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POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY-VALUE
PROBLEM WITH PARAMETERS

JUANJUAN XU, ZHONGLI WEI

Abstract. In this paper, we study a generalized Sturm-Liouville boundary-

value problems with two positive parameters. By constructing a completely

continuous operator and combining fixed point index theorem and some prop-
erties of the eigenvalues of linear operators, we obtain sufficient conditions for

the existence of at least one positive solution.

1. Introduction

Multipoint boundary-value problems for ordinary differential equations arise in
different areas of applied mathematics and physics. For example, the vibrations of
a guy wire of uniform cross-section and composed of N parts of different densities
can be set up as a multipoint boundary-value problem; many problem in the the-
ory of elastic stability can be handled as multipoint boundary-value problems too.
Recently, the existence and multiplicity of positive solutions for nonlinear ordinary
differential equations have received a great deal of attention. To identify a few
cases, we refer the readers to [5, 9, 10, 11] and references therein.

Li [4] studied the following boundary-value problem (BVP for short):

u(4)(t) + βu′′ − αu = f(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.1)

where the function f ∈ C([0, 1] × [0,+∞), [0,+∞)), α, β ∈ R and satisfy β <

2π2, α ≥ −β2

4 ,
α
π4 + β

π2 < 1. By applications of the fixed point index theory,
sufficient conditions for existence of at least one positive solution are established.
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Ma [6] studied the existence of positive solution for BVP:

u(4)(t) + αu′′ − βu = f(t, u(t)), 0 < t < 1,

u(0) =
m−2∑
i=1

αiu(ξi), u(1) =
m−2∑
i=1

βiu(ξi),

u′′(0) =
m−2∑
i=1

αiu
′′(ξi), u′′(1) =

m−2∑
i=1

βiu
′′(ξi),

(1.2)

where α, β ∈ R and α < 2π2, β ≥ −α2

4 , αi, βi, ξi > 0 (i = 1, 2, . . . ,m − 2) are
constants, and f ∈ C([0, 1] × [0,+∞), [0,+∞)). The main tool is also the fixed
point index theory.

Motivated by the results mentioned above, we are concerned with the existence
of at least one positive solution for the following generalized Sturm-Liouville BVP:

u(4)(t)− βu′′ + αu = f(t, u(t)), 0 < t < 1,

au(0)− bu′(0) =
m−2∑
i=1

αiu(ξi), cu(1) + du′(1) =
m−2∑
i=1

βiu(ξi),

au′′(0)− bu′′′(0) =
m−2∑
i=1

αiu
′′(ξi), cu′′(1) + du′′′(1) =

m−2∑
i=1

βiu
′′(ξi),

(1.3)

where f ∈ C([0, 1]×[0,+∞), [0,+∞)) satisfying f(t, u) 6≡ 0 and α, β ≥ 0, a, b, c, d ∈
[0,+∞) and ρ := ac+ bc+ ad > 0, ξi ∈ (0, 1), αi, βi ∈ [0,+∞) (i = 1, 2, . . . ,m− 2)
are constants.

To study (1.3), we set up an integral equation which is equivalent to (1.3). By
using the classical fixed point index theorem and combining some knowledge about
eigenvalue of linear operator, we obtain a sufficient condition for the existence of
at least one positive solution.

Following theorems are needed.

Theorem 1.1 ([3]). Let E be a Banach space, and let P ⊂ E be a cone. Assume
Ω(P ) is a bounded open set in P . Suppose that A : Ω(P ) → P is a completely
continuous operator. If there exists ψ0 ∈ P\{θ} such that ϕ − Aϕ 6= µψ0, for all
ϕ ∈ ∂Ω(P ), µ ≥ 0, then the fixed point index satisfies i(A,Ω(P ), P ) = 0.

Theorem 1.2 ([3]). Let E be a Banach space, and let P ⊂ E be a cone. Assume
Ω(P ) is a bounded open set in P with θ ∈ Ω(P ). Suppose that A : Ω(P ) → P is a
completely continuous operator. If Aψ 6= µψ, for all ψ ∈ ∂Ω(P ), µ ≥ 1, then the
fixed point index satisfies i(A,Ω(P ), P ) = 1.

We shall organize this paper as follows. In Section 2, we present some prelimi-
naries and lemmas for use later. Finally, we obtain the main result and state the
proof.

2. Preliminaries

In this section, we state some useful preliminary results and change the BVP (1.3)
into the fixed point problem in a cone. First, we state the following hypothesis to
assumed in this paper.
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(H1) α, β ≥ 0 and α ≤ β2/4.

Remark 2.1. From (H1), it follows that α
π4 + β

π2 > −1.

Lemma 2.2. Under assumption (H1) there exist unique ϕ1, ϕ2, ψ1, ψ2 satisfying

−ϕ′′i (t) + λiϕi = 0, 0 < t < 1,

ϕi(0) = b, ϕ′i(0) = a,

−ψ′′i (t) + λiψi = 0, 0 < t < 1,

ψi(1) = d, ψ′i(1) = −c,

for i = 1, 2. Also on [0, 1], ϕ1, ϕ2, ψ1, ψ2 ≥ 0, where λ1, λ2 are the roots for the
polynomial equation λ2 − βλ+ α = 0; i.e.,

λ1 =
β +

√
β2 − 4α
2

, λ2 =
β −

√
β2 − 4α
2

.

Moreover, ϕ1, ϕ2 are nondecreasing on [0, 1] and ψ1, ψ2 are nonincreasing on [0, 1].

Proof. From (H1), we have λ1, λ2 ≥ 0. By computations we get that: If λi > 0,
then ϕi(t) = b cosh

√
λit+ a√

λi
sinh

√
λit,

ψi(t) = d cosh
√
λi(1− t) +

c√
λi

sinh
√
λi(1− t), (i = 1, 2);

if λi = 0, then ϕi(t) = b+ at, ψi(t) = d+ c− ct, (i = 1, 2).
It is obvious that on [0, 1], ϕ1, ϕ2, ψ1, ψ2 ≥ 0 and ϕ1, ϕ2 are nondecreasing on

[0, 1], ψ1, ψ2 are nonincreasing on [0, 1]. �

We denote

ρ1 =
∣∣∣∣ψ1(0) ϕ1(0)
ψ′1(0) ϕ′1(0)

∣∣∣∣ , ρ2 =
∣∣∣∣ψ2(0) ϕ2(0)
ψ′2(0) ϕ′2(0)

∣∣∣∣ ,
∆1 =

∣∣∣∣ −∑m−2
i=1 αiϕ1(ξi) ρ1 −

∑m−2
i=1 αiψ1(ξi)

ρ1 −
∑m−2

i=1 βiϕ1(ξi) −
∑m−2

i=1 βiψ1(ξi)

∣∣∣∣ ,
∆2 =

∣∣∣∣ −∑m−2
i=1 αiϕ2(ξi) ρ2 −

∑m−2
i=1 αiψ2(ξi)

ρ2 −
∑m−2

i=1 βiϕ2(ξi) −
∑m−2

i=1 βiψ2(ξi)

∣∣∣∣ .
Assume that

(H2) ∆1 < 0, ρ1 −
∑m−2

i=1 αiψ1(ξi) > 0, ρ1 −
∑m−2

i=1 βiϕ1(ξi) > 0;
(H3) ∆2 < 0, ρ2 −

∑m−2
i=1 αiψ2(ξi) > 0, ρ2 −

∑m−2
i=1 βiϕ2(ξi) > 0,

Similar to [8], we can get the following two lemmas by direct calculations.

Lemma 2.3. Let (H1)-(H2) hold. Then for any g ∈ C[0, 1], the problem

−u′′(t) + λ1u(t) = g(t), 0 < t < 1,

au(0)− bu′(0) =
m−2∑
i=1

αiu(ξi), cu(1) + du′(1) =
m−2∑
i=1

βiu(ξi),
(2.1)

has a unique solution u(t) =
∫ 1

0
G1(t, s)g(s) ds+A1(g)ϕ1(t) +B1(g)ψ1(t), where

G1(t, s) =
1
ρ1

{
ϕ1(t)ψ1(s), 0 ≤ t ≤ s ≤ 1,
ϕ1(s)ψ1(t), 0 ≤ s ≤ t ≤ 1,
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A1(g) :=
1

∆1

∣∣∣∣∣
∑m−2

i=1 αi

∫ 1

0
G1(ξi, s)g(s) ds ρ1 −

∑m−2
i=1 αiψ1(ξi)∑m−2

i=1 βi

∫ 1

0
G1(ξi, s)g(s) ds −

∑m−2
i=1 βiψ1(ξi)

∣∣∣∣∣ ,
B1(g) :=

1
∆1

∣∣∣∣∣ −
∑m−2

i=1 αiϕ1(ξi)
∑m−2

i=1 αi

∫ 1

0
G1(ξi, s)g(s) ds

ρ1 −
∑m−2

i=1 βiϕ1(ξi)
∑m−2

i=1 βi

∫ 1

0
G1(ξi, s)g(s) ds

∣∣∣∣∣ ,
and where g ≥ 0, u(t) ≥ 0, t ∈ [0, 1].

The proof of the above lemma follows by routine calculations.

Lemma 2.4. Let (H1), (H3) hold. Then for each g ∈ C[0, 1], the problem

−u′′(t) + λ2u(t) = g(t), 0 < t < 1,

au(0)− bu′(0) =
m−2∑
i=1

αiu(ξi), cu(1) + du′(1) =
m−2∑
i=1

βiu(ξi),
(2.2)

has a unique solution u(t) =
∫ 1

0
G2(t, s)g(s) ds+A2(g)ϕ2(t) +B2(g)ψ2(t), where

G2(t, s) =
1
ρ2

{
ϕ2(t)ψ2(s), 0 ≤ t ≤ s ≤ 1,
ϕ2(s)ψ2(t), 0 ≤ s ≤ t ≤ 1,

A2(g) :=
1

∆2

∣∣∣∣∣
∑m−2

i=1 αi

∫ 1

0
G2(ξi, s)g(s) ds ρ2 −

∑m−2
i=1 αiψ2(ξi)∑m−2

i=1 βi

∫ 1

0
G2(ξi, s)g(s) ds −

∑m−2
i=1 βiψ2(ξi)

∣∣∣∣∣ ,
B2(g) :=

1
∆2

∣∣∣∣∣ −
∑m−2

i=1 αiϕ2(ξi)
∑m−2

i=1 αi

∫ 1

0
G2(ξi, s)g(s) ds

ρ2 −
∑m−2

i=1 βiϕ2(ξi)
∑m−2

i=1 βi

∫ 1

0
G2(ξi, s)g(s) ds

∣∣∣∣∣ ,
and g ≥ 0, u(t) ≥ 0, t ∈ [0, 1].

The proof of the above lemma follows by routine calculations.

Remark 2.5. Suppose that (H2) and (H3) hold. It follows that Ai(g), Bi(g) (i =
1, 2) are increasing.

Lemma 2.6. Assume that (H1)–(H3) hold. Then (1.3) has a unique solution

u(t) =
∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)f(s, u(s)) ds dτ +
∫ 1

0

G2(t, τ)A1(f)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1(f)ψ1(τ) dτ +A2(h)ϕ2(t) +B2(h)ψ2(t),
(2.3)

where G1, G2, A1, A2, B1, B2 are defined as above,

h(t) =
∫ 1

0

G1(t, s)f(s, u(s)) ds+A1(f)ϕ1(t) +B1(f)ψ1(t).

Obviously, u(t) ≥ 0 for all t ∈ [0, 1]. Let E = C[0, 1] and P = {u ∈ E, u ≥ 0}.
It is obvious that P is a cone in E. Define T : E → E,

Tu(t) =
∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)f(s, u(s)) ds dτ +
∫ 1

0

G2(t, τ)A1(f)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1(f)ψ1(τ) dτ +A2(h)ϕ2(t) +B2(h)ψ2(t),
(2.4)

where h(t) =
∫ 1

0
G1(t, s)f(s, u(s)) ds+A1(f)ϕ1(t) +B1(f)ψ1(t).
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We can easily obtain that u is a positive solution of (1.3) if and only if u is a
fixed point of T in P .

Define L : E → E,

Lu(t) =
∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)u(s) ds dτ +
∫ 1

0

G2(t, τ)A1(u)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1(u)ψ1(τ) dτ +A2(e)ϕ2(t) +B2(e)ψ2(t),
(2.5)

where e(t) =
∫ 1

0
G1(t, s)u(s) ds+A1(u)ϕ1(t) +B1(u)ψ1(t).

Lemma 2.7. Suppose that (H1)–(H3) hold. Then T : P → P is completely contin-
uous. Also L : P → P is completely continuous.

Lemma 2.8. Suppose that (H1)–(H3) hold. Then for the operator L defined by
(2.5), the spectral radius r(L) 6= 0 and L has a positive eigenfunction corresponding
to its first eigenvalue λ∗ = r(L)−1.

Proof. It is easy to see that there is t1 ∈ (0, 1), such that G1(t1, t1)G2(t1, t1) >
0. Thus there exists [α, β] ⊂ (0, 1) such that t1 ∈ (α, β) and G1(t, τ)G2(τ, s) >
0, t, τ, s ∈ [α, β].

Take u ∈ E such that u(t) ≥ 0 for all t ∈ [0, 1], u(t1) > 0 and u(t) = 0 for all
t ∈ [0, 1]\[α, β]. Then for t ∈ [α, β],

Lu(t) =
∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)u(s) ds dτ +
∫ 1

0

G2(t, τ)A1(u)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1(u)ψ1(τ) dτ +A2(e)ϕ2(t) +B2(e)ψ2(t)

≥
∫ β

α

∫ β

α

G2(t, τ)G1(τ, s)u(s) ds dτ +
∫ β

α

G2(t, τ)A1(u)ϕ1(τ) dτ

+
∫ β

α

G2(t, τ)B1(u)ψ1(τ) dτ +A2(e)ϕ2(t) +B2(e)ψ2(t) > 0.

So there exists a constant c > 0 such that for t ∈ [0, 1], c(Lu)(t) ≥ u(t). From
Krein-Rutmann Theorem [3], we know that the spectral radius r(L) 6= 0 and L has
a positive eigenfunction corresponding to its first eigenvalue λ∗ = r(L)−1. �

3. Main Result

Theorem 3.1. Suppose that (H1)–(H3) hold, and f0 > λ∗, f∞ < λ∗, where λ∗
is the first eigenvalue of L defined by (2.5). Then (1.3) has at least one positive
solution, where

f0 = lim inf
u→0+

min
t∈[0,1]

f(t, u)
u

, f∞ = lim sup
u→+∞

max
t∈[0,1]

f(t, u)
u

.

Proof. From f0 > λ∗, there exists r1 > 0, such that f(t, u) ≥ λ∗u for all t ∈ [0, 1],
u ∈ [0, r1]. Let u ∈ ∂Br1 ∩ P . Then

Tu(t) =
∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)f(s, u(s)) ds dτ +
∫ 1

0

G2(t, τ)A1(f)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1(f)ψ1(τ) dτ +A2(h)ϕ2(t) +B2(h)ψ2(t)
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≥ λ∗[
∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)u(s) ds dτ +
∫ 1

0

G2(t, τ)A1(u)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1(u)ψ1(τ) dτ +A2(e)ϕ2(t) +B2(e)ψ2(t)]

= λ∗(Lu)(t).

We may suppose that T has no fixed point on ∂Br1 ∩ P (otherwise, the proof is
complete). Now we show that u− Tu 6= µu∗ for all u ∈ ∂Br1 ∩ P , µ ≥ 0.

Otherwise, there exists u1 ∈ ∂Br1 ∩ P , τ0 ≥ 0, such that u1 − Tu1 = τ0u
∗, that

is
u1 = Tu1 + τ0u

∗.

Let τ∗ = sup{τ : u1 ≥ τu∗}, then τ∗ ≥ τ0 > 0, and u1 ≥ τ∗u∗. Since L(P ) ⊂ P ,
λ∗Lu1 ≥ τ∗λ∗Lu

∗ = τ∗u∗, we have

u1 = Tu1 + τ0u
∗ ≥ λ∗Lu1 + τ0u

∗ ≥ (τ∗ + τ0)u∗.

which contradicts the definition of τ∗, so i(T,Br1 ∩ P, P ) = 0.
From f∞ < λ∗, there exits 0 < σ < 1, r2 > r1, such that f(t, u) ≤ σλ∗u for all

t ∈ [0, 1], u ∈ [r2,+∞). Let L1u = σλ∗Lu, u ∈ E, then L1 : E → E is a bounded
linear operator and L1(P ) ⊂ P . Let

M∗ = max
u∈Br2∩P,t∈[0,1]

∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)f(s, u(s)) ds dτ

+
∫ 1

0

G2(t, τ)A1(f)ϕ1(τ) dτ +
∫ 1

0

G2(t, τ)B1(f)ψ1(τ) dτ

+A2(h)ϕ2(t) +B2(h)ψ2(t),

obviously, 0 < M∗ < +∞. Let W = {u ∈ P : u = µTu, 0 ≤ µ ≤ 1}, for all u ∈W ,
denote û(t) = min{u(t), r2}, s(u) = {t ∈ [0, 1], u(t) > r2}, f̂(t) = f(t, û(t)). Then

u(t) = µTu(t) ≤ Tu(t)

=
∫ 1

0

∫
s(u)

G2(t, τ)G1(τ, s)f(s, u(s)) ds dτ +
∫ 1

0

G2(t, τ)A1s(u)(f)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1s(u)(f)ψ1(τ) dτ +A2(hs(u))ϕ2(t) +B2(hs(u))ψ2(t)

+
∫ 1

0

∫
[0,1]/s(u)

G2(t, τ)G1(τ, s)f(s, u(s)) ds dτ

+
∫ 1

0

G2(t, τ)A1[0,1]/s(u)(f)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1[0,1]/s(u)(f)ψ1(τ) dτ

+A2(h[0,1]/s(u))ϕ2(t) +B2(h[0,1]/s(u))ψ2(t)

≤ σλ∗[
∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)u(s) ds dτ +
∫ 1

0

G2(t, τ)A1(u)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1(u)ψ1(τ) dτ +A2(e)ϕ2(t) +B2(e)ψ2(t)]
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+
∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)f(s, û(s)) ds dτ +
∫ 1

0

G2(t, τ)A1(f̂)ϕ1(τ) dτ

+
∫ 1

0

G2(t, τ)B1(f̂)ψ1(τ) dτ +A2(f̂)ϕ2(t) +B2(f̂)ψ2(t)

≤ (L1u)(t) +M∗, t ∈ [0, 1].

where

A1s(u)(f) :=
1

∆1

∣∣∣∣∣
∑m−2

i=1 αi

∫
s(u)

G1(ξi, s)g(s) ds ρ1 −
∑m−2

i=1 αiψ1(ξi)∑m−2
i=1 βi

∫
s(u)

G1(ξi, s)g(s) ds −
∑m−2

i=1 βiψ1(ξi)

∣∣∣∣∣ ,
B1s(u), A2[0,1]/s(u), B2[0,1]/s(u) have the similar meaning and

hs(u)(t) =
∫

s(u)

G1(t, s)f(s, u(s)) ds+A1s(u)(f)ϕ1(t) +B1s(u)(f)ϕ2(t).

Thus
(I − L1)u ≤M∗, t ∈ [0, 1].

Since u∗ = λ∗(Lu∗) and 0 < σ < 1, we have r(L1)−1 > 1; i.e., (I − L1)−1 exists
and

(I − L1)−1 = I + L1 + L2
1 + · · ·+ Ln

1 + . . . .

It follows from L1(P ) ⊂ P that (I−L1)−1(P ) ⊂ P . Therefore, u(t) ≤ (I−L1)−1M∗,
t ∈ [0, 1], and W is bounded. We denote by supW the bound of W .

Select r3 > max{r2, supW}, then for all u ∈ ∂Br3 ∩ P , u 6= µTu, 0 ≤ µ ≤ 1;
that is,

Tu 6= 1
µ
u,

1
µ
≥ 1, ∀u ∈ ∂Br3 ∩ P,

so from Theorem 1.2, we have i(T,Br3 ∩ P, P ) = 1. Therefore,

i(T, (Br3 ∩ P )\(Br1 ∩ P ), P ) = i(T,Br3 ∩ P, P )− i(T,Br1 ∩ P, P ) = 1.

By the solution properties of the fixed point index, T has at least one fixed point on
(Br3 ∩P )\(Br1 ∩P ), which means that the generalized Sturm-Liouville boundary-
value problem (1.3) has at least one positive solution. �
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