J(W)(¥) <0, YUeX, ¥>0.

(2) W = (u,v) € C? x C* is a subsolution (classical) of (L.5) if
—u" < fi(w,u,v) + tysinz + hy, in (0, ),
V" < fo(w,u,v) +tasinz + hy, in (0,7),
u(0) = u(mw) =0,
v(0) = v(r) = 0" (0) =" (7) = 0.

(3) Weak supersolutions and supersolutions (classical) are defined likewise by
reversing the above inequalities.

We can easily show that each a subsolution or a supersolution of is indeed
also a weak subsolution or a weak supersolution, respectively.

For to present the subsolution and supersolution for , we firstly show a
maximum principle as follows.

Lemma 3.2. Let A be a matriz-function with entries in C[0,n] satisfy (2.4) and
(2.5). If W = (u,v) € X is such that
/ (W, + ") > / (AW, 0), YU = (1, 4) € X, (3.1)
0 0
then W > 0.
Proof. Let W =W~ = (u~,v~) in (3.1), by (2.4) and (2.5]), we obtain
[y < [Caws ) - [ aw )
0 0 0
< [CIWR <
Therefore, W~ =0, i.e. W > 0. O

Remark 3.3. In the classical sense, (2.4) and (2.5) are also sufficient conditions
for having a maximum principle for the problem

—u" =au+bv+gi(x), in(0,7),
1mn

" =cu+dv+ go(x), in (0,m),
u(0) = u(mr) =0,
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v(0) = v(r) = 0" (0) =" (7) = 0.
This is, W = (u,v) > 01if g1 > 0,92 > 0.
Lemma 3.4. Assume condition (H4), i.e. (2.3), (2.4) and (2.5) hold. Then, for
all t = (t1,t2) € R2, system (1.5) has a subsolution Wy such that, if W is any

supersolution we have
W, <W*' in (0,7). (3.2)

Proof. We consider the system

—u" =au+bv—c+tysinz + hy, in (0,7),
"

" =cu+dv—c+tysinae + hg, in (0,7),
u(0) = u(r) =0,

v(0) = v(7) = v"(0) = v"(7) = 0,
where ¢ is the constant in (2.3)) and (2.6). From the hypotheses on A and hy, ho,
(3.3) has a unique solution W; € C2? x C*. Then, using (2.3) we conclude that W;
is in fact a subsolution of (|1.5).

Finally, suppose that W' is any supersolution of (1.5]), from (2.3) and applying
Lemma [3.2] directly we can get the assertion (3.2)). O

Lemma 3.5. Suppose (H1) holds and (hy, ha) € C[0, 7] x C[0,7]. Then there exists
t® € R? such that, for all t <t°, system (1.5) has a supersolution W.

(3.3)

Proof. Let u,v be the solution of the system
—u" = f1(x,0,0) + hi(z), in (0,7),
" = fa(x,0,0) + ha(x), in (0,7),
u(0) = u(r) =0,
v(0) = v(7) ="(0) =v"(r) = 0.

(3.4)

Due to the locally Lipschitzian condition on fi, fo, it is possible to choose t° =
(19,t9) < 0 such that

fi(z,@,) — fi(2,0,0) + tYsinz <0,

fo(z,@,T) — fa(z,0,0) + t9sinz < 0.
Hence, from these inequalities and the system 1] for all ¢ < ¢9 Wt = (w,v) is
a supersolution for ([1.5)). O

Lemma 3.6. Let (H4), (H5) hold. Then for a given hy, ha, there exists an un-
bounded domain R in the plane such that if t € R, system (1.5) has no supersolu-
tion.

Proof. Suppose W = (u,v) is a supersolution for ((1.5). Multiplying both equations
of this system by sin z, integration them by parts and using (2.3)), (2.6)) we deduce

that
(A1) (Z;) < (_j;) , (3.5)

(A-1) (Z;) < (_z;) : (3.6)

oy oy
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U . s . .
Where p1 = [ usinz, py = [ vsinz, sy =t — ¢, 52 = to — ¢ and ¢ is the constant

in ([2.3) and (2.6). From remark 2.1} applying (A—1)~" and (A—1I)~" to (3.5) and
(3.6

.6)), respectively, we obtain that
(i) If p; <0, then sy < %51 when b # 0, or s; < 0 when b= 0.
(if) If p1 > 0, then so < ‘%151 when b # 0, or s; < 0 when b= 0.
Therefore, independently of the sign of p1, the pair (s1, $2) is in a region composed
of the union of two half-planes passing through the origin, each of them bounded

above by a straight-line of negative or infinity slope. ® is the complement of this
region in the original variables ¢; and ts. ([

Now, we are at a position to prove the Ambrosetti-Prodi type result for system
)
Theorem 3.7. Suppose that conditions (H1)—(H5) are satisfied and that there ezists

a matrix (@) ba)
a(x x
a0 = (20 1)
with b(x), c(z) > 0 (cooperativeness condition on A(x)) satisfies such that

Then there exists a continuous curve I splitting R? into two unbounded components
N and E such that:

(1) for each t = (t1,t2) € N, (L1.5) has no solution;
(2) for each t = (t1,t2) € E, (L.5) has at least two solutions.

Proof. For each 6 € R, define
Lo = {(t1,t2) € R%ta + 0 =t1},
and R(0) = {t; € R; has a supersolution with ¢ € Ly for some t2 € R}.
Lemmas [3.5] and [3.6] allows us to define the continuous curve
['(6) = (sup R(6), sup R(6) — 0),

which splits the plane into two disjoints unbounded domains N and E such that
for all ¢ € N no supersolution exists for , while for all t € FE has a
supersolution.

Obviously, for all ¢t € N, no solution exists for (L.5), result (1) is proved.

To prove result (2), now we use the abstract variational theorems to find the
solutions of when t € E. We write

(J'(W), w)

= <W, \I/> — /Oﬂ[(fl(a:,u,v) +tysinx + hl)'¢1 + (fg(x,u,v) +tosinx + hg)’(ﬂg]

Given t € E there exists a supersolution W' = (u!,v') and a subsolution W; =

(ug,v¢) of (L.5) such that Wy < Wt in (0,7). Let

M =Wy, W' = {W e X;W, <W < W'},
since Wy, Wt € L by assumption, also M C L* and H(z,W(x)) + (t;sinz +
hi)u+ (tasinz + he)v < ¢ for all W € M and almost every x € (0, 7).

Clearly, M is a closed and convex subset of X, hence weakly closed. Since M is
essentially bounded, J(W) > 1||W||% — ¢ is coercive on M. On the other hand, if
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W, — W weakly in X, where W,,, W € M, we may assume that W,, — W pointwise
almost everywhere; moreover, |H (z, Wy,) + (1 sinx + hq)uy, + (t2sinz + ho)v,| < ¢
uniformly, using Lebesgue Dominated Convergence Theorem, we have
T s
/ Hiz, W) + / (1 sina + b ) + (t2 sinz + ha)v]
0 s 0 s
— / H(x, W)+ / [(f1sinz 4+ hy)u + (t2 sinz + ha)v).
0 0

Hence J is weakly lower semi-continuous on M. Then we can use [I7, Theorem 1.2]
to find a vector function Wy = (ug,vg) € X such that Wy € M is the infimum of
the functional J restricted to M.

To see that Wy is a weak solution of (1.5)), for ¢ = (¢1,92) € C§°(0,7) and
e>0let

ue = min{u’, max{us, uo +ep1}} = up + 1 — @5 + 1.
ve = min{v’, max{v,, vo + epa}} = vo +epa — 95 + 2
with
¢§ = max{0,ug +ep; —u'} >0,
©5 = max{0, vy + epa — v'} >0,
and
p1e = —min{0,uo +ep1 —ur} >0,
w2 = —min{0, vy + ey — v} > 0.

Note that W, = (ue,v:) € M and ¢° = (p5, 05), 0 = (P1e,02:) € X N L>(0, 7).
The functional J is differentiable in direction W, — Wy. Since W, minimizes J
in M we have

0 < (We = Wo, J'(Wo)) = elp, J'(Wo)) — (¢%, ' (Wo)) + (pe, J'(Wh)),
so that
(o, 7' (Wo) 2 214", ' (Wo)) = (e, 7' (W)
Now, from W? is a supersolution to , we get

(%, ' (W)
= (&%, J'(W)) + (%, J' (Wo) — J'(W"))
> (%, J' (Wo) = J' (W)

- / (0 — ') (g + ey — )’ + (v — 0" (g + 02 — 01)"]
- /Qm(a:, Wo) — fi(ar, W) (i + 01 — i)
- /Q ol Wo) — falae, W) (v + 02 — 01)

>e /Q (o — ut)' g, + (vo — 01"

*6/ |f1(5177W0)*f1(177Wt)||901|*5/ | f2(@, Wo) — fa(a, W")|| 2]
Q Q
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where Q = {z € (0,7); Wy(z) +ep(x) > Wi(z) > Wy(z)}. Note that meas(Q) — 0
as € — (. Hence by absolute continuity of the Lebesgue integral we obtain that
(%, ' (Wh)) = o)
where o(¢)/e — 0 as ¢ — 0. Similarly, we conclude that (., J'(Wp)) < o(e); thus
<§03 J/(WO)> > 0

for all ¢ € C§°(0,7). Reversing the sign of ¢ and since C§°(0, 7) is dense in X we

finally get that J'(Wy) = 0, i.e. Wy is a weak solution to (1.5). Then using (3.7)

and a Maximum Principle Lemma [3.2] we claim that W} is a local minimum of J.
Suppose by contradiction that Wy is not a local minimum, then for every € > 0

there is W. € B. (Wo) (a ball of radius € around Wy € X)) such that J(W.) < J(Wy).

We know that B, (WO) is weaker sequentlally compact in X and J is weakly lower

semi-continuous, therefore there is W € B.(Wp) such that

JOWV.) = inf J < J(W.) < J(Wp),
B.(Wo)

and (J'(V/V\E),VT//\E —Wy) <0, or
J' (W) = Ae(W. — Wo)  with A <0,

namely

/ @+ 6 — / 1 (0, 52 )01 + fo (20, 62 )100]
0 0

— / [(t1sinz 4+ hy)1p1 + (tasinx + ha)ihs] (3.8)
0
= A[(te — uo)¥h1 + (02 — vo)iba].
On the other hand, from Definition [3.1] we have
/ (updh) + vy y) —/ [f1(z, u, ve)vn + fa(, ue, ve) o]
0 0 (3.9)

— / [(tl sinz + hl)wl + (tQ sinz + h2)¢2] <0,
0

and

/ (") + 0" ) — /ﬂm(x,ut,vt)wl+f2(x,ut,vt>w2}
0 0 (3.10)

— / [(tl sinx + hl)i/}l + (tQ sinx + hg)wg] Z 0
0
From ([3.8)—(3.9), we obtain
J 1@ =+ @ o)
0

= [ T2 = o W) + (e, T2 e W)
> Ae[(te — ug + ug — up)h1 + (02 — v + ve — Vo) 2]
This implies
—(uz —up)" > fi(z, W/Z) — file, Wy) + Ae(uz — ug) + Ae(uy — uo),
(0 — )W > falw, W2) — falw, Wh) + A — vr) + Ac(vr — v0).
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Then from ([3.7) we obtain

() 2 AT, W) + A7~ w3,

note that A. <0, and by using Lemma [3.2] we obtain
VVE*WtZO, or WtSV/V\s-
Similarly, from —, we can obtain
W, < Wt

Which contradicts J(Wy) = infps J(W).

Finally, since J is not bounded from below, a weaker form of the Mountain Pass
Theorem can be used to find another solution Wi # Wy of (L.5). Then result (2)
is proved. (I

4. EXAMPLE: A PIECEWISE LINEAR PROBLEM
Consider the system
—u" = kjut +evT +t;sinz + hy(z), in (0,7),
v@ = euT + kyvt + tysinz 4 ho(z), in (0,7),
u(0) = u(m) =0,
v(0) = v(r) =2"(0) =" (r) = 0.

(4.1)

Where € and k1, ko are constants, t1, to are parameters and hy, ho € C[0, 7] are fixed
functions with foﬂ hysinz = foﬂ ho sinx = 0. This problem is similar to system 1'

Theorem 4.1. Suppose that k1 > 1, ko > 1 and € > 0. Then there exists a curve
I splitting R? into two unbounded components N and E such that:

(1) for each t = (t1,t2) € N, (4.1) has no solution;

(2) for eacht = (t1,t2) € E, (4.1) has at least two solutions.

—~ (k0 (00
=6 n) a-(0)

Then we can easily verify that the conditions of Theorem hold and therefore
the results are follow. O

Proof. Let

Remark 4.2. (1) Denote by p; (i = 1,2) the eigenvalues of matrix

o kl €
A(G k‘g)

and let 1 < po. It can be shown that ps > 1 since ky > 1 and ko > 1.
(2) This result gives a partial answer to Question 1 and Question 2 that were
posted in [I6] and stated in Section 1.
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