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OSCILLATION AND ASYMPTOTIC BEHAVIOUR OF A HIGHER
ORDER NEUTRAL DIFFERENTIAL EQUATION WITH

POSITIVE AND NEGATIVE COEFFICIENTS

BAŞAK KARPUZ, LAXMI NARAYAN PADHY, RADHANATH RATH

Abstract. In this paper, we obtain necessary and sufficient conditions so that
every solution of`

y(t)− p(t)y(r(t))
´(n)

+ q(t)G(y(g(t)))− u(t)H(y(h(t))) = f(t)

oscillates or tends to zero as t → ∞, where n is an integer n ≥ 2, q > 0,
u ≥ 0. Both bounded and unbounded solutions are considered in this paper.

The results hold also when u ≡ 0, f(t) ≡ 0, and G(u) ≡ u. This paper extends
and generalizes some recent results.

1. Introduction

In this article, we obtain necessary and sufficient conditions for every solution of
the higher-order neutral functional differential equation(

y(t)− p(t)y(r(t))
)(n) + q(t)G(y(g(t)))− u(t)H(y(h(t))) = f(t) (1.1)

to oscillate or to tend to zero as t tends to infinity, where, n is an integer n ≥ 2, p, f ∈
C([0,∞), R), q, u ∈ C([0,∞), [0,∞)), and G, H ∈ C(R, R). The functional delays
r(t), g(t) and h(t) are continuous, strictly increasing and unbounded functions for
t ≥ t0 such that r(t) ≤ t, g(t) ≤ t, and h(t) ≤ t. Some of the following assumptions
will be used in this article.

(H0) G is non-decreasing, xG(x) > 0 for x 6= 0.
(H1) lim inft→∞ r(t)/t > 0.
(H2) H is bounded.
(H3) lim inf |u|→∞ G(u)/u ≥ δ where δ > 0.
(H4)

∫∞
t0

tn−2q(t) dt = ∞, n ≥ 2.
(H5)

∫∞
t0

tn−1u(t) dt < ∞.
(H6)

∫∞
t0

tn−1q(t) dt = ∞.
(H7) There exists a bounded function F ∈ C(n)([0,∞), R) such that F (n)(t) =

f(t) and limt→∞ F (t) = 0.
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(H8) There exists a bounded function F ∈ C(n)([0,∞), R) such that F (n)(t) =
f(t).

(H9) lim inft→∞ g(t)/t > 0.
(H10)

∫∞
q(t) dt = ∞

Note that, we do not need the condition “xH(x) > 0 for x 6= 0” in the proofs of our
results. However, one may assume them for technical reasons; i.e, to make (1.1)
a neutral equation with positive and negative coefficients. Further, we note that,
for n ≥ 2, condition (H10) implies (H4) and furthermore, (H4) implies (H6). For
τ, σ, α positive constants, we put r(t) = t− τ , g(t) = t− σ and h(t) = t− α. Then
(1.1) reduces to(

y(t)− p(t)y(t− τ)
)(n) + q(t)G(y(t− σ))− u(t)H(y(t− α)) = f(t) . (1.2)

If n = 1 then (1.2) reduces to(
y(t)− p(t)y(t− τ)

)′ + q(t)G(y(t− σ))− u(t)G(y(t− α)) = f(t), (1.3)

which was studied in [23]. Our objective is to generalize the results in [23] to the
higher-order equation (1.1). Further, if u = 0, then (1.1) takes the form(

y(t)− p(t)y(r(t))
)(n) + q(t)G(y(g(t))) = f(t). (1.4)

Hence (1.2)–(1.4) are particular cases of (1.1).
The authors in [25, p. 195], suggested the study of unbounded solutions for

(1.4), particularly when 0 ≤ p(t) ≤ p < 1; this paper accomplishes that task.
The motivation of this work came from the fact that almost no work is done on
oscillatory behaviour of unbounded solutions of neutral differential equations (1.2)
of order n > 2. For the case when n is odd, the authors in [26], have presented a
result for the linear equation(

y(t)− p(t)y(t− τ)
)(n) + q(t)y(t− σ)− u(t)y(t− α) = 0, (1.5)

with the assumptions
(AD1) q(t) > u(t− σ + α) and
(AD2) σ > α or α > σ.
In [14], the author obtained sufficient conditions for the oscillation of solutions of
the linear homogeneous equation(

y(t)− p(t)y(t− τ)
)′ + q(t)y(t− σ)− u(t)y(t− α) = 0, (1.6)

with the assumptions (AD1) and (AD2). In [22] the authors obtained sufficient
conditions for oscillation of the equation (1.3) and other results under the conditions
(AD1), (AD2), and
(AD3) lim inf |u|→∞ G(u)/u < β, for some β > 0.
In [13] the authors studied a second order neutral equation with several delay terms
of the form(

y(t)− p(t)y(t− τ)
)′′ + k∑

i=1

qi(t)y(t− σi)−
m∑

i=1

ui(t)y(t− αi) = f(t). (1.7)

When k = m = 1, the above equation takes the form(
y(t)− p(t)y(t− τ)

)′′ + q(t)y(t− σ)− u(t)y(t− α) = f(t). (1.8)

Here also, the authors require the conditions (AD1), (AD2),
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(AD4) u(t) < u(t− α),
(AD5) q(t) ≥ u(t− α) ≥ k > 0 .
In this paper, an attempt is made to relax the conditions (AD1)–(AD5) and study
the oscillation and non-oscillation of (1.1). Our results hold also when u ≡ 0, f(t) ≡
0, and G(u) ≡ u. As a consequence, this paper extends and generalizes some of the
recent results in [13, 22, 23, 25]. Appropriate examples are included to illustrate
our results.

Let t0 ≥ 0 and t−1 := min{r(t0), g(t0), h(t0)}. By a solution of (1.1), we mean
a function y ∈ C([t−1,∞), R) such that y(t) − p(t)y(r(t)) is n times continuously
differentiable on [t0,∞) and the neutral equation (1.1) is satisfied by y(t) for all
t ≥ t0. It is known that (1.1) has a unique solution provided that an initial function
φ ∈ C([t−1, t0], R) is given to satisfy y(t) = φ(t) for all t ∈ [t−1, t0]. Such a solution
is said to be non-oscillatory if it is eventually positive or eventually negative for
large t, otherwise it is called oscillatory.

In this work we assume the existence of solutions and study only their qualitative
behaviour. For existence and uniqueness of solutions, the reader is referred to [8].
In the sequel, unless otherwise specified, when we write a functional inequality, it
will be assumed to hold for all sufficiently large values of t.

2. Main results

We assume that p(t) satisfies one of the following conditions in this work.
(A1) 0 ≤ p(t) ≤ p < 1,
(A2) −1 < −p ≤ p(t) ≤ 0,
(A3) 0 ≤ p(t) ≤ p1,
(A4) −p2 ≤ p(t) ≤ −p1 < −1,
(A5) 1 < p1 ≤ p(t) ≤ p2,
(A6) −p1 ≤ p(t) ≤ 0,

where p, p1 and p2 are real numbers.
Before we present our main results, we state some Lemmas.

Lemma 2.1. [11, p.193] Let y ∈ Cn([0,∞), R) be of constant sign and not identi-
cally zero on any interval [T,∞), T ≥ 0, and y(n)(t)y(t) ≤ 0. Then there exists a
number t0 ≥ 0 such that the functions y(j)(t), j = 1, 2, . . . , n − 1, are of constant
sign on [t0,∞) and there exists a number m ∈ {1, 3, . . . , n − 1} when n is even or
m ∈ {0, 2, 4, . . . , n− 1} when n is odd such that

y(t)y(j)(t) > 0, for j = 0, 1, 2, . . . .,m, t ≥ t0,

(−1)n+j−1y(t)y(j)(t) > 0 for j = m + 1,m + 2, . . . , n− 1, t ≥ t0.

Lemma 2.2. [25, Lemma 1] Let u, v, p : [0,∞) → R be such that u(t) = v(t) −
p(t)v(r(t)), t ≥ T0, where r(t) is a continuous, monotonic increasing and unbounded
function such that r(t) ≤ t. Suppose that p(t) satisfies one of the conditions (A2),
(A3), (A4). If v(t) > 0 for t ≥ 0 and lim inft→∞ v(t) = 0 and limt→∞ u(t) = L
exists, then L = 0.

Lemma 2.3. [21, Lema 2.1] If
∫∞
0

tn−1|f(t)| dt < ∞, then (H7) holds.

Proof. Let

F (t) =
(−1)n

(n− 1)!

∫ ∞

t

(s− t)n−1f(s) ds, t ≥ 0.
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Then F (n)(t) = f(t) and limt→∞ F (t) = 0. Thus (H7) holds. �

Theorem 2.4. Suppose that n ≥ 2 and p(t) satisfies any one of the two condi-
tions (A1), (A2). Then under assumptions (H0), (H2)–(H5), (H8), (H9), every
unbounded solution of (1.1) oscillates.

Proof. For the sake of contradiction, suppose that y(t) is a non-oscillatory and
unbounded solution of (1.1) for large t. Assume that y(t) > 0, eventually. Then
there exists t0 > T1 such that y(t) > 0, y(r(t)) > 0, y(g(t)) and y(h(t)) > 0 for
t ≥ t0. For simplicity of notation, define for t ≥ t0 ,

z(t) = y(t)− p(t)y(r(t)) . (2.1)

Further, due to the assumption (H2) and (H5), we define for t ≥ t0

k(t) =
(−1)n−1

(n− 1)!

∫ ∞

t

(s− t)n−1u(s)H(y(h(s))) ds. (2.2)

Then
k(n)(t) = −u(t)H(y(h(t))). (2.3)

Set
w(t) = z(t) + k(t)− F (t). (2.4)

Then using (2.1)–(2.4) in (1.1), we obtain

w(n)(t) = −q(t)G(y(g(t))) ≤ 0. (2.5)

Hence w,w′, . . . w(n−1) are monotonic and single sign for t ≥ t1 ≥ t0. Then
limt→∞ w(t) = λ, where −∞ ≤ λ ≤ +∞. From (2.2), it follows, due to (H2)
and (H5) that

k(t) → 0 as t →∞. (2.6)
Since y(t) is unbounded, there exists a sequence {an} such that

an →∞, y(an) →∞, as n →∞,

and
y(an) = max{y(s) : t1 ≤ s ≤ an}. (2.7)

We may choose n large enough so that for n ≥ N0, min{r(an), g(an), h(an)} > t1.
Then from (2.6) and (H8), it follows that, for 0 < ε, we can find a positive integer
N1 and a real number η such that, |k(an)| < ε and |F (an)| < η for n ≥ N1 ≥ N0.
Hence for n ≥ N1, if (A1) holds, then we have

w(an) ≥ y(an)(1− p)− ε− η.

If (A2) holds, then for n ≥ N1,we have

w(an) ≥ y(an)− ε− η.

Taking n → ∞, we find limt→∞ w(t) = ∞, because of the monotonic nature of
w(t). Hence w > 0, w′ > 0 for t ≥ t2 ≥ t1,. Since w(n)(t) 6≡ 0 and is non positive, it
follows from Lemma 2.1 that there exists a positive integer m such that n−m is odd
and for t ≥ t3 ≥ t2, we have w(j)(t) > 0 for j = 0, 1, . . . ,m and w(j)(t)w(j+1)(t) < 0
for j = m,m + 1, . . . , n − 2. Then limt→∞ w(m)(t) = l exists (as a finite number).
Hence m ≥ 1. Integrating (2.5), n−m times from t to ∞, we obtain for t ≥ t3

w(m)(t) = l +
(−1)n−m−1

(n−m− 1)!

∫ ∞

t

(s− t)n−m−1q(s)G(y(g(s))) ds. (2.8)



EJDE-2008/113 HIGHER ORDER NEUTRAL DIFFERENTIAL EQUATIONS 5

This implies ∫ ∞

t

(s− t)n−m−1q(s)G(y(g(s))) ds < ∞, for t ≥ t3. (2.9)

From (H4) and the above inequality we obtain lim inft→∞ G(y(g(t)))/tm−1 = 0. By
(H0) and (H3), we get lim inft→∞ y(g(t))/tm−1 = 0. From (H9), it follows that, we
can find b > 0 such that g(t)/t ≥ b > 0 for large t and since limt→∞ g(t) = ∞ then
we have

lim inf
t→∞

y(t)
tm−1

= 0.

Since m ≥ 1,we can choose M0 > 0 such that w(t) > M0t
m−1 for t ≥ t4 ≥ t3. Thus

lim inf
t→∞

y(t)
w(t)

= 0. (2.10)

Set, for t ≥ t4,

p∗(t) = p(t)
w(r(t))
w(t)

.

From (H8), (2.6) and limt→∞ w(t) = ∞, we obtain

lim
t→∞

(F (t)− k(t))
w(t)

= 0.

Then we have

1 = lim
t→∞

[w(t)
w(t)

]
= lim

t→∞

[y(t)− p(t)y(r(t))− (F (t)− k(t))
w(t)

]
= lim

t→∞

[ y(t)
w(t)

− p∗(t)y(r(t))
w(r(t))

− (F (t)− k(t))
w(t)

]
= lim

t→∞

[ y(t)
w(t)

− p∗(t)y(r(t))
w(r(t))

]
.

(2.11)

Since w(t) is a increasing function, w(r(t))/w(t) < 1. If p(t) satisfies (A1) then
0 ≤ p∗(t) < p(t) ≤ p < 1. However, if p(t) satisfies (A2), then 0 ≥ p∗(t) ≥ p(t) ≥
−p > −1. Hence it is clear that if p(t) satisfies (A1) or (A2) then p∗(t) also lies in
the ranges (A1) or (A2) accordingly. Hence use of Lemma 2.2 yields, due to (2.10),
that

lim
t→∞

[ y(t)
w(t)

− p∗(t)y(r(t))
w(r(t))

]
= 0,

a contradiction to (2.11). Hence the unbounded solution y(t) cannot be eventually
positive.

Next, if y(t) is an eventually negative solution of (1.1) for large t, then we set
x(t) = −y(t) to obtain x(t) > 0 and then (1.1) reduces to(

x(t)− p(t)x(τ(t))
)

+ q(t)G̃(x(g(t)))− u(t)H̃(x(h(t))) = f̃(t) (2.12)

where
f̃(t) = −f(t), G̃(v) = −G(−v), H̃(v) = −H(−v). (2.13)

Further, F̃ (t) = −F (t) implies F̃n(t) = f̃(t).
In view of the above facts, it can be easily verified that the following conditions

hold:
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(H0’) G̃ is non-decreasing and xG̃(x) > 0 for x 6= 0,
(H2’) H̃ is bounded,
(H3’) lim inf |v|→∞ G̃(v)/v ≥ δ > 0,
(H8’) There exists a bounded function F̃ (t) such that F̃n(t) = f̃(t).

Proceeding as in the proof for the case y(t) > 0, we obtain a contradiction. Hence
y(t) is oscillatory and the proof is complete. �

Remark 2.5. The above theorem answers the open problem in [25, p. 195]; i.e,
to study oscillatory behaviour of unbounded solutions of (1.1), when p(t) satisfies
(A1).

The following example illustrates Theorem 2.4.

Example 2.6. Consider the neutral equation

(y(t)− αy(t− 2π))′′ + 2e−3π/2(e2π − α)y(t− π/2)− e−4πt−2H(y(t− 4π))

=
−et cos(t)

t2(e8π + e2t cos2(t))
,

where 0 ≤ α < 1 or −1 < α ≤ 0, H(u) = u/(u2 + 1). Clearly, the above equation
satisfies all the conditions of the Theorem 2.4, hence it admits an oscillatory solu-
tion. In this example, y(t) = et cos(t). Note that, by Lemma 2.3, (H8) is satisfied
with

F (t) =
∫ ∞

t

(t− s)es cos(s)
s2(e8π + e2s cos2(s))

ds .

In Theorem2.4, if we put p(t) = 0, then we get the following result about higher
order delay differential equation with positive and negative coefficients.

Corollary 2.7. Suppose n ≥ 2. If the conditions (H0), (H2)–(H5), (H8), (H9) are
met, then every unbounded solution of the equation

y(n)(t) + q(t)G(y(g(t)))− u(t)H(y(h(t))) = f(t)

oscillates.

Remark 2.8. We note that (H7) implies (H8), but not conversely. Note that (H7)
is equivalent to the condition:

There exists a function F (t) ∈ Cn([0,∞), R) such that F (n)(t) =
f(t) and limt→∞ F (t) = γ.

Clearly (H7) implies the above condition. Conversely, suppose that the above
condition holds. If limt→∞ F (t) = γ 6= 0, then we may take L(t) = F (t) − γ.
Consequently, L(t) satisfies (H7). Hence without any loss of generality, we may
assume (H7) in the subsequent results of this section.

Remark 2.9. In Theorem 2.4, if we assume y(t) is bounded, then we have the
theorem with the condition (H6), which is weaker than (H4) and thus, we would be
able to completely relax the conditions (H2), (H3) and (H9) in the following result,
which extends and generalizes [22, Theorem 2.7] and [15, Theorem 2.4 ].

Theorem 2.10. If p(t) satisfies one of the conditions (A1), (A2), (A4), (A5), then
under the assumptions (H0), (H5)–(H7), every bounded solution of (1.1) oscillates
or tends to zero as t →∞.
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Proof. Let y(t) be an eventually positive solution of (1.1), which is bounded. Then
set z(t), k(t), and w(t) as in (2.1), (2.2) and (2.4) respectively and obtain (2.5). Note
that, here k(t) is well defined, bounded, and satisfies (2.6) due to boundedness of
y(t) and (H5). From the facts: w(t) is monotonic, y(t) is bounded,(H7) and (2.6)
hold, we obtain limt→∞ w(t) = limt→∞ z(t) = λ, which exists (as a finite number).
From Lemma 2.1, it follows that (−1)n+kw(k)(t) < 0 and limt→∞ w(k)(t) = 0, for
k = 1, 2, . . . , n − 1. Then integrating (2.5), n-times from t to ∞, we obtain for
t ≥ t1,

w(t) = λ +
(−1)n−1

(n− 1)!

∫ ∞

t

(s− t)n−1q(s)G(y(g(s))) ds. (2.14)

Thus,
1

(n− 1)!

∫ ∞

t

(s− t)n−1q(s)G(y(g(s))) ds < ∞, t ≥ t1. (2.15)

Then from (H6) and (2.15), it follows that lim inft→∞ G(y(t)) = 0. Then by (H0)
we get lim inft→∞ y(t) = 0. Application of Lemma2.2 yields limt→∞ z(t) = 0. If
p(t) is in (A1) then

0 = lim
t→∞

z(t) = lim sup
t→∞

(y(t)− p(t)y(r(t)))

≥ lim sup
t→∞

y(t) + lim inf
t→∞

(−p(t)y(r(t)))

≥ (1− p) lim sup
t→∞

y(t).

This implies lim supt→∞ y(t) = 0. Hence y(t) → 0 as t → ∞. If p(t) satisfies (A2)
or (A4), then, since y(t) ≤ z(t), it follows that y(t) → 0 as t →∞. If p(t) satisfies
(A5), then z(t) ≤ y(t)− p1y(r(t)). Hence, it follows that

0 = lim inf
t→∞

z(t)

≤ lim inf
t→∞

[y(t)− p1y(r(t))]

≤ lim sup
t→∞

y(t) + lim inf
t→∞

[−p1y(r(t))]

= (1− p1) lim sup
t→∞

y(t).

Then lim supt→∞ y(t) = 0. Thus limt→∞ y(t) = 0. The proof for the case when
y(t) < 0 eventually, is similar. Thus the proof is complete. �

The following example justifies the assumption of boundedness on y(t) in the
above Theorem when p(t) satisfies (A5).

Example 2.11. The neutral difference equation

(y(t)− 2ey(t− 1))(n) + e2y(t− 2)− e−t+2 y(t− 2)
y2(t− 2) + 1

= −(et−2 + 1)−1,

satisfies all the conditions of Theorem 2.4, with the exception that p(t) satisfies
the condition (A5). But this neutral equation has an unbounded solution et, which
tends to ∞ as t →∞.

The following examples illustrates Theorem 2.10.

Example 2.12. Consider the neutral equation

[y(t) + e−t/2y(t/2)](n) + q(t)y3(t/3)− u(t)y5(t/7) = 0 for t ≥ 1.
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Here n is any positive integer, may be odd or even. Further, in the above equation
take

q(t) =

{
3, if n is odd,

1, if n is even.

Moreover, assume

u(t) =

{
e−2t/7, if n odd,
3e−2t/7, if n is even.

Then G(u) = u3, H(u) = u5, r(t) = t/2, g(t) = t/3, h(t) = t/7. p(t) = −e−t/2

which satisfies (A2). This equation satisfies all the conditions of Theorem 2.10
with(A2). Hence all non-oscillatory solutions tend to zero as t → ∞, which is the
case of the solution y(t) = e−t. Most of the results in the reference fail to apply to
this equation because of the functional delays.

Example 2.13. The neutral differential equation

(y(t)− e−1y(t− 1))(n) + y3(t− 2)− e−ty(t− 2)e−y2(t−2) = e6−3t − e−(2t−2+e4−2t),

satisfies all the conditions of Theorem 2.10, for (A1). Hence by the theorem, all
bounded solutions are either oscillatory or tend to zero as t →∞, which is the case
of the solution y(t) = e−t. On the other hand, if we compare the above equation
to (1.2), then we observe the condition (AD2) is not satisfied,because σ = α = 2.
Hence the results of the papers [13, 14, 17, 22, 26] can not be applied to this
equation.

We combine Theorem 2.4 with Theorem 2.10 (restricted to (A1) or (A2)) to get
the following result.

Theorem 2.14. Suppose that n ≥ 2 and p(t) satisfies any one of the ranges (A1),
(A2). Then under assumptions (H0), (H2)–(H5), (H7), (H9), every solution of
(1.1) oscillates or tends to zero as t →∞.

Remark 2.15. The above theorem extends and generalizes [13, Theorems 2,4],
[22, theorems 2.2 and 2.4], and [18, Theorem 2.2]. Further, note that (H4) implies
(H6), for n ≥ 2, but not conversely. While dealing with unbounded solutions
in Theorem2.14, we need the stronger assumption (H4), where as, dealing with
bounded solutions in Theorem 2.10, we needed the weaker one; i.e, (H6). This is
justified from the following example.

Example 2.16. Consider the equation(
y(t)− py(t− 1)

)′′ + ( 1
t2 log(t− 1)

− p

(t− 1)2 log(t− 1)

)
y(t− 1) = 0, (2.16)

for t > max{3, 1/(1 − √
p)}, where 0 < p < 1. Here, p(t) is in (A1), u(t) ≡ 0,

and f(t) ≡ 0. This equation satisfies all the conditions of Theorem 2.14 except
(H4), but satisfies (H6). It admits a non-oscillatory solution y(t) = log(t) →∞ as
t →∞.

Remark 2.17. The assumption (H3) implies that G is linear or super linear. To
deal with the unbounded solutions, we used (H3) in Theorem 2.14, though we do
not require this, while dealing with bounded solutions in Theorem 2.10. Hence to
justify our assumption (H3) in Theorem 2.14, we give the following example.
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Example 2.18. Consider the neutral equation(
y(t)− 1

16
y(t− 1)

)′′′
+

3
8(t− 1)1/2

[ 1
t3/2

− 1
16(t− 1)3/2

]
y1/3(t− 1) = 0, (2.17)

for t ≥ t0 > 2. It is obvious that (H4) holds; i.e,
∫∞

t0
tq(t) dt = ∞, and all the

conditions of Theorem 2.14 (with (A1)) are satisfied, except for (H3). Hence we do
not get the conclusion of the Theorem 2.14 from (2.17). That is why, (2.17) admits
a solution y(t) = t3/2, which tends to ∞ as t →∞.

For our next result, we need to state the following Lemma.

Lemma 2.19. [12, p. 193] Let f and g be two positive functions in [a, t] with
limt→∞ f(t)/g(t) = l, where l is non-zero real number. Then

∫∞
a

f(t) dt and∫∞
a

g(t) dt converge or diverge together. Also, if f/g → 0 and
∫∞

a
g(t) dt converges,

then
∫∞

a
f(t) dt converges and if f/g →∞ and

∫∞
a

g(t) dt diverges, then
∫∞

a
f(t) dt

diverges.

Our next result, where p(t) satisfies (A6), improves and generalizes [20, Theorem
2.1], [13, Theorem 3], and [22, Theorem 2.11].

Theorem 2.20. Assume (A6), that n ≥ 2, that lim inft→∞ r′(t) > 0, and that
r(g(t)) = g(r(t)). Also assume (H0)–(H3), (H5), (H7), (H9),
(H11)

∫∞
t0

tn−2q∗(t) dt = ∞, where q∗(t) = min[q(t), q(r(t))];
(H12) G(−u) = −G(u);
(H13) For u > 0, v > 0, there exists a constant β > 0 such that, G(u)G(v) ≥

G(uv) and G(u) + G(v) ≥ βG(u + v).
Then every solution of (1.1) oscillates or tends to zero as t →∞.

Proof. Let y(t) be an eventually positive solution of (1.1) for t ≥ t0 ≥ T1. Then
set z(t), k(t), and w(t) as in (2.1), (2.2) and (2.4) respectively to get (2.5) for
t > t1 ≥ t0. Then (2.6) holds. Hence w(t), w′(t), w′′(t), . . . , w(n−1)(t) are monotonic
in [t1,∞). Consequently, From (2.6) and (H7) it follows that

lim
t→∞

w(t) = lim
t→∞

z(t) = λ, where −∞ ≤ λ ≤ ∞. (2.18)

If λ < 0, then z(t) < 0, for large t, a contradiction. If λ = 0, then y(t) ≤ z(t),
implies limt→∞ y(t) = 0. If λ > 0, then w(t) > 0 for large t ≥ t2 ≥ t1. Then from
Lemma 2.1, it follows that, there exists an integer m, 0 ≤ m ≤ n − 1 such that
n − m is odd, and for t ≥ t3 ≥ t2, we have w(j)(t) > 0 for j = 0, 1, . . . ,m and
(−1)n+j−1w(j)(t) > 0 for j = m + 1,m + 2, . . . , n − 1. Hence limt→∞ w(m)(t) = l
exists and limt→∞ w(i)(t) = 0 for i = m+1,m+2, . . . , n−1. Note that 0 < λ < ∞,
implies m = 0, but λ = ∞ implies m > 0 such that n−m is odd. Integrating (2.5),
(n−m) times from t to ∞, we obtain (2.8) and (2.9). Hence from Lemma 2.19 and
(2.9) we obtain for ρ ≥ t3,∫ ∞

ρ

tn−m−1q(t)G(y(g(t))) dt < ∞. (2.19)

Note that, since r(t) is monotonic increasing, its inverse function, r−1(t) exists,
such that r−1(r(t)) = t. Since q(t) > q∗(r−1(t)), it follows that∫ ∞

ρ

tn−m−1q∗(r−1(t))G(y(g(t))) dt < ∞.
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Then replacing t by r(t) in the above inequality, multiplying by the scalar G(p1),
we obtain

G(p1)
∫ ∞

T2

(r(t))n−m−1q∗(t)G(y(g(r(t))))r′(t) dt < ∞,

where T2 ≥ r−1(ρ). Since lim inft→∞ r′(t) > 0 then, r′(t) > c > 0 for t ≥ T3 ≥ T2.
Then we have

cG(p1)
∫ ∞

T3

(r(t))n−m−1q∗(t)G(y(g(r(t)))) dt < ∞.

(H1) implies there exists a scalar a such that r(t)/t > a > 0 for t ≥ T4 ≥ T3, and
p(t) ≥ −p1. Using this, and (H0), we obtain∫ ∞

T4

tn−m−1q∗(t)G(−p(g(t)))G(y(g(r(t)))) dt < ∞.

This with the use of (H13) yields∫ ∞

T4

tn−m−1q∗(t)G(−p(g(t))(y(g(r(t))))) dt < ∞.

Since g(r(t)) = r(g(t)), then the above inequality yields∫ ∞

T4

tn−m−1q∗(t)G(−p(g(t))(y(r(g(t))))) dt < ∞. (2.20)

From (2.19) and the fact that q(t) ≥ q∗(t), we obtain∫ ∞

T4

tn−m−1q∗(t)G(y(g(t))) dt < ∞. (2.21)

Further, using (H13), (2.20) and (2.21), one may get∫ ∞

T4

tn−m−1q∗(t)G(z(g(t))) dt < ∞. (2.22)

If m = 0 then (H11) and (2.22) implies lim inft→∞ tG(z(g(t))) = 0, which with
application of (H0) and the assumption limt→∞ g(t) = ∞ yields limt→∞ z(t) = 0,
a contradiction. If m > 0 then there exists M0 > 0 such that w(t) > M0t

m−1 and
by (H7) and (2.6), we can find 0 < M1 < M0 such that

z(t) > M1t
m−1 for t ≥ T5 ≥ T4. (2.23)

Due to (H9), we can find b > 0 such that g(t)/t > b > 0 for large t. Then further
use of (2.23) and (H3) yields∫ ∞

T5

tn−m−1q∗(t)G(z(g(t))) dt ≥
∫ ∞

T5

tn−m−1q∗(t)G(M1(g(t))m−1) dt

≥ δM1b
m−1

∫ ∞

T5

q∗(t)tn−2 dt = ∞,

by (H11), a contradiction due to (2.22). Hence the proof for the case y(t) > 0 is
complete. If y(t) < 0 for large t then, proceeding as above and using (H12), we
complete the proof. �
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Remark 2.21. Clearly, (H11) implies (H4). To justify, the stronger assumption
(H11) for the above Theorem, an example is given in [20]. We claim,if q(t) is
monotonic and (H1) holds then (H11) is equivalent to (H4). Indeed, if q(t) is
decreasing then q∗(t) = q(t), hence the equivalence of (H4) and (H11)is immediate.
On the other hand, if q(t) is increasing, then suppose that (H4) holds. Since
q(t) > 0, we find T1 and η > 0 such that q(r(t)) > η for t ≥ T1. Now, q∗(t) = q(r(t))
and n ≥ 2 implies∫ ∞

T1

tn−2q∗(t) dt =
∫ ∞

T1

tn−2q(r(t)) dt ≥ η

∫ ∞

T1

tn−2 dt = ∞.

Thus, (H11) holds. Hence, the equivalence of (H4) and (H11) is established. In [18,
theorem 2.5], the authors assume (H10) and that q(t) is monotonic. This implies
(H11) is a weaker condition that we have used in our theorem. For [13, Theorem
3], where −p ≤ p(t) ≤ 0, the authors use the condition lim inft→∞ q(t) > 0, which
implies

∫∞
t0

q∗(t) = ∞, and this further implies (H11) for n ≥ 2. Hence the above
result; i.e, Theorem2.20 extends and generalizes [13, Theorem 3].

Remark 2.22. The prototype function G satisfying (H0), (H3), (H12) and (H13)
is G(u) = (β + |u|µ)|u|λ sgn u, where λ > 0, µ > 0, λ + µ ≥ 1, β ≥ 1. For verifying
it we may use the well known inequality (see[9, p. 292])

up + vp ≥

{
(u + v)p, 0 ≤ p < 1,

21−p(u + v)p, p ≥ 1.

3. Necessary Conditions

In this section we prove that if every solution of the neutral equation (1.1)
oscillates or tends to zero as t →∞, then (H6) holds.

Theorem 3.1. Suppose that p(t) satisfies (A1) or (A2). If (H5) and (H8) hold
and every solution of (1.1) oscillates or tends to zero as t →∞, then (H6) holds.

Proof. Suppose that p(t) satisfies (A1). Assume for the sake of contradiction, that
(H6) does not hold. Hence ∫ ∞

t0

sn−1q(s) ds < ∞. (3.1)

Hence, all we need to show is the existence of a bounded solution y(t) of (1.1) with
lim inf y(t) > 0. From (H8), we find a constant k and a real number t1 such that
t ≥ t1 implies

|F (t)| < k for t ≥ t1. (3.2)

Choose two positive constants L and c such that L ≥ 7k/(1− p) and c ≤ k. Since
G, H ∈ C(R, R), we let

η = max{|G(x)| : c ≤ x ≤ L}, (3.3)

γ = max{|H(x)| : c ≤ x ≤ L}. (3.4)

Let µ = max{η, γ}. From (H5), we find t2 > t1 such that t > t2 implies

µ

(n− 1)!

∫ ∞

t

(s− t)n−1u(s) ds < ε. (3.5)
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From (3.1) we find t3 > t2 such that t ≥ t3 implies

µ

(n− 1)!

∫ ∞

t

(s− t)n−1q(s) ds < ε. (3.6)

In this case take ε ≤ k, and choose T ≥ t3 such that T0 = min{r(T ), g(T ), h(T )} ≥
t3. Then (3.2), (3.5) and (3.6) hold, for t ≥ T0. Let X = C([T0,∞), R) be the set
of all continuous functions with norm ‖x‖ = supt≥T0

|x(t)| < ∞. Clearly X is a
Banach space. Let

S = {u ∈ BC([T0,∞), R) : c ≤ u(t) ≤ L}

with the supremum norm ‖u‖ = sup{|u(t)| : t ≥ T0}. Clearly S is a closed, bounded
and convex subset of C([T0,∞), R). Define two maps A and B : S → X as follows.
For x ∈ S,

Ax(t) =

{
Ax(T ), t ∈ [T0, T ],
p(t)x(r(t)) + F (t) + λ, t ≥ T,

(3.7)

where λ = 4k, and

Bx(t) =


Bx(T ), t ∈ [T0, T ]
(−1)n−1

(n−1)!

∫∞
t

(s− t)n−1q(s)G(x(g(s))) ds

+ (−1)n

(n−1)!

∫∞
t

(s− t)n−1u(s)H(x(h(s))) ds, t ≥ T.

(3.8)

First we show that if x, y ∈ S then Ax + By ∈ S. In fact, for every x, y ∈ S and
t ≥ T , we get

(Ax)(t) + (By)(t)

≤ p(t)x(r(t)) + 4k + |F (t)|+ 1
(n− 1)!

∫ ∞

t

(s− t)n−1q(s)|G(y(g(s)))| ds

+
1

(n− 1)!

∫ ∞

t

(s− t)n−1u(s)|H(y(h(s)))| ds

≤ pL + 4k + k + k + k ≤ L.

On the other hand, for t ≥ T ,

(Ax)(t) + (By)(t)

≥ 4k − |F (t)| − µ

(n− 1)!

∫ ∞

t

(s− t)n−1q(s) ds− µ

(n− 1)!

∫ ∞

t

(s− t)n−1u(s) ds

≥ 4k − k − k − k ≥ c.

Hence
c ≤ (Ax)(t) + (By)(t) ≤ L for t ≥ T.

So that Ax + By ∈ S for all x, y ∈ S.
Next we show that A is a contraction in S and B is completely continuous, by

following the arguments given in [24, Theorem 2.2]. Then by Lemma [7, Krasnosel-
skiis Fixed point Theorem], there is an x0 ∈ S such that Ax0 + Bx0 = x0. It is
easy to see that x0(t) is the required non oscillatory solution of the equation (1.1),
which is bounded below by the positive constant c. If p(t) satisfies (A2) then the
proof is similar, only thing we have to do is to suitably fix c, L, ε and λ. In this
regard, first decrement p if necessary, so that p < 1/7. Then select L, c and λ
such that 7k ≤ L < k/p, 0 < c ≤ k − pL, and λ = 4k. The mappings A and B
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are defined similarly. Then proceeding as above we complete the proof, when p(t)
satisfies (A2). �

Remark 3.2. The above theorem generalizes and extends [25, Theorem 1], [22,
Theorem 2.5], and the necessity part of [15, Theorem 2.2], because we do not require
(H0) or the condition that G be Lipschitzian in intervals of the form [a, b]. Further,
the above theorem holds, even if q(t) changes sign. In that case we have to replace
q(t) by |q(t)| in (H6).

Theorem 3.3. Suppose that p(t) satisfies (A4) or (A5). Let (H5) and (H8) hold.
If every solution of (1.1) oscillates or tends to zero as t →∞ then (H6) holds.

Proof. Suppose that p(t) satisfies (A5). The proof is similar to the proof of the
above theorem with the following changes in the parameters c, L, λ and ε. Choose
L = k(3p1 +4p2)/p1(p1− 1), and c = k/p1. Then L > c > 0 and assume ε = k. We
define the mappings A and B as

Ax(t) =

{
Ax(T ), if t ∈ [T0, T ]
x(r−1(t))
p(r−1(t)) + λ

p(r−1(t)) + F (r−1(t))
p(r−1(t)) , if t ≥ T,

where λ = 4p2k/p1, and

Bx(t) =


Bx(T ), if t ∈ [T0, T ]

(−1)n

(n−1)!p(r−1(t))

∫∞
r−1(t)

(s− r−1(t))n−1q(s)G(x(g(s)))ds

+ (−1)n−1

(n−1)! p(r−1(t))

∫∞
r−1(t)

(s− r−1(t))n−1u(s)H(x(h(s)))ds, if t ≥ T.

The function r−1 used in the definition of the operators A and B, is the in-
verse function of r(t), which exists because r(t) is monotonic. Further, note that,
r−1(r(t)) = t. Proceeding as in the proof of the Theorem 3.1, we find a positive
bounded solution with limit infimum ≥ c > 0. If p(t) satisfies (A4) then, the proof
is similar to the proof for the case (A5), hence we let the reader find the values of
c, L, ε, λ and complete the proof. �

In view of the Theorems 2.10, 3.1 and 3.3, we have the following result.

Corollary 3.4. Suppose that p(t) satisfies one of conditions (A1), (A2), (A4),
(A5). Under the assumptions (H0), (H1), (H5), (H7), every bounded solution of
(1.1) oscillates or tends to zero as t →∞ if and only if (H6) holds.

The above corollary extends and generalizes of [22, corollary 2.9].

Open Problems. Before we close, we state two problems for further research.

• If p(t) ≥ 1, can we find sufficient condition for the oscillation of (1.1) under
one of the conditions (H6), (H4) or (H10)?

• In Theorem 2.20 can we replace (H11) by a weaker condition?

Acknowledgements. The authors are thankful to the anonymous referee for his
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