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EXISTENCE OF POSITIVE SOLUTIONS FOR A SINGULAR
p-LAPLACIAN DIRICHLET PROBLEM

WENSHU ZHOU

Abstract. By a argument based on regularization technique, upper and lower

solutions method and Arzelá-Ascoli theorem, this paper shows sufficient con-
ditions of the existence of positive solutions of a Dirichlet problem for singular

p-Laplacian.

1. Introduction

This paper shows the existence of positive solutions for the singular p-Laplacian
equation (

φp(u′)
)′ − λ

|u′|p

um
+ f(t, u′) = 0, 0 < t < 1, (1.1)

subject to Dirichlet boundary conditions

u(1) = u(0) = 0, (1.2)

where φp(s) = |s|p−2s, p > 1, λ and m are positive constants, and f is a continuous
function. We call u ∈ C1[0, 1] is a solution if u > 0 in (0, 1), |u′|p−2u′ ∈ C1(0, 1),
and it satisfies (1.1)–(1.2).

Such equation arises in the studies of some degenerate parabolic equations and
in Non-Newtonian fluids; see [2, 3, 4, 5, 13]. The interesting feature of (1.1) is the
lower term both is singular at u = 0 and depends on the first derivative.

Recently, the one-dimensional singular p-Laplacian differential equations without
dependence on the first derivative have been studied extensively, see [1, 7, 12] and
references therein. When it depends on the first derivative, however, it has not
received much attention, see [8, 9, 10, 11]. Recently, the authors [14], considered
the equation (

φp(u′)
)′ − λ

|u′|p

u
+ g(t) = 0, 0 < t < 1,

subject to (1.2), and proved, by the classical method of elliptic regularization, that
the problem admits one positive solution if p ≥ 2, λ > 0 and g ∈ C[0, 1] with
g > 0 on [0, 1]. In the present paper we extend the result and obtain the sufficient
conditions of existence. Our argument is based on regularization technique, upper
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and lower solutions method and Arzelá-Ascoli theorem. In addition, an example is
also given to illustrate our main result.

2. Main result

The following hypotheses will be adopted in this section:
(H1) 1 ≤ m < p.
(H2) f(t, r) is a positive, continuous function in [0,+∞) × R, and there exist

constants α > 0, β ∈ [0, 1) such that f(t, r) ≤ α + β|r|p−1, for all (t, r) ∈
[0, 1]× R.

(H3) λ > infr≥1 H(r), where H(r) : R+ → R+ is defined by

H(r) = αrm−p + βrm−1.

Remark 2.1. Let m ∈ (1, p) and define

X0 =
(α(p−m)

β(m− 1)

)1/(p−1)

; X∗ =

{
X0, X0 ≥ 1
1. X0 < 1

Then infs≥1 H(s) = H(X∗). Indeed, since lims→0+ H(s) = lims→+∞H(s) = +∞,
H(s) must reach a minimum at some s ∈ (0,∞) satisfying H ′(s) = 0. Solving it
gives s = X0 and hence, infs>0 H(s) = H(X0). Since H ′(s) ≥ 0 for all s ≥ X0, we
see that infs≥1 H(s) = H(X0) if X0 ≥ 1, and infs≥1 H(s) = H(1) if X0 < 1.

The main result of this paper is stated as follows.

Theorem 2.2. Under Assumptions (H1)–(H3), problem (1.1)–(1.2) has at least
one solution.

Remark 2.3. If m = 1 and f ≡ 1 (taking α = 1, β = 0), then infs≥1 H(s) = 0.
Clearly, Theorem 2.2 is an extension of the corresponding result of [14].

Proof of Theorem 2.2. Let ε ∈ (0, 1), and define Hε(t, v, ξ) : (0, 1)×R×R → R
by

Hε(t, v, ξ) = λ
|ξ|p

[Iε(v)]m
− f(t, ξ),

where Iε(v) = v + ε if v ≥ 0, Iε(v) = ε if v < 0. By (H2) and using the inequality:
ap−1 ≤ ap + 1, for all a ≥ 0, we have

|Hε(t, v, ξ)| ≤ λ

εm
|ξ|p + α + β|ξ|p−1 ≤

( λ

εm
+ α + β

)
H(|ξ|)

for all (t, v, ξ) ∈ (0, 1)× R× R, where H(s) = 1 + sp for s ≥ 0. Denote M = {u ∈
C1(0, 1); |u′|p−2u′ ∈ C1(0, 1)}, and define Lε : M → C(0, 1) by

(Lεu)(t) = −
(
φp(u′)

)′ + Hε(t, u, u′), 0 < t < 1.

Consider the problem:
(Lεu)(t) = 0, 0 < t < 1,

u(1) = u(0) = 0.
(2.1)

We call u ∈ M is an upper solution (lower solution) of problem (2.1) if Lεu ≥ 0
(≤ 0) in (0, 1) and u(t) ≥ (≤)0 for t = 0, 1.

We will apply the upper and lower solutions method (see [8, Theorem 1 and
Remark 2.4]) to show the existence of solutions of problem (2.1). Obviously,
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0

sp−1

H(s)ds = +∞, thus the condition [8, Eq. (2.3)] is satisfied. Then it suf-
fices to find a lower solution and an upper solution to obtain a solution.

Let infs≥1 H(s) ≡ δ. Then it follows from the definition of infimum and λ > δ

that for δ0 = λ−δ
2 > 0, there exists S∗ ≥ 1 such that H(S∗) < δ + δ0 < λ.

Lemma 2.4. There exists a constant ε0 ∈ (0, 1), such that for any ε ∈ (0, ε0),
Uε = S∗(t + ε) is an upper solution of (2.1).

Proof. Noticing Uε ≥ ε in (0, 1) and m ≥ 1, we have

LεUε = −
(
|U ′ε|p−2U ′ε

)′ + λ
|U ′ε|p

(Uε + ε)m
− f(t, U ′ε)

=
λS∗p−m

(t + ε + ε/S∗)m
− f(t, S∗)

≥ λS∗p−m

(1 + ε + ε/S∗)m
− α− βS∗p−1

= S∗p−m[λ−H(S∗)] + rε, 0 < t < 1,

where rε = λS∗p−m[(1 + ε + ε/S∗)−m − 1]. Clearly, rε → 0 (ε → 0). Since
λ > H(S∗), there exists a constant ε0 ∈ (0, 1), such that for any ε ∈ (0, ε0) there
holds S∗p−m[λ − H(S∗)] + rε ≥ 0. So that we obtain LεUε ≥ 0 in (0, 1) for all
ε ∈ (0, ε0). The lemma follows. �

Lemma 2.5. Let W = CΦα, where α = p
p−m , Φ(t) is defined by

Φ(t) =
p− 1

p

[(1
2
)p/(p−1) −

∣∣1
2
− t

∣∣p/(p−1)]
, 0 ≤ t ≤ 1,

and C ∈ (0, 1) such that Cα < 1 and (Cα)p−1 + λCp−mαp ≤ min[0,1]×[−1,1] f(s, r).
Then W is a lower solution of problem (2.1).

Proof. It is easy to check that Φ has the following properties:
(a) Φ > 0 in (0, 1), Φ ∈ C1[0, 1].
(b) (|Φ′|p−2Φ′)′ = −1 in (0, 1), Φ(1) = Φ(0) = 0.
(c) Φ(t) ≤ t, |Φ′(t)| ≤ 1, for all t ∈ [0, 1].

Using these properties of Φ, by some calculations, we have

LεW = −
(
|W ′|p−2W

)′ + λ
|W ′|p

(W + ε)m
− f(t,W ′)

≤ −
(
|W ′|p−2W

)′ + λ
|W ′|p

Wm
− f(t,W ′)

= −(Cα)p−1Φ(α−1)(p−1)
(
|Φ′|p−2Φ′

)′
− (Cα)p−1(α− 1)(p− 1)Φ(α−1)(p−1)−1|Φ′|p

+ λCp−mαp|Φ′|p − f(t, CαΦα−1Φ′)

≤ (Cα)p−1Φ(α−1)(p−1) + λCp−mαp|Φ′|p − min
[0,1]×[−1,1]

f(s, r)

≤ (Cα)p−1 + λCp−mαp − min
[0,1]×[−1,1]

f(s, r) ≤ 0, 0 < t < 1.

Thus the lemma follows. �
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According to [8, Theorem 1 and Remark 2.4], for fixed ε ∈ (0, ε0) problem (2.1)
has a solution uε ∈ C1[0, 1] satisfying |u′ε|p−2u′ε ∈ C1(0, 1) and

Uε ≥ uε ≥ W > 0, t ∈ (0, 1). (2.2)

Hence uε satisfies

−
(
|u′ε|p−2u′ε

)′ + λ
|u′ε|p

(uε + ε)m
− f(t, u′ε) = 0, t ∈ (0, 1). (2.3)

Lemma 2.6. For all ε ∈ (0, ε0), we have

|u′ε(t)| ≤ [α(1− β)−1]1/(p−1), ∀t ∈ [0, 1]. (2.4)

Proof. Noticing that uε(1) = uε(0) = 0 and uε ≥ 0 on [0, 1], we have

u′ε(0) ≥ 0 ≥ u′ε(1). (2.5)

From (2.3), we obtain(
|u′ε|p−2u′ε

)′ + α + β|u′ε|p−1 ≥ 0, t ∈ (0, 1). (2.6)

Let χ = φp(u′ε). Then we obtain from (2.6), χ′ + α + β|χ| ≥ 0, t ∈ (0, 1); i.e.,( ∫ χ(t)

0
1

α+β|s|ds + t
)′ ≥ 0, t ∈ (0, 1). This and (2.5) give 1 ≥

∫ χ(t)

0
1

α+β|s|ds +

t ≥ 0, t ∈ [0, 1], hence
∣∣ ∫ χ(t)

0
1

α+β|s|ds
∣∣ ≤ 1, t ∈ [0, 1]. Using the inequality:

|
∫ y

0
1

α+β|s|ds| ≥ |y|
α+β|y| (y ∈ R), we deduce that |χ| ≤ α + β|χ|, t ∈ [0, 1]; that is,

|χ| ≤ α(1− β)−1 on [0, 1]. The lemma is proved. �

Lemma 2.7. For each δ ∈ (0, 1/2), there exists a positive constant Cδ independent
of ε, such that for all ε ∈ (0, ε0)

|u′ε(t2)− u′ε(t1)| ≤ Cδ|t2 − t1|γ , ∀t2, t1 ∈ [δ, 1− δ], (2.7)

where γ = 1/(p− 1) if p ≥ 2; γ = 1 if 1 < p < 2.

Proof. By (2.2) and (2.4), it is easy to derive from (2.3) that for any δ ∈ (0, 1/2)
there exists a constant Cδ > 0 independent of ε, such that for all ε ∈ (0, ε0)∣∣(|u′ε|p−2u′ε)

′∣∣ ≤ Cδ, δ ≤ t ≤ 1− δ. (2.8)

Recalling the inequality (see [6])

(|η|p−2η − |η′|p−2η′) · (η − η′) ≥

{
C1|η − η′|p, p ≥ 2
C2(|η|+ |η′|)p−2|η − η′|2, 1 < p < 2

for each η ∈ R, where Ci(i = 1, 2) are positive constants depending only on p, we
derive, by (2.8), that if p ≥ 2, then

|u′ε(t2)− u′ε(t1)|p ≤ C−1
2 [u′ε(t2)− u′ε(t1)] · [|u′ε(t2)|p−2u′ε(t2)− |u′ε(t1)|p−2u′ε(t1)]

≤ Cδ|u′ε(t2)− u′ε(t1)||t2 − t1|, ∀t2, t1 ∈ [δ, 1− δ],

hence
|u′ε(t2)− u′ε(t1)| ≤ Cδ|t2 − t1|1/(p−1), ∀t2, t1 ∈ [δ, 1− δ],

and if p ∈ (1, 2), then

|u′ε(t2)− u′ε(t1)|2[|u′ε(t2)|+ |u′ε(t1)|]p−2

≤ C−1
2 [u′ε(t2)− u′ε(t1)] · [|u′ε(t2)|p−2u′ε(t2)− |u′ε(t1)|p−2u′ε(t1)]

≤ Cδ|u′ε(t2)− u′ε(t1)||t2 − t1|, ∀t2, t1 ∈ [δ, 1− δ].
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Then, (2.4) yields

|u′ε(t2)− u′ε(t1)| ≤ Cδ|t2 − t1|[|u′ε(t2)|+ |u′ε(t1)|]2−p ≤ Cδ|t2 − t1|

for all t2, t1 ∈ [δ, 1− δ]. This completes the proof. �

By (2.4) and (2.7) and using Arzelá-Ascoli theorem, there exist a subsequence
of {uε}, still denoted by {uε}, and a function u ∈ C1(0, 1) ∩ C[0, 1] such that, as
ε → 0,

uε → u, uniformly in C[0, 1],

uε → u, uniformly in C1[δ, 1− δ],
(2.9)

where δ ∈ (0, 1/2), and hence from uε(1) = uε(0) = ε and (2.2) we derive that
u(1) = u(0) = 0, and u(t) ≥ CΦp/(p−m), t ∈ [0, 1]; therefore u > 0 in (0, 1).

We now show that u satisfies (1.1). Integrating (2.3) over (t0, t) gives

|u′ε(t)|p−2u′ε(t) =
∫ t

t0

(
λ

|u′ε|p

(uε + ε)m
− f(s, u′ε)

)
ds + |u′ε(t0)|p−2u′ε(t0),

and letting ε → 0 and using Lebesgue’s dominated convergence theorem yield

|u′(t)|p−2u′(t) =
∫ t

t0

(
λ
|u′|p

um
− f(s, u′)

)
ds + |u′(t0)|p−2u′(t0). (2.10)

This shows that |u′(t)|p−2u′(t) ∈ C1(0, 1) and (1.1) is satisfied.
It remains to show that u ∈ C1[0, 1]. Integrating (2.3) over (0, 1) and using (2.4)

and (2.5), we derive that∫ 1

0

|u′ε|p

(uε + ε)m
dt ≤ 1

λ
min

[0,1]×[−Y,Y ]
f(t, r), Y :=

( α

1− β

)1/(p−1)
,

and letting ε → 0 and using Fatou’s lemma and (2.9), we obtain∫ 1

0

|u′|p

um
dt ≤ 1

λ
min

[0,1]×[−Y,Y ]
f(t, r).

So, |u′|p
um ∈ L1[0, 1]. By (2.10), the function ω(t) = |u′(t)|p−2u′(t) = φp(u′(t)) is

absolutely continuous on [0, 1]. Since u′(t) = φq(ω(t))( 1
p + 1

q = 1), u′ ∈ C[0, 1]. The
proof of Theorem 2.2 is complete.

Example. Let λ > 4/27. Consider the problem

(|u′|3u′)′ − λ
|u′|5

u2
+

( 1
2 +

√
6

18 |u
′|2)2

2t + 2 cos t− 1
+

sin(πt)√
4 + |u′|3

= 0, 0 < t < 1,

u(1) = u(0) = 0.

(2.11)

Let p = 5, m = 2,

f(t, r) =
( 1
2 +

√
6

18 r2)2

2t + 2 cos t− 1
+

sin(πt)√
4 + |r|3

.

Since (2t + 2 cos t − 1)′ = 2(1 − sin t) ≥ 0, 1 + 2 cos 1 ≥ 2t + 2 cos t − 1 ≥ 1 for all
t ∈ [0, 1] and hence, noticing 0 ≤ sin(πt)√

4+|r|3
≤ 1

2 for (t, r) ∈ [0, 1]× R, we obtain

1
1 + 2 cos 1

(1
2

+
√

6
18

r2
)2 ≤ f(t, r) ≤

(1
2

+
√

6
18

r2
)2 +

1
2
,
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for (t, r) ∈ [0, 1]× R. By the inequality (a + b)2 ≤ 2(a2 + b2), we have

f(t, r) ≤ 1 +
1
27

r4, (t, r) ∈ [0, 1]× R.

Let α = 1, β = 1
27 . Then X0 = 3, and therefore X∗ = 3 and infs≥1 H(s) =

H(X∗) = H(X0) = 4
27 (see Remark 2.1). Thus all assumptions of Theorem 2.2 are

satisfied for any λ > 4
27 , so problem (2.11) has at least one solution.
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