Electron. J. Diff. Eqns., Vol. 2000(2000), No. 16, pp. 1-28.

Traveling waves in rapid solidification

Karl Glasner

We analyze rigorously the one-dimensional traveling wave problem for a thermodynamically consistent phase field model. Existence is proved for two new cases: one where the undercooling is large but not in the hypercooled regime, and the other for waves which leave behind an unstable state. The qualitative structure of the wave is studied, and under certain restrictions monotonicity of front profiles can be obtained. Further results, such as a bound on propagation velocity and non-existence are discussed. Finally, some numerical examples of monotone and non-monotone waves are provided.

Submitted January 4, 2000. Published February 25, 2000.
Math Subject Classifications: 80A22, 74J30.
Key Words: Traveling waves, Phase field models.

Show me the PDF file (231K), TEX file, and other files for this article.

Karl Glasner
Department of Mathematics, University of Utah
Salt Lake City, Utah 84112-0090 USA
email: glasner@math.utah.edu
Return to the EJDE web page