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ON NON-ABSOLUTE FUNCTIONAL VOLTERRA INTEGRAL
EQUATIONS AND IMPULSIVE DIFFERENTIAL EQUATIONS IN

ORDERED BANACH SPACES

SEPPO HEIKKILÄ, SEPPO SEIKKALA

Abstract. In this article we derive existence and comparison results for dis-

continuous non-absolute functional integral equations of Volterra type in an
ordered Banach space which has a regular order cone. The obtained results

are then applied to first-order impulsive differential equations.

1. Introduction

In [6] a theory for HL integrable functions with values in ordered Banach spaces
was developed, and applied to Fredholm integral equations and concrete boundary
value problems of second order ordinary differential equations. In this paper we
apply that theory and a fixed point result in abstract spaces to prove existence
and comparison results for non-absolute functional Volterra integral equations in
an ordered Banach space E, and give applications to first-order impulsive initial
value problems involving discontinuities and functional dependencies.

The main features of this paper are:
– The E-valued functions in considered equations are discontinuous and depend
functionally on the unknown function. Thus integro-differential equations are in-
cluded.
– Integrals in integral equations are non-absolute integrals, and differential equa-
tions of impulsive problems may be singular.
– Impulses are allowed to occur in well-ordered sets, in particular, in finite sets or
in increasing sequences.

The main tools are:
– Fixed point results in partially ordered sets, proved in [7] by generalized iteration
methods.
– Dominated and monotone convergence theorems for HL integrable mappings and
results on the existence of supremum and infimum of chains of locally HL integrable
mappings from a real interval to E, proved in [6].
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2. Preliminaries

In this section we study properties of HL integrable, a.e. differentiable and
locally HL integrable functions from a real interval to a Banach space E.

A K-partition of a compact real interval I is formed by a finite collection of
closed subintervals [ti−1, ti] of I whose union is I, and tags ξi ∈ [ti−1, ti]. A function
u : I → E is HL integrable if there is a function F : I → E, called a primitive of u,
which has the following property: If ε > 0, there is such a function δ : I → (0,∞)
that ∑

i

∥∥u(ξi)(ti − ti−1)− (F (ti)− F (ti−1))
∥∥ < ε

for every K-partition {(ξi, [ti−1, ti])} of I with [ti−1, ti] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for
all i. If u is HL integrable on I, it is HL integrable on every closed subinterval
J = [a, b] of I, and F (b)− F (a) is the Henstock-Kurzweil integral of u over J , i.e.,

F (b)− F (a) = K

∫
J

u(s) ds = K

∫ b

a

u(s) ds. (2.1)

The proofs for the results of the next Lemma can be found, e.g. in [10].

Lemma 2.1. (a) The Henstock-Kurzweil integrals of a.e. equal HL integrable
functions are equal.

(b) Every HL integrable function is strongly measurable.
(c) A Bochner integrable function u : I → E is HL integrable, and

∫
J

u(s) ds =
K
∫

J
u(s) ds whenever J is a closed subinterval of I.

The set H(I, E) of all HL integrable functions u : I → E is a vector space with
respect to the usual addition and scalar multiplication of functions. Identifying a.e.
equal functions it follows that the space L1(I, E) of all Bochner integrable functions
u : I → E is a subset of H(I, E).

A function u : I → E is called absolutely continuous (AC) on I if for each ε > 0
there corresponds such a δ > 0, that for any sequence [aj , bj ], j = 1, . . . , n of disjoint
subintervals of I with

∑n
j=1(bj − aj) < δ we have

∑n
j=1 ‖u(bj)− u(aj)‖ < ε.

We say that a function u : I → E is generalized absolutely continuous in the
restricted sense (ACG∗) on I if I can be expressed as such a countable union of its
subsets Bn, n ∈ N, that for all ε > 0 and n ∈ N there exists such a δn > 0 that∑

i

sup{‖u(d)− u(c)‖ : [c, d] ⊆ [ci, di]} < ε

whenever {[ci, di]} is a finite sequence of non-overlapping intervals which have end-
points in Bn and satisfy

∑
i(di − ci) < δn. If u is AC on I, it is continuous and

ACG∗ on I.
A function v : I → E is said to be a.e. (strongly) differentiable, if the strong

derivative v′(t) = limh→0
v(t+h)−v(t)

h exists for a.e. t ∈ I.
As for the proof of the following result, see, e.g., [10, subsection 7.4.1].

Theorem 2.2. Given u, v : I → E and (t0, x0) ∈ I × E, then the following
conditions are equivalent.

(a) u is continuous and ACG∗ on I, u′(t) = v(t) for a.e. t ∈ I and u(t0) = x0.
(b) v is HL-integrable and u(t) = x0 + K

∫ t

t0
v(s)ds for all t ∈ I.
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If u : I → E is a.e. differentiable, define u′(t) = 0 at those points t ∈ I where u
is not differentiable.

The next result is a consequence of Theorem 2.2.

Corollary 2.3. If u : I → E is a.e. differentiable, then u is continuous and ACG∗

on I if and only if u′ is HL-integrable, and

u(t)− u(t0) = K

∫ t

t0

u′(s)ds for all t0, t ∈ I.

The following result is needed in section 4.

Lemma 2.4. If u : I → R is absolutely continuous, and v : I → E is continuous,
ACG∗ and a.e. differentiable, then

u(t)v(t)− u(t0)v(t0) = K

∫ t

t0

(u(s)v′(s) + u′(s)v(s))ds for all t0, t ∈ I.

Proof. Let t, t + h ∈ I, h 6= 0 be given. Since u and v are continuous on a compact
interval I, they are also bounded, whence

u(t + h)v(t + h)− u(t)v(t) = (u(t + h)− u(t))v(t + h) + u(t)(v(t + h)− v(t)).

implies when M = max{‖v(t)‖ : t ∈ I} and m = max{|u(t)| : t ∈ I} that

‖u(t + h)v(t + h)− u(t)v(t)‖ ≤ M |u(t + h)− u(t)|+ m ‖v(t + h)− v(t)‖.

Because u is an absolutely continuous real-valued function, it is ACG∗ on I. It
then follows from the above inequality that u · v is continuous and ACG∗ on I.
Moreover, u and v are a.e. differentiable, whence u · v is a.e. differentiable and

(u · v)′(t) = u(t)v′(t) + u′(t)v(t) for a.e. t ∈ I.

The assertion follows then from Corollary 2.3. �

The following result is adapted from [8].

Proposition 2.5. If v : I → E is HL-integrable and u : I → R is of bounded
variation, then u · v is HL-integrable.

Given an interval J of R, not necessarily closed or bounded, denote by Hloc(J,E)
the space of all strongly measurable functions u : J → E which are HL integrable on
each compact subinterval of J . We assume that Hloc(J,E) is ordered a.e. pointwise;
i.e.,

u ≤ v if and only if u(s) ≤ v(s) for a.e. s ∈ J. (2.2)

The results of the next Lemma follow from [6, Proposition 2.1 and Lemma 2.5].

Lemma 2.6. Given an ordered Banach space, let u, v : J → E be strongly mea-
surable, u± ∈ Hloc(J,E), and assume that u−(s) ≤ u(s) ≤ v(s) ≤ u+(s) for a.e.
s ∈ J . Then u ∈ Hloc(J,E). Moreover,

K

∫ t

a

u(s) ds ≤ K

∫ t

a

v(s) ds for all a, t ∈ J, a ≤ t.

Next we present Dominated and Monotone Convergence Theorems for locally
HL-integrable functions, which are needed in applications.
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Theorem 2.7. Given a real interval J and a Banach space E ordered by a normal
order cone, let (un)∞n=1 be a sequence of strongly measurable functions from J to
E, let u± ∈ Hloc(J,E), and assume that u− ≤ un ≤ u+ for each n = 1, 2, . . . ,
and that un(s) → u(s) for a.e. s ∈ J . Then u, un ∈ Hloc(J,E), n = 1, 2, . . . , and
K
∫ t

a
un(s)ds → K

∫ t

a
u(s)ds for all a, t ∈ J , a < t.

Proof. The given hypotheses imply by Lemma 2.6 that un ∈ Hloc(J,E), n =
1, 2, . . . . If a, t ∈ J , a < t, are fixed, then u± ∈ H([a, t], E) and un ∈ H([a, t], E),
n = 1, 2, . . . , and un(s) → u(s) for a.e. s ∈ [a, t]. Thus u ∈ H([a, t], E) and
K
∫ t

a
un(s)ds → K

∫ t

a
u(s)ds by [6, Theorem 3.1]. �

As an easy consequence of Theorem 2.7 we obtain the following result.

Theorem 2.8. Given a real interval J and a Banach space E ordered by a regular
order cone, let (un)∞n=1 be a monotone sequence of strongly measurable functions
from a real interval J to E. Assume that u± ∈ Hloc(J,E), and that u− ≤ un ≤ u+

for each n = 1, 2, . . . . Then there exists a function u ∈ Hloc(J,E) such that u(t) =
limn un(t) for a.e. t ∈ J , and K

∫ t

a
un(s)ds → K

∫ t

a
u(s)ds for all a, t ∈ J , a < t.

Proof. Since (un(s)) is monotone and u−(s) ≤ un(s) ≤ u+(s) for a.e. s ∈ [a, b),
and since the order cone of E is regular, then (un) converges a.e. pointwise to a
function u : J → E. The conclusions follow then from Theorem 2.7. �

In our study of Volterra integral equations we need the following result, which
is proved in [6, Proposition 3.2].

Lemma 2.9. Assume that W is a nonempty set in an order interval [w−, w+] of
Hloc(J,E), where J is a real interval J and E a Banach space ordered by a regular
order cone.

(a) If W is well-ordered, it contains an increasing sequence which converges
a.e. pointwise to supW .

(b) If W is inversely well-ordered, it contains a decreasing sequence which con-
verges a.e. pointwise to inf W .

Since each increasing sequence of Hloc(J,E) is well-ordered and each decreasing
sequence of Hloc(J,E) is inversely well-ordered, we obtain as a consequence of
Lemma 2.9 and [7, Proposition 1.1.3, Corollary 1.1.3], the following results.

Corollary 2.10. Given a real interval J and a Banach space E ordered by a
normal order cone, assume that (un) is a sequence of Hloc(J,E), and that there
exist functions w± ∈ Hloc(J,E) such that un ∈ [w−, w+] for each n.

(a) If (un) is increasing, it converges a.e. pointwise to u∗ = supn un in the
space Hloc(J,E), and u∗ belongs to [w−, w+].

(b) If (un) is decreasing, it converges a.e. pointwise to u∗ = infn un in the space
Hloc(J,E), and u∗ belongs to [w−, w+].

The following fixed point result is a consequence of [1, Theorem A.2.1], [7, The-
orem 1.2.1 and Proposition 1.2.1].

Lemma 2.11. Given a partially ordered set P = (P,≤) and its order interval
[w−, w+] = {w ∈ P | w− ≤ u ≤ w+}, assume that G : P → [w−, w+] is increasing,
i.e., Gu ≤ Gv whenever u ≤ v in P , and that each well-ordered chain of the range
G[P ] of G has a supremum in P and each inversely well-ordered chain of G[P ]
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has an infimum in P . Then G has least and greatest fixed points, and they are
increasing with respect to G.

3. Existence and comparison results for a functional Volterra
integral equation

Throughout this section E = (E,≤, ‖ · ‖) is an ordered Banach space with a
regular order cone, which means by [7, Lemma 1.3.3], that all order bounded and
monotone sequences of E converge.

In this section we study the functional Volterra integral equation

u(t) = q(t, u) + K

∫ t

a

k(t, s)f(s, u(s), u) ds, t ∈ J = [a, b), (3.1)

where q : J ×Hloc((a, b), E) → E, f : J ×E×Hloc((a, b), E) → E and k : Λ → R+,
where Λ = {(t, s) ∈ J × J : s ≤ t} and −∞ < a < b ≤ ∞.

Assuming that Hloc((a, b), E) is equipped with a.e. pointwise ordering (2.2), we
impose the following hypotheses on the functions q, f and k.

(q0) q(t, ·) is increasing for a.e. t ∈ J , q(·, u) is strongly measurable for all
u ∈ Hloc((a, b), E), and there exist α± ∈ Hloc((a, b), E) such that α− ≤
q(·, u) ≤ α+ for all u ∈ Hloc((a, b), E).

(f0) There exist functions u± ∈ Hloc((a, b), E) such that u− ≤ f(·, x, u) ≤ u+

for all x ∈ E and u ∈ Hloc((a, b), E).
(f1) The mapping f(·, u(·), u) is strongly measurable for each u ∈ Hloc((a, b), E).
(f2) f(s, z, u) is increasing with respect to z and u for a.e. s ∈ J .
(k0) k is continuous and the mappings s 7→ k(t, s)u±(s) belong to Hloc(J,E) for

each t ∈ J .
Our main existence and comparison result for the integral equation (3.1) reads as
follows.

Theorem 3.1. Assume that the hypotheses (q0), (f0), (f1), (f2), (k0) are satisfied.
Then the equation (3.1) has least and greatest solutions in Hloc((a, b), E). Moreover,
these solutions u∗ and u∗ are increasing with respect to q and f .

Proof. The hypotheses (q0), (k0) and (f0) ensure that the equations

w±(t) = α±(t) + K

∫ t

a

k(t, s)u±(s) ds, t ∈ J, (3.2)

define functions w± : J → E. Noticing that the integral on the right-hand side of
(3.2) is continuous in its upper limit t, and that the integrand is continuous in t
for fixed s, one can show by applying also Theorem 2.7, that the second term on
the right-hand side of (3.2) is continuous in t. Thus the functions w± belong to the
set P := Hloc((a, b), E). By using the hypotheses (q0), (k0), (f0)–(f2), Lemmas 2.1
and 2.6 and Theorem 2.7 it can be shown that the equation

Gu(t) = q(t, u) + K

∫ t

a

k(t, s)f(s, u(s), u) ds, t ∈ J, (3.3)

defines an increasing mapping G : P → [w−, w+]. Since G[P ] ⊂ [w−, w+], it follows
from Lemma 2.9 that each well-ordered chain of G[P ] has a supremum in P and
each inversely well-ordered chain of G[P ] has an infimum in P .

The above proof shows that all the hypotheses of Lemma 2.11 are valid for the
operator G defined by (3.3). Thus G has least and greatest fixed points u∗ and u∗.
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Noticing that fixed points of G defined by (3.3) are solutions of (3.1) and vice versa,
then u∗ and u∗ are least and greatest solutions of (3.1). It follows from (3.3), by
Lemma 2.6, that G is increasing with respect to q and f , whence the last assertion
of Theorem follows from the last assertion of Lemma 2.11. �

Next we consider a case when the extremal solutions of the integral equation
(3.1) can be obtained by ordinary iterations.

Proposition 3.2. Assume that the hypotheses (q0), (f0), (f1), (f2), (k0) hold, and
let G be defined by (3.3).

(a) The sequence (un)∞n=0 := (Gnw−)∞n=0 is increasing and converges a.e. point-
wise to a function u∗ ∈ Hloc((a, b), E). Moreover, u∗ is the least solu-
tion of (3.1) if q(t, un) → q(t, u∗) for a.e. t ∈ J and f(s, un(s), un) →
f(s, u∗(s), u∗) for all t ∈ J and for a.e. s ∈ [a, t];

(b) The sequence (vn)∞n=0 := (Gnw+)∞n=0 is decreasing and converges a.e. point-
wise to a function u∗ ∈ Hloc((a, b), E). Moreover, u∗ is the greatest solu-
tion of (3.1) if q(t, vn) → q(t, u∗) for a.e. t ∈ J and f(s, vn(s), vn) →
f(s, u∗(s), u∗) for a.e. s ∈ J .

Proof. (a) The sequence (un) := (Gnw−) is increasing and contained in the order
interval [w−, w+]. Hence the asserted a.e. pointwise limit u∗ ∈ Hloc((a, b), E)
exists by Corollary 2.10 (a). Moreover, (un) equals to the sequence of successive
approximations un : J → E defined by

un+1(t) = q(t, un) + K

∫ t

a

k(t, s)f(s, un(s), un) ds, u0(t) = w−(t), t ∈ J, n ∈ N.

(3.4)
In view of these results, the hypotheses of (a) and Theorem 2.8, it follows from
(3.4) as n →∞ that u∗ is a solution of (3.1).

If u is any solution of (3.1), then u = Gu ∈ [w−, w+]. By induction one can
show that un = Gnw− ∈ [w−, u] for each n. Thus u∗ = supn un ≤ u, which proves
that u∗ is the least solution of (3.1).

The proof of part (b) is similar to that of (a) and is omitted. �

Example 3.3. Let E be the space c0 of all sequences (cn)∞n=1 of real numbers
converging to zero, ordered componentwise and equipped with the sup-norm. Define
hn, αn : [0,∞) → R and k : Λ → R+ by equations

hn(t) =
2√
n

cos
( 1
t2

)
+

2√
nt2

sin
( 1
t2

)
, t > 0, hn(0) = 0,

αn(t) =
1√
nt

H
(
t− 2n− 1

2n

)
, n = 1, 2, . . . ,

k(t, s) =
s

t
, t > 0, αn(0) = k(0, ·) = 0,

(3.5)

The solutions of the infinite system of integral equations

wn(t) = ±αn(t) + K

∫ t

0

k(t, s)
(
hn(s)± 1√

n

)
ds, n = 1, 2, . . . , (3.6)
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in Hloc((0,∞), c0) are

w±(t) = (wn±(t))∞n=1 =
(
± 1√

nt
H

(
t− 2n− 1

2n

)
+

t√
n

cos
( 1
t2

)
± t

2
√

n

)∞
n=1

.

(3.7)
In particular, Theorem 3.1 can be applied to show that the infinite system of integral
equations

un(t) = qn(u)αn(t) + K

∫ t

0

k(t, s)
(
hn(s) +

1√
n

gn(u)
)

ds, n = 1, 2, . . . , (3.8)

where u = (un)∞n=1 has least and greatest solutions u∗ = (u∗n)∞n=1 and u∗ = (u∗n)∞n=1

in Hloc((0,∞), c0), if all the functions qn, gn : Hloc([0,∞), c0) → R are increasing,
and if −1 ≤ gn(u), qn(u) ≤ 1 for all u ∈ Hloc((0,∞), c0) and n = 1, 2, . . . . More-
over, both u∗ and u∗ belong to the order interval [w−, w+] of Hloc(0,∞), c0), where
the functions w± are given by (3.7).

Remarks 3.4. The functions hn in Example 3.1 do not belong to H([0, t1], R) for
any t1 > 0. However, k(t, s) = s

t is continuous and the functions k(t, ·)hn belong
to Hloc([0,∞), R), whence the hypothesis (k0) is valid.

Continuity of k and Theorem 2.7 ensure that the integral on the right-hand side
of equation (3.1) is continuous in t. If also the function q is continuous in t in that
equation, then its solutions are continuous.

4. An application to an impulsive IVP

Let E be a Banach space ordered by a regular order cone. The result of Theorem
3.1 will now be applied to the following impulsive initial value problem (IIVP)

u′(t) + p(t)u(t) = f(t, u(t), u) a.e. on J = [a, b),

u(a) = x0, ∆u(λ) = D(λ, u), λ ∈ W,
(4.1)

where p ∈ L1(J, R), f : J ×E ×Hloc(J,E) → E, x0 ∈ E, ∆u(λ) = u(λ + 0)− u(λ),
D : W ×Hloc(J,E) → E, and W is a well-ordered (and hence countable) subset of
(a, b).

Denoting W<t = {λ ∈ W | λ < t}, t ∈ J , and by ACG∗
loc(J,E) the set of all

continuous functions from J to E which are ACG∗ on every compact subinterval of
J , we say that u : J → E is a solution of the IIVP (4.1) if it satisfies the equations
of (4.1), and if it belongs to the set

V = {u : J → E |
∑
λ∈W

‖∆u(λ)‖ < ∞ and

t 7→ u(t)−
∑

λ∈W <t

∆u(λ) ∈ ACG∗
loc(J,E)}.

It is easy to verify that V is a subset of Hloc(J,E).
The following result, which is a generalization to [2, Lemma 3.1], allows us to

convert the IIVP (4.1) to an improper Volterra integral equation.

Lemma 4.1. If p ∈ L1(J, R), g ∈ Hloc(J,E), x0 ∈ E and c : W → E, and if∑
λ∈W ‖c(λ)‖ < ∞, then the problem

u′(t) + p(t)u(t) = g(t) a.e. on J,

u(a) = x0, ∆u(λ) = c(λ), λ ∈ W,
(4.2)
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has a unique solution u. This solution can be represented as

u(t) = e−
R t

a
p(s)dsx0 +

∑
λ∈W <t

e−
R t

λ
p(s)dsc(λ) + K

∫ t

a

e−
R t

s
p(τ)dτg(s)ds (4.3)

for t ∈ J . Moreover, u is increasing with respect to g, c and x0.

Proof. Let u : J → E be defined by (4.3). Given a compact subinterval I = [a, t1]
of J , define a mapping Γ : I → I by

Γ(s) = min{t ∈ W ∪ {t1} | s < t}, s ∈ [a, t1), Γ(t1) = t1.

Denote by C the well-ordered chain of Γ-iterations of a, i.e. (cf. [7, Theorem 1.1.1])
C is the only well-ordered subset of J with the following properties: a = minC,
and if s > a, then s ∈ C if and only if s = supΓ{t ∈ C|t < s}.

It follows from [7, Corollary 1.1.1] that W ⊂ C, and I is a disjoint union of C
and open intervals (s,Γ(s)), s ∈ C. Moreover, C is countable as a well-ordered set
of real numbers. Hence, rewriting (4.3) as

u(t) = e−
R t

a
p(s)ds

[
x0 +

∑
α∈W <t

e−
R a

α
p(s)dsc(α) + K

∫ t

a

e−
R a

s
p(τ)dτg(s)ds

]
,

it is easy to verify that

u′(t) + p(t)u(t) = g(t) for a.e. t ∈ I, u(a) = x0. (4.4)

For each α ∈ W the open interval (α, Γ(α)) does not contain any point of W , so
that

∆u(α) = u(α + 0)− u(α) = lim
t→α+0

e−
R t

α
p(s)dsc(α) = c(α), α ∈ W. (4.5)

It follows from (4.3) and (4.5) that

u(t)−
∑

α∈W <t

∆u(α) = u(t)−
∑

α∈W <t

c(α) = v(t) + w(t), (4.6)

where

v(t) = e−
R t

a
p(s)dsx0 + K

∫ t

a

e−
R t

s
p(τ)dτg(s)ds, t ∈ I,

w(t) =
∑

α∈W <t

(e−
R t

α
p(s)ds − 1)c(α), t ∈ I.

Thus, for a ≤ t̄ < t ≤ t1 we obtain

w(t)− w(t̄)

=
∑

α∈W∩(a,t̄)

(e−
R t

α
p(s)ds − e−

R t̄
α

p(s)ds)c(α) +
∑

α∈W∩[t̄,t)

(e−
R t

α
p(s)ds − 1)c(α)

=
∑

α∈W∩(a,t̄)

∫ t

t̄

−p(s)e−
R s

α
p(τ)dτds c(α) +

∑
α∈W∩[t̄,t)

∫ t

α

−p(s)e−
R s

α
p(τ)dτds c(α).

Applying this representation and denoting M = e
R t1

a
|p(s)|ds

∑
α∈W ‖c(α)‖, it follows

that

‖w(t)− w(t̄)‖ ≤ M

∫ t

t̄

|p(s)|ds for a ≤ t̄ < t ≤ t1.
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This implies that w is absolutely continuous. Obviously, w is a.e. differentiable
and the function v is continuous and belongs to ACG∗(I, E) by Theorem 2.2 and
Proposition 2.5.

The above result holds for every t1 ∈ (a, b), so that u ∈ V by (4.6). This, (4.4)
and (4.5) imply that u is a solution of problem (4.2).

If v ∈ V is a solution of (4.2), then w = u− v is a function of V and ∆w(α) = 0
for each α ∈ W , whence w ∈ ACG∗

loc(J,E) and w is a solution of the initial value
of problem

w′(t) + p(t)w(t) = 0 a.e. on J, w(a) = 0. (4.7)
For every fixed t ∈ J the function

h(s) = e
R s

a
p(τ)dτ , s ∈ I = [a, t],

is absolutely continuous on I and real-valued. It then follows from Lemma 2.4 that

h(t)w(t)− h(a)w(a) = K

∫ t

a

(h′(s)w(s) + h(s)w′(s)) ds, t ∈ J,

or equivalently,

h(t)w(t)− h(a)w(a) = K

∫ t

a

(e
R s

a
p(τ)dτ (p(s)w(s) + w′(s)) ds, t ∈ J.

This equation and (4.7) imply that h(t)w(t) ≡ 0, so that w(t) ≡ 0, whence u = v.
The last assertion of Lemma is a direct consequence from the representation

(4.3) and Lemma 2.6. �

We shall impose the following hypotheses on the function D.
(D0) D(λ, ·) is increasing for all λ ∈ W , and there exist c± : W → E such that

c−(λ) ≤ D(λ, u) ≤ c+(λ) for all λ ∈ W and u ∈ Hloc(J,E), and that∑
λ∈W ‖c±(λ)‖ < ∞.

As an application of Theorem 3.1 we get the following existence and comparison
result for the IIVP (4.1).

Theorem 4.2. Let the functions f and D in (4.1) satisfy the hypotheses (f0)–(f2),

(D0). If p ∈ L1(J, R), and if the improper integrals K
∫ t

a
e

KR s
a

p(τ)dτh±(s)ds exist for
some t ∈ J , then the IIVP (4.1) has for each x0 ∈ E least and greatest solutions u∗
and u∗ in V . Moreover, these solutions are increasing with respect to x0, D and f .

Proof. The hypotheses given for D and p ensure that for each x0 ∈ E the relations

q(t, u) = e−
R t

a
p(s)dsx0 +

∑
λ∈W <t

e−
R t

λ
p(s)dsD(λ, u),

for t ∈ J, u ∈ Hloc(J,E);

k(t, s) = e−
R t

s
p(τ)dτ , (t, s) ∈ Λ = {(t, s) ∈ J × J | s ≤ t},

(4.8)

define mappings q : J × Hloc(J,E) → E and k : Λ → R+ which satisfy the
hypotheses (q0), and (k0) of Theorem 3.1. Then the integral equation (4.1), which
by (4.8) can be rewritten as a fixed point equation

u(t) = Gu(t) := e−
R t

a
p(s)dsx0 +

∑
λ∈W <t

e−
R t

λ
p(s)dsD(λ, u)

+ K

∫ t

a

e−
R t

s
p(τ)dτf(s, u(s), u)ds,

(4.9)
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has by Theorem 3.1 least and greatest solutions u∗ and u∗, and they are increasing
with respect to q and f . Because by Lemma 4.1 the solutions of the IIVP (4.1) are
the same as the solutions of the integral equation (4.9), then u∗ and u∗ are least
and greatest solutions of the (IIVP) (4.1), and they are increasing with respect to
x0, D and q. �

The next result is a consequence of Proposition 3.2.

Proposition 4.3. Assume that the hypotheses of Theorem 4.1 hold, and let G be
defined by (4.9).

(a) The sequence (un)∞n=0 = (Gnw−)∞n=0 is increasing and converges a.e. point-
wise to a function u∗ ∈ Hloc(J,E). Moreover, u∗ is the least solution
of (4.1) if D(λ, un) → D(λ, u∗) for each λ ∈ W and f(s, un(s), un) →
f(s, u∗(s), u∗) for a.e. s ∈ J ;

(b) The sequence (vn)∞n=0 = (Gnw+)∞n=0 is decreasing and converges a.e. point-
wise to a function u∗ ∈ Hloc(J,E). Moreover, u∗ is the greatest solution
of (4.1) if D(λ, vn) → D(λ, u∗) for each λ ∈ W and f(s, vn(s), vn) →
f(s, u∗(s), u∗) for a.e. s ∈ J .

Example 4.4. Let E be, as in Example 3.3, the space c0 of the sequences of
real numbers converging to zero, ordered componentwise and equipped with the
sup-norm. The solutions of the infinite system of IIVP’s

w′n(t) +
1

1 + t
wn(t) =

2√
n(1 + t)

(
cos

( 1
t2

)
+

2
t

sin
( 1
t2

))
± 1√

n
,

wn(0+) = 0, ∆wn

(
t− 2n− 1

2n

)
= ± 1√

n
, n = 1, 2, . . . ,

(4.10)

in Hloc((0, 2), c0) are

(wn±(t))∞n=1

=
(

1
2
√

n(1 + t)

(
±4n− 1

n
H

(
t− 2n− 1

2n

)
+ 2t2 cos

( 1
t2

)
± 2t± t2

))∞
n=1

.
(4.11)

Thus Theorem 4.2 can be applied to show that least and greatest solutions u∗ =
(u∗n)∞n=1 and u∗ = (u∗n)∞n=1 of infinite system of IIVP’s

u′n(t) +
1

1 + t
un(t) =

1√
n(1 + t)

(
cos

( 1
t2

)
+

2
t

sin
( 1
t2

))
+

1√
n

gn(u),

wn(0+) = 0, ∆wn

(
t− 2n− 1

2n

)
=

1√
n

Dn(u), n = 1, 2, . . . ,

(4.12)

exist in Hloc((0, 2), c0) and belong to its order interval [w−, w+], if we assume
that all the functions Dn, gn : Hloc([0, 2), c0) → R, are increasing, and if −1 ≤
Dn(u), gn(u) ≤ 1 for all u ∈ Hloc((0, 2), c0) and n = 1, 2, . . . .

Remarks 4.5. The functional dependence on the last argument u of q, f and D
can be formed, e.g., by bounded, linear and positive operators, such as integral
operators of Volterra and/or Fredholm type with nonnegative kernels. Thus the
results derived in this paper can be applied also to integro-differential equations.

If a > −∞, then Hloc([a, b), E) contains those functions u : [a, b) → E which are
HL integrable on every compact subinterval of (a, b) and for which the improper
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integral
K

∫ t

a+

u(s) ds = lim
c→a+

K

∫ t

c

u(s) ds

exists for some t ∈ (a, b) (cf. [3, Theorem 2.1]). Noticing also that Bochner inte-
grable functions are HL integrable, the results of Sections 3 and 4 generalize the
corresponding results of [5] in the case when a > −∞.

As for other papers dealing with functional Volterra integral equations and dif-
ferential equations via non-absolute integrals; see, e.g. [3, 4, 9, 11, 12].
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