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AMBROSETTI-PRODI TYPE RESULTS IN A SYSTEM OF
SECOND AND FOURTH-ORDER ORDINARY DIFFERENTIAL

EQUATIONS

YUKUN AN, JING FENG

Abstract. In this paper, by the variational method, we study the existence,

nonexistence, and multiplicity of solutions of an Ambrosetti-Prodi type prob-
lem for a system of second and fourth order ordinary differential equations.

1. Introduction

Lazer and McKenna [1] presented the following (one-dimensional) mathematical
model for the suspension bridge:

ytt + yxxxx + δ1yt + k(y − z)+ = W (x), in (0, L)× R,
ztt − zxx + δ2zt − k(y − z)+ = h(x, t), in (0, L)× R,
y(0, t) = y(L, t) = yxx(0, t) = yxx(L, t) = 0, t ∈ R,

z(0, t) = z(L, t) = 0, t ∈ R.

(1.1)

Where the variable z measures the displacement from equilibrium of the cable and
the variable y measures the displacement of the road bed. The constant k is spring
constant of the ties.

When the motion of the cable is ignored, the coupled system (1.1) can be simpli-
fied into a single equation which describes the motion of the road bed of suspension
bridge, as follows

ytt + yxxxx + δyt + ky+ = W (x, t), in (0, L)× R,
y(0, t) = y(L, t) = yxx(0, t) = yxx(L, t) = 0, t ∈ R.

(1.2)

This Problem have been studied by many authors. In [2, 3, 4], the authors,
using degree theory and the variational method, investigated the multiplicity of
some symmetrical periodic solutions when δ = 0 and W (x, t) = 1 + εh(x, t) or
W (x, t) = α cosx + β cos 2t cosxε. In [5], the similar results for (1.2) are obtained
in case of δ 6= 0 and W (x, t) = h(x, t) = α cosx + β cos 2t cosx + γ sin 2t cosx.
Those results give the conditions impose on the spring constant k which guarantees
the existence of multiple periodic solutions, especially the sign-changing periodic
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solutions in the case of W (x, t) is single-sign. It is notable that the functions
cosx, cos 2t cosx, sin 2t cosx are the eigenfunctions of linear principal operator of
(1.2) in some function spaces.

When we consider only the steady state solutions of problem (1.1), we arrive at
the system

yxxxx + k(y − z)+ = h1(x), in (0, π),

−zxx − k(y − z)+ = h2(x), in (0, π),

y(0) = y(π) = yxx(0) = yxx(π) = 0,

z(0) = z(π) = 0.

(1.3)

This problem has little been studied in [12, 13]. In [6, 15], the analogous partial
differential systems have been considered when the nonlinearities k(y−z)+,−k(y−
z)+ are replaced by general f1(y, z), f2(y, z). And also, in recently, literature [16]
studied the system

yxx + k1y
+ + εz+ = sinx, in (0, π),

zxx + εy+ + k2z
+ = sinx, in (0, π),

y(0) = y(π) = 0,

z(0) = z(π) = 0.

(1.4)

Where u+ = max{u, 0}, the constant ε is small enough such that the matrix(
k1 ε
ε k2

)
is a near-diagonal matrix and the positive numbers k1, k2 satisfy

m2
1 < k1 < (m1 + 1)2, m2

2 < k2 < (m2 + 1)2 for some m1,m2 ∈ N.

This is a first work in the direction of extending to systems some of well-known
results established on nonlinear equation with an asymmetric nonlinearity. Mean-
while in [16] there are two open questions to be interesting:

Question 1. Can one obtain corresponding results if the second-order differential
operator is replaced with a fourth-order differential operator with corresponding
boundary conditions?

Question 2. Can one replace the near-diagonal matrix with something more gen-
eral and use information on the eigenvalues of matrix?

Following the above works and questions, we consider the system

−u′′ = f1(x, u, v) + t1 sinx+ h1(x), in (0, π)

v′′′′ = f2(x, u, v) + t2 sinx+ h2(x), in (0, π)

u(0) = u(π) = 0,

v(0) = v(π) = v′′(0) = v′′(π) = 0,

(1.5)

where t1, t2 are parameters and (f1, f2) : [0, π]× R2 → R2 is asymptotically linear.
On the other hand, the second order elliptic systems as follows

−∆u = f1(u, v) + t1ϕ1 + h1(x), in Ω,

−∆v = f2(u, v) + t2ϕ1 + h2(x), in Ω,
u = v = 0, on ∂Ω

(1.6)
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have been widely studied. Here we mention the papers [7, 8, 9, 10] and the references
therein. If (f1, f2) : R2 → R2 is asymptotically linear and the asymptotic matrixes
at −∞ and +∞ are (

a b
c d

)
,

(
ā b̄
c̄ d̄

)
Under some growth conditions on (f1, f2), in those papers, the Ambrosetti-Prodi
type results for (1.6) have been given respectively.

We remind that let g ∈ Cα(Ω× R) be a given function such that

lim sup
s→−∞

g(x, s)
s

< λ1 < lim inf
s→+∞

g(x, s)
s

uniformly in x ∈ Ω, where λ1 is the first eigenvalue of the Laplacian on a bounded
domain Ω under the Dirichlet condition and ϕ1 is the associated eigenfunction.
The Ambrosetti-Prodi type result in a Cartesian version states that for a given
h ∈ Cα(Ω) there exists a real number t0 such that the problem

−∆u = g(x, u) + tϕ1 + h, in Ω
u = 0, on ∂Ω

(i) has no solution if t > t0;
(ii) has at least two solutions if t < t0.

With different variants and formulations this problem has been extensively studied.
Inspired, we consider the Ambrosetti-Prodi type problem for system (1.5). This

paper is organized as follows: in Section 2, we prepare the proper variational frame-
work and prove (PS) condition to the Euler-Lagrange functional associated to our
problem. In Section 3, we prove the main theorem. Finally, a piecewise linear
problem is considered as an example in Section 4.

2. preliminaries

In this section, we prepare the proper variational frame work for (1.5), that is

−u′′ = f1(x, u, v) + t1 sinx+ h1(x), in (0, π)

v′′′′ = f2(x, u, v) + t2 sinx+ h2(x), in (0, π)

u(0) = u(π) = 0,

v(0) = v(π) = v′′(0) = v′′(π) = 0.

Where t1, t2 are parameters, h1, h2 ∈ C[0, π] are fixed functions with
∫ π

0
h1 sinx =∫ π

0
h2 sinx = 0.
We shall need some assumptions on the nonlinearities, which are necessary to

settle the existence or not of solutions in the case of the Ambrosetti-Prodi type
problem and to establish (PS) condition.

Let us order R2 with the order defined by

ξ = (ξ1, ξ2) ≥ 0 ⇐⇒ ξ1, ξ2 ≥ 0.

and denote W = (u, v) and F (x,W ) = (f1(x, u, v), f2(x, u, v)).
We will use the following hypotheses in this article.
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(H1) F = (f1, f2) : [0, π] × R2 → R2 is locally Lipschitzian function respect to
u, v, and there exists a function H : [0, π]× R2 → R such that

∇H(x, u, v) = (
∂H

∂u
,
∂H

∂v
) = (f1(x, u, v), f2(x, u, v)).

(H2) For ξ = (ξ1, ξ2) > 0 large enough,

F (x, ξ) ≥ 0. (2.1)

(H3) F satisfies

|F (x, ξ)| ≤ c(|ξ1|+ |ξ2|+ 1), ∀ξ ∈ R2, x ∈ (0, π) (2.2)

where c > 0 is constant.
(H4) For ξ = (ξ1, ξ2) ∈ R2 and x ∈ (0, π) there holds

F (x, ξ) ≥ Aξ − ce, (2.3)

for some constant c > 0. Where e = (1, 1) and the matrix A =
(
a b
c d

)
satisfies

b, c ≥ 0, (2.4)

(Aξ, ξ) ≤ µ|ξ|2, for some 0 < µ < 1. (2.5)

(H5) For ξ = (ξ1, ξ2) ∈ R2 and x ∈ (0, π) there holds

F (x, ξ) ≥ Aξ − ce, (2.6)

for some constant c > 0. Where e = (1, 1) and the matrix A =
(
a b

c d

)
satisfies

b, c ≤ 0, (2.7)

(Aξ, ξ) ≥ µ|ξ|2, for some µ > 1. (2.8)

(If not mentioned, c will always denote a generic positive constant.)

Remark 2.1. With a simple computation it is easy to show that (2.4)-(2.5) and
(2.7)-(2.8) imply, respectively,

(1− a)(1− d)− bc > 0, a, d < 1,

(A− I)−1ξ ≤ 0, ∀ξ ∈ R2, ξ ≥ 0,
(2.9)

and
(1− a)(1− d)− bc > 0, a, d > 1,

(A− I)−1ξ ≥ 0, ∀ξ ∈ R2, ξ ≥ 0,
(2.10)

where I is the identity matrix.

Let X = H1
0 (0, π)×(H1

0 (0, π)∩H2(0, π)) be Hilbert space with the inner product

〈W,Ψ〉 =
∫ π

0

(u′ψ′1 + v′′ψ′′2 ), ∀W = (u, v), Ψ = (ψ1, ψ2) ∈ X,

and the corresponding norm

‖W‖2X =
∫ π

0

(u′2 + v′′
2).
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Consider the second-order ordinary differential eigenvalue problem

−u′′ = λu, in (0, π),

u(0) = u(π) = 0,

and the fourth-order ordinary differential eigenvalue problem

v′′′′ = λv, in (0, π),

v(0) = v(π) = v′′(0) = v′′(π) = 0.

It is well known that λ1 = 1 and ϕ1 = sinx are the positive first eigenvalue
and the associated eigenfunction, respectively. Hence, it follows from the Poincare
inequality that, for all W ∈ X, ∫ π

0

|W |2 ≤ ‖W‖2X . (2.11)

A vector W ∈ X is a weak solution of (1.5) if, and only if, it is a critical point
of the associated Euler-Lagrange functional

J(W ) =
1
2

∫ π

0

(u′2 + v′′
2)−

∫ π

0

H(x, u, v)−
∫ π

0

[(t1 sinx+ h1)u+ (t2 sinx+ h2)v]

(2.12)
It is standard to show that the functional J(W ) is well defined, J(W ) ∈ C1(X,R)
and X → R; W →

∫ π

0
H(x, u, v)+

∫ π

0
[(t1 sinx+h1)u+(t2 sinx+h2)v] has compact

derivative under the assumptions (H1) and (H3).

Lemma 2.2. Assume that (H1)-(H5) hold. Then J satisfies the (PS) condition.

Proof. Let {Wn = (un, vn)} ⊂ X be a sequence such that |J(Wn)| ≤ c and
J ′(Wn) → 0. This implies∣∣∣ ∫ π

0

(u′nψ
′
1 + v′′nψ

′′
2 )−

∫ π

0

[
(f1ψ1 + f2ψ2) + (t1 sinx+ h1)ψ1 + (t2 sinx+ h2)ψ2

]∣∣∣
≤ εn‖Ψ‖X

(2.13)
for all Ψ = (ψ1, ψ2) ∈ X, where εn → 0(n→∞). Then by the above discussion it
suffices to prove that {Wn} is bounded.
Step 1: Show the boundedness of {W−

n }. Let W−
n = (u−n , v

−
n ), w− = max{0,−w}.

Since h1, h2 are bounded, there exists M1,M2 ≥ 0 such that

|t1 sinx+ h1| ≤M1, |t2 sinx+ h2| ≤M2. (2.14)

Moreover, from (2.3) and (2.4), we have

f1(x, un, vn)(−u−n ) ≤ a(u−n )2 + bu−n v
−
n + cu−n ,

f2(x, un, vn)(−v−n ) ≤ d(v−n )2 + cu−n v
−
n + cv−n .

Choosing c > max{M1,M2} and taking ψ1 = −u−n , ψ2 = −v−n in (2.13), then using
the above inequalities and (2.5), we obtain

‖W−
n ‖2X ≤

∫ π

0

(AW−
n ,W

−
n ) +

∫ π

0

(cu−n −M1u
−
n + cv−n −M2v

−
n ) + c‖W−

n ‖X

≤ µ

∫ π

0

|W−
n |2 + d

∫ π

0

(u−n + v−n ) + c‖W−
n ‖X .
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Where d ≥ max{c−M1, c−M2} is constant. Using Hölder inequality and Poincare
inequality, we get ∫ π

0

|u−n | ≤ c(
∫ π

0

|u−n |2)1/2 ≤ c(
∫ π

0

|u−n
′|2)1/2,∫ π

0

|v−n | ≤ c(
∫ π

0

|v−n |2)1/2 ≤ c(
∫ π

0

|v−n
′′|2)1/2.

Then from these two inequalities and (2.11) we have

(1− µ)‖W−
n ‖2X ≤ c‖W−

n ‖X ,

since 0 < µ < 1, ‖W−
n ‖ is bounded.

Step 2: Show the boundedness of {Wn}. Suppose by contradiction that {Wn} is
unbounded, then there exists a subsequence (still denote {Wn}) such that ‖Wn‖X →
∞ as n → ∞. Setting Vn = (xn, yn) = Wn/‖Wn‖X , then ‖Vn‖X = 1 and there
exists a subsequence such that

Vn ⇀ V0 = (x0, y0), in X, (2.15)

Vn → V0, in L2(0, π)× L2(0, π), (2.16)

Vn → V0, a.e. in (0, π),

with |xn(x)|, |yn(x)| ≤ h(x) ∈ L2, x ∈ (0, π). (2.17)

By step 1 we may assume that V −n → 0 in L2 × L2 and V −n → 0 a.e.in (0, π).
Clearly, V0 ≥ 0. Denote

Gn(x) = (g1
n(x), g2

n(x))

=
(f1(x,Wn(x)) + t1 sinx+ h1, f2(x,Wn(x)) + t2 sinx+ h2)

‖Wn‖X
.

We claim that
Gn → γ = (γ1, γ2) ≥ 0 in L2 × L2. (2.18)

In fact, let An = {x ∈ (0, π);un(x) ≤ 0 and vn(x) ≤ 0} and let χn denotes its
characteristic function, then Gn = χnGn +(1−χn)Gn. By (H3), (2.16), (2.17) and
using the Lebesgue Dominated Convergence Theorem, we get

χn
F (x,Wn)
‖Wn‖X

→ 0 in L2 × L2.

Moreover, from (2.14) we have

χn
(t1 sinx+ h1, t2 sinx+ h2)

‖Wn‖X
→ 0 in L2 × L2.

Hence χnGn → 0 in L2×L2. With the same reasoning (1−χn)Gn → γ′ = (γ′1, γ
′
2)

in L2 × L2. Therefore, we only need to prove that γ′ ≥ 0.
(i) If un(x) ≥ 0 and vn(x) ≤ 0, since a > 1, from (2.6) we have

(1− χn)g1
n(x) + b(y−n (x)) +

c

‖Wn‖X
− (1− χn)

t1 sinx+ h1

‖Wn‖X
≥ ax+

n (x) ≥ 0

and from (2.3) and (2.4), we obtain

(1− χn)g2
n(x) + d(y−n (x)) +

c

‖Wn‖X
− (1− χn)

t2 sinx+ h2

‖Wn‖X
≥ cx+

n (x) ≥ 0
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Since V −n → 0 in L2 × L2 and

(1− χn)g1
n(x) + b(y−n (x)) +

c

‖Wn‖X
− (1− χn)

t1 sinx+ h1

‖Wn‖X
→ γ′1,

(1− χn)g2
n(x) + d(y−n (x)) +

c

‖Wn‖X
− (1− χn)

t2 sinx+ h2

‖Wn‖X
→ γ′2

we get γ′ ≥ 0.
(ii) If un(x) ≤ 0 and vn(x) ≥ 0, we can handle in the same way to obtain that

γ′ ≥ 0.
(iii) If un(x) ≥ 0 and vn(x) ≥ 0, the assertion γ′ ≥ 0 can be inferred from (H2).
Now dividing (2.13) by ‖Wn‖X , using (2.15), (2.18) and passing to the limit we

obtain ∫ π

0

(x′0ψ
′
1 + y′′0ψ

′′
2 ) =

∫ π

0

(γ1ψ1 + γ2ψ2), ∀Ψ = (ψ1, ψ2) ∈ X. (2.19)

From (2.6) we have

(f1(x,Wn(x)) + t1 sinx+ h1, f2(x,Wn(x)) + t2 sinx+ h2)
‖Wn‖X

≥ AVn −
ce

‖Wn‖X
.

Passing to the limit in this inequality we get

γ ≥ AV0. (2.20)

Taking ψ1 = sinx, ψ2 = 0 and then ψ1 = 0, ψ2 = sinx in (2.19) and using (2.20),
it is achieved that

(A− I)
(∫ π

0
x0 sinx∫ π

0
y0 sinx

)
≤ 0. (2.21)

From Remark 2.1, applying (A−I)−1 to (2.21) we get (
∫ π

0
x0 sinx,

∫ π

0
y0 sinx) ≤ 0.

Hence x0 = y0 = 0 a.e. So, from (2.19),
∫ π

0
(γ,Ψ) = 0 and taking Ψ > 0 we have

γ = 0.
Finally, consider ψ1 = xn, ψ2 = yn in (2.13). Dividing the resulting expression

by ‖Wn‖X , and passing to the limit we obtain 1 ≤ 0, that is impossible. �

Lemma 2.3. Suppose (H5) hold. Then

lim
s→+∞

J(s sinx, s sinx) = −∞. (2.22)

Proof. From (2.6) we have

H(x, u, v) ≥ a

2
u2 + buv − cu+H(x, 0, v) as u ≥ 0,∀v, (2.23)

H(x, u, v) ≥ d

2
v2 + cuv − cv +H(x, u, 0) as v ≥ 0,∀u. (2.24)

Adding (2.23), (2.24) and using them again,

2H(x, u, v) ≥ a

2
u2 + (b+ c)uv +

d

2
v2 − cu− cv +H(x, 0, v) +H(x, u, 0)

≥ au2 + (b+ c)uv + dv2 − 2cu− 2cv + 2H(x, 0, 0)

≥ au2 + (b+ c)uv + dv2 − 2cu− 2cv + 2c, for u, v ≥ 0.

Then by (2.8) we have

H(x,W ) ≥ µ

2
|W |2 − cu− cv + c. (2.25)
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Taking W = (s sinx, s sinx), where s > 0, from (2.14) and (2.25) we get

J(s sinx, s sinx) ≤ πs2

2
(1− µ) + (c+M1)

∫ π

0

s sinx+ (c+M2)
∫ π

0

s sinx− c

≤ πs2

2
(1− µ) + cs− c

since µ > 1, (2.22) holds. �

3. The Ambrosetti-Prodi type result

In this section, we state and prove the Ambrosetti-Prodi type result for system
(1.5). We need the following concepts.

Definition 3.1. (1) We say that a vector function W ∈ X is a weak subsolution
of (1.5) if

J ′(W )(Ψ) ≤ 0, ∀Ψ ∈ X, Ψ ≥ 0.
(2) W = (u, v) ∈ C2 × C4 is a subsolution (classical) of (1.5) if

−u′′ ≤ f1(x, u, v) + t1 sinx+ h1, in (0, π),

v′′′′ ≤ f2(x, u, v) + t2 sinx+ h2, in (0, π),

u(0) = u(π) = 0,

v(0) = v(π) = v′′(0) = v′′(π) = 0.

(3) Weak supersolutions and supersolutions (classical) are defined likewise by
reversing the above inequalities.

We can easily show that each a subsolution or a supersolution of (1.5) is indeed
also a weak subsolution or a weak supersolution, respectively.

For to present the subsolution and supersolution for (1.5), we firstly show a
maximum principle as follows.

Lemma 3.2. Let A be a matrix-function with entries in C[0, π] satisfy (2.4) and
(2.5). If W = (u, v) ∈ X is such that∫ π

0

(u′ψ′1 + v′′ψ′′2 ) ≥
∫ π

0

(AW,Ψ), ∀Ψ = (ψ1, ψ2) ∈ X, (3.1)

then W ≥ 0.

Proof. Let Ψ = W− = (u−, v−) in (3.1), by (2.4) and (2.5), we obtain∫ π

0

(|u−′|2 + |v−′′|2) ≤
∫ π

0

(AW−,W−)−
∫ π

0

(AW+,W−)

≤ µ

∫ π

0

|W−|2 ≤ µ‖W−‖2X .

Therefore, W− = 0, i.e. W ≥ 0. �

Remark 3.3. In the classical sense, (2.4) and (2.5) are also sufficient conditions
for having a maximum principle for the problem

−u′′ = au+ bv + g1(x), in (0, π),

v′′′′ = cu+ dv + g2(x), in (0, π),

u(0) = u(π) = 0,
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v(0) = v(π) = v′′(0) = v′′(π) = 0.

This is, W = (u, v) ≥ 0 if g1 ≥ 0, g2 ≥ 0.

Lemma 3.4. Assume condition (H4), i.e. (2.3), (2.4) and (2.5) hold. Then, for
all t = (t1, t2) ∈ R2, system (1.5) has a subsolution Wt such that, if W t is any
supersolution we have

Wt ≤W t in (0, π). (3.2)

Proof. We consider the system

−u′′ = au+ bv − c+ t1 sinx+ h1, in (0, π),

v′′′′ = cu+ dv − c+ t2 sinx+ h2, in (0, π),

u(0) = u(π) = 0,

v(0) = v(π) = v′′(0) = v′′(π) = 0,

(3.3)

where c is the constant in (2.3) and (2.6). From the hypotheses on A and h1, h2,
(3.3) has a unique solution Wt ∈ C2 × C4. Then, using (2.3) we conclude that Wt

is in fact a subsolution of (1.5).
Finally, suppose that W t is any supersolution of (1.5), from (2.3) and applying

Lemma 3.2 directly we can get the assertion (3.2). �

Lemma 3.5. Suppose (H1) holds and (h1, h2) ∈ C[0, π]×C[0, π]. Then there exists
t0 ∈ R2 such that, for all t ≤ t0, system (1.5) has a supersolution W t.

Proof. Let u, v be the solution of the system

−u′′ = f1(x, 0, 0) + h1(x), in (0, π),

v′′′′ = f2(x, 0, 0) + h2(x), in (0, π),

u(0) = u(π) = 0,

v(0) = v(π) = v′′(0) = v′′(π) = 0.

(3.4)

Due to the locally Lipschitzian condition on f1, f2, it is possible to choose t0 =
(t01, t

0
2) < 0 such that

f1(x, u, v)− f1(x, 0, 0) + t01 sinx ≤ 0,

f2(x, u, v)− f2(x, 0, 0) + t02 sinx ≤ 0.

Hence, from these inequalities and the system (3.4), for all t ≤ t0, W t0 = (u, v) is
a supersolution for (1.5). �

Lemma 3.6. Let (H4), (H5) hold. Then for a given h1, h2, there exists an un-
bounded domain < in the plane such that if t ∈ <, system (1.5) has no supersolu-
tion.

Proof. Suppose W = (u, v) is a supersolution for (1.5). Multiplying both equations
of this system by sinx, integration them by parts and using (2.3), (2.6) we deduce
that

(A− I)
(
ρ1

ρ2

)
≤ π

2

(
−s1
−s2

)
, (3.5)

(A− I)
(
ρ1

ρ2

)
≤ π

2

(
−s1
−s2

)
. (3.6)



10 Y. AN, J. FENG EJDE-2008/118

Where ρ1 =
∫ π

0
u sinx, ρ2 =

∫ π

0
v sinx, s1 = t1 − c, s2 = t2 − c and c is the constant

in (2.3) and (2.6). From remark 2.1, applying (A− I)−1 and (A− I)−1 to (3.5) and
(3.6), respectively, we obtain that

(i) If ρ1 ≤ 0, then s2 ≤ d−1
b s1 when b 6= 0, or s1 ≤ 0 when b = 0.

(ii) If ρ1 ≥ 0, then s2 ≤ d−1
b
s1 when b 6= 0, or s1 ≤ 0 when b = 0.

Therefore, independently of the sign of ρ1, the pair (s1, s2) is in a region composed
of the union of two half-planes passing through the origin, each of them bounded
above by a straight-line of negative or infinity slope. < is the complement of this
region in the original variables t1 and t2. �

Now, we are at a position to prove the Ambrosetti-Prodi type result for system
(1.5).

Theorem 3.7. Suppose that conditions (H1)–(H5) are satisfied and that there exists
a matrix

A(x) =
(
a(x) b(x)
c(x) d(x)

)
,

with b(x), c(x) ≥ 0 (cooperativeness condition on A(x)) satisfies (2.5) such that

F (x, ξ)− F (x, η) ≥ A(x)(ξ − η), for ξ, η ∈ R2, ξ ≥ η. (3.7)

Then there exists a continuous curve Γ splitting R2 into two unbounded components
N and E such that:

(1) for each t = (t1, t2) ∈ N , (1.5) has no solution;
(2) for each t = (t1, t2) ∈ E, (1.5) has at least two solutions.

Proof. For each θ ∈ R, define

Lθ = {(t1, t2) ∈ R2; t2 + θ = t1},
and R(θ) = {t1 ∈ R; (1.5) has a supersolution with t ∈ Lθ for some t2 ∈ R}.

Lemmas 3.5 and 3.6 allows us to define the continuous curve

Γ(θ) = (supR(θ), supR(θ)− θ),

which splits the plane into two disjoints unbounded domains N and E such that
for all t ∈ N no supersolution exists for (1.5), while for all t ∈ E (1.5) has a
supersolution.

Obviously, for all t ∈ N , no solution exists for (1.5), result (1) is proved.
To prove result (2), now we use the abstract variational theorems to find the

solutions of (1.5) when t ∈ E. We write

〈J ′(W ),Ψ〉

= 〈W,Ψ〉 −
∫ π

0

[(f1(x, u, v) + t1 sinx+ h1)ψ1 + (f2(x, u, v) + t2 sinx+ h2)ψ2].

Given t ∈ E there exists a supersolution W t = (ut, vt) and a subsolution Wt =
(ut, vt) of (1.5) such that Wt ≤W t in (0, π). Let

M = [Wt,W
t] = {W ∈ X;Wt ≤W ≤W t},

since Wt,W
t ∈ L∞ by assumption, also M ⊂ L∞ and H(x,W (x)) + (t1 sinx +

h1)u+ (t2 sinx+ h2)v ≤ c for all W ∈M and almost every x ∈ (0, π).
Clearly, M is a closed and convex subset of X, hence weakly closed. Since M is

essentially bounded, J(W ) ≥ 1
2‖W‖2X − c is coercive on M . On the other hand, if
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Wn ⇀W weakly inX, whereWn,W ∈M , we may assume thatWn →W pointwise
almost everywhere; moreover, |H(x,Wn) + (t1 sinx+ h1)un + (t2 sinx+ h2)vn| ≤ c
uniformly, using Lebesgue Dominated Convergence Theorem, we have∫ π

0

H(x,Wn) +
∫ π

0

[(t1 sinx+ h1)un + (t2 sinx+ h2)vn]

→
∫ π

0

H(x,W ) +
∫ π

0

[(t1 sinx+ h1)u+ (t2 sinx+ h2)v].

Hence J is weakly lower semi-continuous on M . Then we can use [17, Theorem 1.2]
to find a vector function W0 = (u0, v0) ∈ X such that W0 ∈ M is the infimum of
the functional J restricted to M .

To see that W0 is a weak solution of (1.5), for ϕ = (ϕ1, ϕ2) ∈ C∞0 (0, π) and
ε > 0 let

uε = min{ut,max{ut, u0 + εϕ1}} = u0 + εϕ1 − ϕε
1 + ϕ1ε

vε = min{vt,max{vt, v0 + εϕ2}} = v0 + εϕ2 − ϕε
2 + ϕ2ε

with

ϕε
1 = max{0, u0 + εϕ1 − ut} ≥ 0,

ϕε
2 = max{0, v0 + εϕ2 − vt} ≥ 0,

and

ϕ1ε = −min{0, u0 + εϕ1 − ut} ≥ 0,

ϕ2ε = −min{0, v0 + εϕ2 − vt} ≥ 0.

Note that Wε = (uε, vε) ∈M and ϕε = (ϕε
1, ϕ

ε
2), ϕε = (ϕ1ε, ϕ2ε) ∈ X ∩ L∞(0, π).

The functional J is differentiable in direction Wε −W0. Since W0 minimizes J
in M we have

0 ≤ 〈Wε −W0, J
′(W0)〉 = ε〈ϕ, J ′(W0)〉 − 〈ϕε, J ′(W0)〉+ 〈ϕε, J

′(W0)〉,
so that

〈ϕ, J ′(W0)〉 ≥
1
ε
[〈ϕε, J ′(W0)〉 − 〈ϕε, J

′(W0)〉].

Now, from W t is a supersolution to (1.5), we get

〈ϕε, J ′(W0)〉
= 〈ϕε, J ′(W t)〉+ 〈ϕε, J ′(W0)− J ′(W t)〉
≥ 〈ϕε, J ′(W0)− J ′(W t)〉

=
∫

Ω

[(u0 − ut)′(u0 + εϕ1 − ut)′ + (v0 − vt)′′(v0 + εϕ2 − vt)′′]

−
∫

Ω

[f1(x,W0)− f1(x,W t)](u0 + εϕ1 − ut)

−
∫

Ω

[f2(x,W0)− f2(x,W t)](v0 + εϕ2 − vt)

≥ ε

∫
Ω

[(u0 − ut)′ϕ′1 + (v0 − vt)′′ϕ′′2 ]

− ε

∫
Ω

|f1(x,W0)− f1(x,W t)||ϕ1| − ε

∫
Ω

|f2(x,W0)− f2(x,W t)||ϕ2|
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where Ω = {x ∈ (0, π);W0(x) + εϕ(x) ≥W t(x) > W0(x)}. Note that meas(Ω) → 0
as ε→ 0. Hence by absolute continuity of the Lebesgue integral we obtain that

〈ϕε, J ′(W0)〉 ≥ o(ε)

where o(ε)/ε→ 0 as ε→ 0. Similarly, we conclude that 〈ϕε, J
′(W0)〉 ≤ o(ε); thus

〈ϕ, J ′(W0)〉 ≥ 0

for all ϕ ∈ C∞0 (0, π). Reversing the sign of ϕ and since C∞0 (0, π) is dense in X we
finally get that J ′(W0) = 0, i.e. W0 is a weak solution to (1.5). Then using (3.7)
and a Maximum Principle Lemma 3.2, we claim that W0 is a local minimum of J .

Suppose by contradiction that W0 is not a local minimum, then for every ε > 0
there is W̃ε ∈ Bε(W0) (a ball of radius ε aroundW0 ∈ X) such that J(W̃ε) < J(W0).
We know that Bε(W0) is weaker sequentially compact in X and J is weakly lower
semi-continuous, therefore there is Ŵε ∈ Bε(W0) such that

J(Ŵε) = inf
Bε(W0)

J ≤ J(W̃ε) < J(W0),

and 〈J ′(Ŵε), Ŵε −W0〉 ≤ 0, or

J ′(Ŵε) = λε(Ŵε −W0) with λε ≤ 0,

namely ∫ π

0

(ûε
′
ψ′1 + v̂ε

′′ψ′′2 )−
∫ π

0

[f1(x, ûε, v̂ε)ψ1 + f2(x, ûε, v̂ε)ψ2]

−
∫ π

0

[(t1 sinx+ h1)ψ1 + (t2 sinx+ h2)ψ2]

= λε[(ûε − u0)ψ1 + (v̂ε − v0)ψ2].

(3.8)

On the other hand, from Definition 3.1 we have∫ π

0

(u′tψ
′
1 + v′′t ψ

′′
2 )−

∫ π

0

[f1(x, ut, vt)ψ1 + f2(x, ut, vt)ψ2]

−
∫ π

0

[(t1 sinx+ h1)ψ1 + (t2 sinx+ h2)ψ2] ≤ 0,
(3.9)

and ∫ π

0

(ut′ψ′1 + vt′′ψ′′2 )−
∫ π

0

[f1(x, ut, vt)ψ1 + f2(x, ut, vt)ψ2]

−
∫ π

0

[(t1 sinx+ h1)ψ1 + (t2 sinx+ h2)ψ2] ≥ 0.
(3.10)

From (3.8)–(3.9), we obtain∫ π

0

[(ûε
′ − u′t)ψ

′
1 + (v̂ε

′′ − v′′t )ψ′′2 ]

−
∫ π

0

[(f1(x, Ŵε)− f1(x,Wt))ψ1 + (f2(x, Ŵε)− f2(x,Wt))ψ2]

≥ λε[(ûε − ut + ut − u0)ψ1 + (v̂ε − vt + vt − v0)ψ2].

This implies

−(ûε − ut)′′ ≥ f1(x, Ŵε)− f1(x,Wt) + λε(ûε − ut) + λε(ut − u0),

(v̂ε − vt)(4) ≥ f2(x, Ŵε)− f2(x,Wt) + λε(v̂ε − vt) + λε(vt − v0).
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Then from (3.7) we obtain(
−(ûε − ut)′′

(v̂ε − vt)(4)

)
≥ A(x)(Ŵε −Wt) + λε(Ŵε −Wt),

note that λε ≤ 0, and by using Lemma 3.2 we obtain

Ŵε −Wt ≥ 0, or Wt ≤ Ŵε.

Similarly, from (3.10)−(3.8), we can obtain

Ŵε ≤W t.

Which contradicts J(W0) = infM J(W ).
Finally, since J is not bounded from below, a weaker form of the Mountain Pass

Theorem can be used to find another solution W1 6= W0 of (1.5). Then result (2)
is proved. �

4. Example: A piecewise linear problem

Consider the system

−u′′ = k1u
+ + εv+ + t1 sinx+ h1(x), in (0, π),

v(4) = εu+ + k2v
+ + t2 sinx+ h2(x), in (0, π),

u(0) = u(π) = 0,

v(0) = v(π) = v′′(0) = v′′(π) = 0.

(4.1)

Where ε and k1, k2 are constants, t1, t2 are parameters and h1, h2 ∈ C[0, π] are fixed
functions with

∫ π

0
h1 sinx =

∫ π

0
h2 sinx = 0. This problem is similar to system (1.4).

Theorem 4.1. Suppose that k1 > 1, k2 > 1 and ε ≥ 0. Then there exists a curve
Γ splitting R2 into two unbounded components N and E such that:

(1) for each t = (t1, t2) ∈ N , (4.1) has no solution;
(2) for each t = (t1, t2) ∈ E, (4.1) has at least two solutions.

Proof. Let

A =
(
k1 0
0 k2

)
, A =

(
0 0
0 0

)
.

Then we can easily verify that the conditions of Theorem 3.7 hold and therefore
the results are follow. �

Remark 4.2. (1) Denote by µi (i = 1, 2) the eigenvalues of matrix

A =
(
k1 ε
ε k2

)
and let µ1 ≤ µ2. It can be shown that µ2 > 1 since k1 > 1 and k2 > 1.

(2) This result gives a partial answer to Question 1 and Question 2 that were
posted in [16] and stated in Section 1.
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