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Radial minimizers of a Ginzburg-Landau

functional ∗

Yutian Lei, Zhuoqun Wu, & Hongjun Yuan

Abstract

We consider the functional

Eε(u,G) =
1

p

∫
G

|∇u|p +
1

4εp

∫
G

(1− |u|2)2

with p > 2 and d > 0, on the class of functions W = {u(x) = f(r)eidθ ∈
W 1,p(B,C); f(1) = 1, f(r) ≥ 0}. The location of the zeroes of the mini-
mizer and its convergence as ε approaches zero are established.

1 Introduction

Let G ⊂ R2 be a bounded and simply connected domain with smooth boundary
∂G and g be a smooth map from ∂G into S1 = {x ∈ C; |x| = 1}. Consider the
functional of Ginzburg-Landau type

Eε(u,G) =
1

p

∫
G

|∇u|p +
1

4εp

∫
G

(1− |u|2)2, (ε > 0) (1.1)

which has been well-studied in [1] for p = 2, d = deg(g, ∂G) = 0 and in [2] for
p = 2, deg(g, ∂G) 6= 0. Here d = deg(g, ∂G) denotes the Brouwer degree of the
map g. For other related papers, we refer to [3],[5]–[13].
The first two authors of this paper studied the general case p > 1, especially

the case p > 2 under the restriction d = deg(g, ∂G) = 0. In [9][10] some results
on the asymptotic behaviour of the minimizer uε of Eε(u,G) are presented, in
particular, if p > 2, then for some α ∈ (0, 1), the regularizable minimizer ũε of
Eε(u,G) converges in C

1,α
loc (G,C) as ε → 0. By the regularizable minimizer of

Eε(u,G), we mean a minimizer of Eε(u,G) which is the limit of a subsequence
uτkε of minimizers u

τ
ε of the regularized functionals

Eτε (u,G) =
1

p

∫
G

(|∇u|2 + τ)p/2 +
1

4εp

∫
G

(1− |u|2)2, (τ > 0) (1.2)
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in W 1,p(G,C) as τk → 0.
In this paper we assume that d = deg(g, ∂G) 6= 0. Under this condition,

if 1 < p < 2, then, since W 1,pg (G,S
1) is nonempty, the existence of the p-

harmonic up on G with given boundary value g and the convergence to up for a
subsequence uεk of uε in W

1,p(G,C) as εk → 0 can be proved similar to [9].
However if p > 2, then, since d 6= 0,W 1,pg (G,S

1) must be empty. In this case
unlike the case d = 0 or 1 < p < 2, it is impossible to have some subsequence of
uε converging to a p-harmonic map on G. Under the condition d 6= 0, p > 2, the
asymptotic analysis of the minimizers of Eε(u,G) seems to be a very difficult
problem. In this paper, we assume that G = B = {x ∈ R2; |x| < 1}, g(x) = eidθ,
x = (cos θ, sin θ) on ∂B = S1 and consider the minimization of Eε(u,B) in the
class of radial functions

u(x) = f(r)eidθ ∈W 1,pg (B,C), r = |x|

Such minimizers will be called radial minimizers.
Obviously, u(x) = f(r)eidθ ∈ W 1,pg (B,C) implies f(1) = 1. Notice that if

u(x) = f(r)eidθ ∈ W 1,pg (B,C), then |f(r)|e
idθ ∈W 1,pg (B,C) and

Eε(|f(r)|eidθ, B) = Eε(f(r)eidθ , B). So, without loss of generality, we may
choose the class of admissible functions as

W = {u(x) = f(r)eidθ ∈W 1,p(B,C); f(1) = 1, f(r) ≥ 0}.

In polar coordinates, for u(x) = f(r)eidθ we have

|∇u| = (f2r + d
2r−2f2)1/2,∫

B
|u|p = 2π

∫ 1
0
r|f |p dr,∫

B
|∇u|p = 2π

∫ 1
0
r(f2r + d

2r−2f2)p/2 dr.

It is easily seen that f(r)eidθ ∈W 1,p(B,C) implies f(r)r
1
p−1, fr(r)r

1
p ∈ Lp(0, 1).

Conversely, if f(r) ∈ W 1,ploc (0, 1], f(r)r
1
p−1, fr(r)r

1
p ∈ Lp(0, 1), then f(r)eidθ ∈

W 1,p(B,C). Thus if we denote

V = {f ∈W 1,ploc (0, 1]; r
1/pfr ∈ Lp(0, 1), r(1−p)/pf ∈ Lp(0, 1),

f(1) = 1, f(r) ≥ 0}

then V = {f(r);u(x) = f(r)eidθ ∈ W}.

Proposition 1.1 The set V defined above is a subset of {f ∈ C[0, 1]; f(0) = 0}.

Proof. Let f ∈ V, h(r) = f(r1+
1
p−2 ).Then

∫ 1
0

|h′(r)|p dr = (1 +
1

p− 2
)p
∫ 1
0

|f ′(r1+
1
p−2 )|pr

p
p−2 dr

= (1 +
1

p− 2
)p(1 −

1

p− 1
)

∫ 1
0

s|f ′(s)|p ds <∞



EJDE–1999/30 Yutian Lei, Zhuoqun Wu, & Hongjun Yuan 3

which implies that h(r) ∈ C[0, 1] and hence f(r) ∈ C[0, 1].
Suppose f(0) > 0, then f(r) ≥ s > 0 for r ∈ [0, t) with t > 0 small enough.

Since p > 2, we have

∫ 1
0

r1−pfp dr ≥ sp
∫ t
0

r1−p dr =∞

which contradicts r1/p−1f ∈ Lp(0, 1). Therefore f(0) = 0 and the proof is
complete.
Substituting u(x) = f(r)eidθ ∈ W into Eε(u,B)(Eτε (u,B)), we obtain

Eε(u,B) = 2πEε(f) (1.3)

(Eτε (u,B) = 2πE
τ
ε (f))

where

Eε(f) =

∫ 1
0

[
1

p
(f2r + d

2r−2f2)p/2 +
1

4εp
(1− f2)2]r dr (1.4)

(Eτε (f) =

∫ 1
0

[
1

p
(f2r + d

2r−2f2 + τ)p/2 +
1

4εp
(1− f2)2]r dr)

This shows that u = f(r)eidθ ∈ W is the minimizer of Eε(u,B)(Eτε (u,B)) if
and only if f(r) ∈ V is the minimizer of Eε(f)(Eτε (f)).
Some basic properties of minimizers are given in §2. The main purpose of §3

is to prove that for any radial minimizer uε of Eε(u,B) and any given η ∈ (0, 1)
there exists a constant h(η) > 0 such that

Zε = {x ∈ B; |uε(x)| < 1− η} ⊂ B(0, hε) = {x ∈ R
2; |x| < hε}.

(Theorem 3.5) which implies, in particular, that the zeroes of uε are contained
in B(0, hε) and that

lim
ε→0
uε = e

idθ, in Cloc(B \ {0}, C)

In §4 the convergence rate for regularizable minimizers ũε is studied (Theo-
rem 4.4). In §5 we prove the convergence of radial minimizers uε in W

1,p
loc (B \

{0}, C) as ε → 0 (Theorem 5.3) and the convergence of regularizable radial
minimizers ũε in C

1,α
loc (B \ {0}, C) as ε→ 0 (Theorem 5.4). Finally we indicate

in §6 that our argument can be extended to the higher dimensional case.

2 Basic properties of minimizers

Proposition 2.1 The functional Eε(u,B)(E
τ
ε (u,B)) achieves its minimum on

W by a function uε(x) = fε(r)e
idθ(uτε(x) = f

τ
ε (r)e

idθ); fε(r)(f
τ
ε (r)) is the min-

imizer of Eε(f)(E
τ
ε (f)).
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Proof. W 1,p(B,C) is a reflexive Banach space. By a well-known result of Mor-
rey (see for example [4])Eε(u,B) is weakly lower-semi-continuous inW

1,p
loc (B,C).

To prove the existence of the minimizers of Eε(u,B) in W, it suffices to verify
that W is a weakly closed subset of W 1,p(B,C). Clearly W is a convex subset
of W 1,p(B,C). Now we prove that W is a closed subset of W 1,p(B,C).

Let uk = fk(r)e
idθ ∈ W and

lim
k→∞

uk = u, in W
1,p(B,C)

By the embedding theorem there exists a subsequence of uk, supposed to be uk
itself, such that

lim
k→∞

uk = u, in C(B,C)

which implies

lim
k→∞

fk = f, in C[0, 1]

and

u = f(r)eidθ

Combining this with fk(1) = 1, fk(r) ≥ 0, we see that f(1) = 1, f(r) ≥ 0. Thus
u ∈ W . The existence of minimizers uτε of E

τ
ε (u,B) can be proved similarly.

Proposition 2.2 The minimizer fε(r)(f
τ
ε (r)) of the functional Eε(f)(E

τ
ε (f))

satisfies

−(rAf ′)′ + r−1d2Af =
r

εp
f(1− f2), A = (f2r + r

−2d2f2)(p−2)/2 (2.1)

in the following sense:

∫ 1
0
r(f2r + r

−2d2f2)(p−2)/2(frφr + r
−2d2fφ) dr

= 1
εp

∫ 1
0
r(1 − f2)fφ dr, ∀φ ∈ C∞0 (0, 1)

(2.2)

(−(rAf ′)′ + r−1d2Af =
r

εp
f(1− f2), A = (f2r + r

−2d2f2 + τ)(p−2)/2 (2.3)

in the classical sense).

By a limit process we see that the test function φ in (2.2) can be any member
of

X = {φ(r) ∈W 1,ploc (0, 1];φ(0) = φ(1) = 0, φ(r) ≥ 0, r
1
pφ′, r

1
p−1φ ∈ Lp(0, 1)}

Proposition 2.3 Let fε (f
τ
ε ) be a nonnegative solution of (2.1)((2.3)) satisfy-

ing f(0) = 0, f(1) = 1 Then fε ≤ 1, (f τε ≤ 1) on [0,1].
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Proof. Denote f = fε in (2.2) and set φ = f(f
2 − 1)+. Then

∫ 1
0

r(f2r + d
2r−2f2)(p−2)/2[f2r (f

2 − 1)+

+ffr[(f
2 − 1)+]r + d

2r−2f2(f2 − 1)+] dr +
1

εp

∫ 1
0

rf2(f2 − 1)2+ dr = 0

from which it follows that

1

εp

∫ 1
0

rf2(f2 − 1)2+ dr = 0

Thus f = 0 or (f2 − 1)+ = 0 on [0, 1] and hence f = fε ≤ 1 on [0,1]. The proof
of f τε ≤ 1 is even easier.

Proposition 2.4 Let fε(f
τ
ε ) be a minimizer of Eε(f)(E

τ
ε (f)). Then

Eε(fε) ≤ Cε
2−p, (Eτε (f

τ
ε ) ≤ Cε

2−p)

with a constant C independent of ε ∈ (0, 1)(ε, τ ∈ (0, 1)).

Proof. Denote

I(ε,R) =Min{

∫ R
0

[
1

p
(f2r +

d2

r2
f2)

p
2 +

1

4εp
(1− f2)2]r dr; f ∈ VR}

where

VR =
{
f(r) ∈W 1,ploc (0, R]; f(r) ≥ 0, f(R) = 1, f(r)r

1
p−1, f ′(r)r

1
p ∈ Lp(0, R)

}
.

Then

I(ε, 1) = Eε(fε)

=
1

p

∫ 1
0

r((fε)
2
r + d

2r−2f2ε )
p/2 dr +

1

4εp

∫ 1
0

r(1 − f2ε )
2 dr

=
1

p

∫ 1/ε
0

ε2−ps((fε)
2
s + d

2s−2f2ε )
p/2 ds+

1

4εp

∫ ε−1
0

ε2s(1− f2ε )
2 ds

= ε2−pI(1, ε−1)

Let f1 be the minimizer for I(1, 1) and define

f2 = f1, 0 < s < 1; f2 = 1, 1 ≤ s ≤ ε
−1

We have

I(1, ε−1) ≤
1

p

∫ ε−1
0

s[(f ′2)
2 + d2s−2f22 ]

p/2 ds+
1

4

∫ ε−1
0

s(1− f22 ) ds
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≤
1

p

∫ ε−1
1

s1−pdp ds+
1

p

∫ 1
0

s((f ′1)
2 + d2s−2f21 )

p/2 ds

+
1

4

∫ 1
0

s(1− f21 )
2 ds

=
dp

p(p− 2)
(1− εp−2) + I(1, 1)

≤
dp

p(p− 2)
+ I(1, 1) = C

Substituting into (2.4) follows the first conclusion of Proposition 2.4.
To prove another conclusion, note

Eτε (f
τ
ε ) = ε2−p[

1

p

∫ 1/ε
0

s((f τε )
2
s + d

2s−2(f τε )
2 + ε2τ)p/2 ds

+
1

4

∫ ε−1
0

s(1− (f τε )
2)2 ds]

Let f1 be the minimizer for I(1, 1) and fε be the function defined above.
Then

Eτε (f
τ
ε ) ≤ E

τ
ε (fε)

≤ ε2−p[ 1p
∫ ε−1
0 s[(f ′2)

2 + d2s−2f22 + ε
2τ ]p/2 ds+ 14

∫ ε−1
0 s(1− f22 )

2 ds]

= ε2−p[ 1p
∫ ε−1
1 s[s−2d2 + ε2τ ]p/2 ds+ 1

p

∫ 1
0 s((f

′
1)
2 + d2s−2f21 + ε

2τ)p/2 ds

+ 14
∫ 1
0 s(1− f

2
1 )
2 ds

≤ ε2−p[C
p

∫ ε−1
1
s[s−pdp + εp]p/2 ds+ C

p

∫ 1
0
s[((f ′1)

2 + d2s−2f21 )
p/2 + εp] ds

+ 14
∫ 1
0 s(1− f

2
1 )
2 ds]

≤ ε2−p[CI(1, 1) + Cεp + C + Cεp−2] ≤ Cε2−p

The proof of Proposition 2.4 is complete.

3 Location of zeroes and Cloc convergence for
minimizers

By the embedding theorem we first derive from Proposition 2.3 and Proposi-
tion 2.4 the following

Proposition 3.1 Let uε(u
τ
ε ) be a radial minimizer of Eε(u,B)(E

τ
ε (u,B)). Then

there exists a constant C independent of ε ∈ (0, 1)(ε, τ ∈ (0, 1)) such that

|uε(x)− uε(x0)| ≤ Cε
(2−p)/p|x− x0|

1−2/p, ∀x, x0 ∈ B

(|uτε(x) − u
τ
ε(x0)| ≤ Cε

(2−p)/p|x− x0|
1−2/p) ∀x, x0 ∈ B
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As a corollary of Proposition 2.4 we have

Proposition 3.2 Let uε(u
τ
ε) be a radial minimizer of Eε(u,B)(E

τ
ε (u,B)). Then

for some constant C independent of ε(ε, τ) ∈ (0, 1]

1

ε2

∫
B

(1− |uε|
2)2 ≤ C (3.1)

(
1

ε2

∫
B

(1− |uτε |
2)2 ≤ C)

Based on Proposition 3.1, we have the following interesting result:

Proposition 3.3 Let uε(u
τ
ε) be a radial minimizer of Eε(u,B)(E

τ
ε (u,B)). Then

for any η ∈ (0, 1), there exist positive constants λ, µ independent of ε(ε, τ) ∈
(0, 1) such that if

1

ε2

∫
B∩B2lε

(1 − |uε|
2)2 ≤ µ (3.2)

(
1

ε2

∫
B∩B2lε

(1 − |uτε |
2)2 ≤ µ)

where B2lε is some disc of radius 2lε with l ≥ λ, then

|uε(x)| ≥ 1− η, ∀x ∈ B ∩B
lε (3.3)

(|uτε(x)| ≥ 1− η, ∀x ∈ B ∩B
lε)

Proof. First we observe that there exists a constant β > 0 such that for any
x ∈ B and 0 < ρ ≤ 1,

mes(B ∩B(x, ρ)) ≥ βρ2

To prove the proposition, we choose

λ = (
η

2C
)
p
p−2 , µ =

β

4
(
1

2C
)
2p
p−2 η2+

2p
p−2

where C is the constant in Proposition 3.1.
Suppose that there is a point x0 ∈ B ∩Blε such that |uε(x0)| < 1− η. Then

applying Proposition 3.1 we have

|uε(x)− uε(x0)| ≤ Cε(2−p)/p|x− x0|
1−2/p ≤ Cε(2−p)/p(λε)1−2/p

= Cλ1−2/p =
η

2
, ∀x ∈ B(x0, λε)

Hence

(1 − |uε(x)|
2)2 >

η2

4
, ∀x ∈ B(x0, λε)

∫
B(x0,λε)∩B

(1 − |uε|2)2 >
η2

4 mes(B ∩B(x0, λε))

≥ β η
2

4 (λε)2 = β
η2

4 (
η
2C )

2p
p−2 ε2 = µε2

(3.4)



8 Ginzburg-Landau functional EJDE–1999/30

Since x0 ∈ Blε ∩B, and (B(x0, λε) ∩B) ⊂ (B2lε ∩B), (3.4) implies

∫
B2lε∩B

(1− |uε|
2)2 > µε2

which contradicts (3.2) and thus the proposition is proved.
Let uε be a radial minimizer of Eε(u,B). Given η ∈ (0, 1). Let λ, µ be

constants in Proposition 3.3 corresponding to η. If

1

ε2

∫
B(xε,2λε)∩B

(1− |uε|
2)2 ≤ µ (3.5)

then B(xε, λε) is called η− good disc, or simply good disc. Otherwise B(xε, λε)
is called η− bad disc or simply bad disc.
Now suppose that {B(xεi , λε), i ∈ I} is a family of discs satisfying

(i) : xεi ∈ B, i ∈ I; (ii) : B ⊂ ∪i∈IB(x
ε
i , λε)

(iii) : B(xεi , λε/4) ∩B(x
ε
j , λε/4) = ∅, i 6= j (3.6)

Denote
Jε = {i ∈ I;B(x

ε
i , λε) is a bad disc}

Proposition 3.4 There exists a positive integer N such that the number of bad
discs cardJε ≤ N

Proof. Since (3.6) implies that every point in B can be covered by finite, say
m (independent of ε) discs, from (3.2) and the definition of bad discs,we have

µε2 cardJε ≤
∑
i∈Jε

∫
B(xε

i
,2λε)∩B

(1 − |uε|
2)2

≤ m

∫
∪i∈JεB(x

ε
i
,2λε)∩B

(1− |uε|
2)2

≤ m

∫
B

(1− |uε|
2)2 ≤ mCε2

and hence cardJε ≤
mC
µ
≤ N .

Applying Theorem IV.1 in [2], we may modify the family of bad discs such
that the new one, denoted by {B(xεi , hε); i ∈ J}, satisfies

∪i∈JεB(x
ε
i , λε) ⊂ ∪i∈JB(x

ε
i , hε),

λ ≤ h; cardJ ≤ cardJε (3.7)

|xεi − x
ε
j | > 8hε, i, j ∈ J, i 6= j

The last condition implies that every two discs in the new family are Dis-
intersected.
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The argument on the good and bad discs can be applied to the radial
minimizer uτε of E

τ
ε (u,B). In particular, we may obtain a family of discs

{B(xε,τi , λε), i ∈ I} such that the number of bad discs is bounded by a positive
integer N independent of both ε ∈ (0, 1) and τ ∈ (0, 1). The family of bad discs
can be modified such that the new one satisfies the conditions corresponding to
(3.7).
Now we prove our main result of this section.

Theorem 3.5 Let uε(u
τ
ε) be a radial minimizer of Eε(u,B)(E

τ
ε (u,B)). Then

for any η ∈ (0, 1), there exists a constant h = h(η) independent of ε(ε, τ) ∈ (0, 1)
such that Zε = {x ∈ B; |uε(x)| < 1 − η} ⊂ B(0, hε)(Zτε = {x ∈ B; |u

τ
ε(x)| <

1− η} ⊂ B(0, hε)).In particular the zeroes of uε(uτε) are contained in B(0, hε).

Proof. Suppose there exists a point x0 ∈ Zε such that x0∈B(0, hε). Then all
points on the circle

S0 = {x ∈ B; |x| = |x0|}

satisfy |uε(x)| < 1 − η and hence by virtue of Proposition 3.3 all points on S0
are contained in bad discs. However, since |x0| ≥ hε, S0 can not be covered by
a single bad disc. S0 can be covered by at least two bad discs. However this is
impossible. The same is true for uτε .

Theorem 3.6 Let uε = fε(r)e
idθ be a radial minimizer of Eε(u,B). Then

lim
ε→0
fε = 1, in Cloc((0, 1], R)

lim
ε→0
uε = e

idθ, in Cloc(B \ {0}, C)

4 Convergence rate for minimizers

Proposition 4.1 Let uτε be a radial minimizer of E
τ
ε (u,B). Then there exists

a subsequence uτkε of u
τ
ε with τk → 0 such that

lim
τk→0

uτkε = ũε, in W
1,p(B,C) (4.1)

and ũε is a radial minimizer of Eε(u,B).

Proof. Since uε ∈W and uτε is a radial minimizer of E
τ
ε (u,B) in W, we have

Eτε (u
τ
ε , B) ≤ E

τ
ε (uε, B) ≤ C

with a constant C independent of τ ∈ (0, 1). This and |uτε | ≤ 1 on B imply the
existence of a subsequence uτkε of u

τ
ε with τk → 0 and a function ũε ∈ W

1,p(B,C)
such that

lim
τk→0

uτkε = ũε, weakly in W
1,p(B,C) (4.2)
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lim
τk→0

uτkε = ũε, in C(B,C) (4.3)

Thus, ũε ∈ W and we have

lim inf
τk→0

Eτkε (u
τk
ε , B) ≤ lim sup

τk→0
Eτkε (u

τk
ε , B) ≤ lim

τk→0
Eτkε (ũε, B)

lim
τk→0

∫
B

(1− |uτkε |
2)2 =

∫
B

(1 − |ũε|
2)2

Hence

lim infτk→0
∫
B
(|∇uτkε |

2 + τk)
p/2 ≤ lim supτk→0

∫
B
(|∇uτkε |

2 + τk)
p/2

≤ limτk→0
∫
B
(|∇ũε|2 + τk)p/2 =

∫
B
|∇ũε|p

(4.4)
On the other hand, (4.2) and the lower semicontinuity of

∫
B
|∇v|p imply∫

B

|∇ũε|
p ≤ lim inf

τk→0

∫
B

|∇uτkε |
p

¿From this and (4.4) we obtain

lim
τk→0

∫
B

|∇uτkε |
p =

∫
B

|∇ũε|
p

which combined with (4.2) gives

lim
τk→0

∫
B

|∇(uτkε − ũε)|
p = 0 (4.5)

(4.1) follows from (4.3) and (4.5).
For any v ∈W , we have

Eτkε (u
τk
ε , B) ≤ E

τk
ε (v,B)

Letting τk → 0 and noticing that

lim
τk→0

Eτkε (u
τk
ε , B) = Eε(ũε, B)

we are led to Eε(ũε, B) ≤ Eε(v,B) Thus ũε is a radial minimizer of Eε(u,B)

Proposition 4.2 Let f τε be a minimizer of the regularized functional E
τ
ε (f) in

V . Then there exist a subsequence f τkε of f
τ
ε with τk → 0 and a function f̃ε ∈ V ,

such that

lim
τk→0

∫ 1
0

r(f τkε − f̃ε)
p
r dr = 0;

f̃ε is a minimizer of Eε(f) in V .

Now we prove the main result of this section.

Theorem 4.3 Suppose p > 4. Let f̃ε be a regularizable minimizer of Eε(f).
Then there exists a constant C independent of ε ∈ (0, 1) such that

‖(f̃ε)
′‖L2(r0,r1) ≤ C(r0, r1)ε (4.6)

where [r0, r1] is an arbitrary closed interval of (0,1).
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Proof. Substitute f = f τε into (2.3) and let w = 1− f . Then w satisfies

w − εp(2− w)−1(1− w)−1[(Aw′)′ +Ar−1w′ + d2r−2A(1 − w)] = 0

Differentiate with respect to r, multiply by rw′ζ2 with ζ ∈ C∞0 (0, 1), such that
0 ≤ ζ ≤ 1 on [0, 1], ζ = 1 on [t1, t2], ζ = 0 on [0, 1]− [t, t3], where 0 < t < t1 <
t2 < t3 < 1, |ζ′| ≤ C, and integrate over (0, 1). Then we have

∫ 1
t

r(w′)2ζ2 dr + εp
∫ 1
t

(rw′ζ2)′(2 − w)−1(1− w)−1

·[(Aw′)′ +Ar−1w′ + d2r−2A(1 − w)] = 0 (4.7)

¿From Theorem 3.5, f has a positive uniform lower bound on [t, 1] for ε > 0
small enough. Hence

C−1 ≤ (2− w)−1(1 − w)−1 ≤ C

for some constant C > 0 independent of ε ∈ (0, η), τ ∈ (0, 1). Substituting

A′ = (p− 2)A
p−4
p−2 · (w′w′′ − d2r−2(1− w)w′ − 2(1− w)2d2r−3)

into (4.7), we obtain

∫ 1
t

r(w′)2ζ2 dr +
εp

C

∫ 1
t

rA(w′′)2ζ2 dr +
p− 2

C
εp
∫ 1
t

r(w′w′′)2A
p−4
p−2 ζ2 dr

≤ Cεp
∫ 1
t
[Aw′w′′ζ2 + d2r−1A(1− w)w′′ζ2

+ (w′ζ2 + 2ζζ′rw′)(A′w′ +Aw′′ + r−1Aw′ + d2r−2A(1 − w))

− (p− 2)A
p−4
p−2 rw′w′′ζ2(d2r−2(1− w)w′ − 2(1− w)2d2r−3)] dr

and after putting in order

∫ 1
t

r(w′)2ζ2 dr +
εp

Ct

∫ 1
t

A(w′′)2ζ2 dr +
p− 2

Ct
εp
∫ 1
t

(w′w′′)2A
p−4
p−2 ζ2 dr

≤ C(t, d)εp
∫ 1
t
[Aw′w′′(ζ2 + ζζ′) +Aw′′ζ2

+A(w′)2(ζ2 + ζζ′) +Aw′(ζ2 + ζζ′)] dr

+ C(t, d, p)εp
∫ 1
t
A
p−4
p−2 [(w′)3w′′(ζ2 + ζζ′) + (w′)3(ζ2 + ζζ′)

+ (w′)2(ζ2 + ζζ′) + (w′)2w′′ζ2 + w′w′′ζ2] dr

= C(t, d)εpJ1 + C(t, d, p)ε
pJ2

(4.8)

Using the Young inequality we see that for any δ ∈ (0, 1)

J1 ≤ δ

∫ 1
t

A(w′′)2ζ2 dr + C(δ)

∫ 1
t

A[(w′)2 + 1] dr (4.9)
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Noticing that p > 4 and using the Young inequality again we have for any
δ ∈ (0, 1)

J2 ≤ δ
∫ 1
t
A
p−4
p−2 (w′w′′)2ζ2 dr + C(δ)

∫ 1
t
A
p−4
p−2 [(w′)4 + 1] dr

≤ δ
∫ 1
t
A
p−4
p−2 (w′w′′)2ζ2 dr + C(δ)

∫ 1
t
(A

p
p−2 + 1) dr

(4.10)

Combining (4.8) with (4.9)(4.10) and choosing δ small enough we are led to

∫ 1
t

r(w′)2ζ2 dr + εp
∫ 1
t

A(w′′)2ζ2 dr

+εp
∫ 1
t

(w′w′′)2A
p−4
p−2 ζ2 dr ≤ Cεp(1 +

∫ 1
t

A
p
p−2 dr)

In particular ∫ 1
t
r(w′)2ζ2 dr ≤ Cεp(

∫ 1
t
A

p
p−2 dr + 1)

≤ Cεp(1 + t−1
∫ 1
t
rA

p
p−2 dr) ≤ C(t)ε2−p

Here Proposition 2.4 is applied. Thus we have

∫ t2
t1

(w′)2r dr ≤ Cε2

namely ∫ t2
t1

(f τε )
2
rr dr ≤ Cε

2 (4.11)

As a regularizable minimizer of Eε(f), f̃ε is the limit of a subsequence f
τk
ε

of f τε in the sense of Proposition 4.2. Therefore, taking τ = τk in (4.11) and
letting τk → 0, we finally obtain

∫ t2
t1

(f̃ε)
2
r dr ≤ Ct

−1
1 ε

2

which is just (4.6).
It follows from Theorem 4.3 immediately

Theorem 4.4 Suppose p > 4. Let ũε = f̃εe
idθ be a regularizable radial mini-

mizer of Eε(u,B). Then there exists a constant C independent of ε, such that

‖1− f̃ε‖H1(r0,r1) ≤ C(r0, r1)ε

‖ũε − e
idθ‖H1(K,C) ≤ C(K)ε

where [r0, r1] is an arbitrary closed interval of (0,1) and K is an arbitrary com-
pact subset of B \ {0}.
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5 W 1,ploc convergence and C
1,α
loc convergence for min-

imizers

Let uε(x) = fε(r)e
idθ be a radial minimizer of Eε(u,B), namely fε be a mini-

mizer of

Eε(f) =
1

p

∫ 1
0

(f2r + d
2r−2f2)p/2r dr +

1

4εp

∫ 1
0

(1− f2)2r dr

in V . From Proposition 2.4, we have

Eε(fε) ≤ Cε
2−p (5.1)

for some constant C independent of ε ∈ (0, 1).
In this section we further prove that for any η ∈ (0, 1), there exists a constant

C(η) such that
Eε(fε; η) ≤ C(η) (5.2)

for ε ∈ (0, ε0) with ε0 > 0 small be enough, where

Eε(fε; η) =
1

p

∫ 1
η

(f2r + d
2r−2f2)p/2r dr +

1

4εp

∫ 1
η

(1− f2)2r dr

In fact we can prove a more accurate estimate on Eε(fε; η) (see Proposition 5.2).
Based on this estimate and Theorem 3.5, we may obtain better convergence for
minimizers, namely the W 1,ploc convergence and C

1,α
loc convergence.

We first prove

Proposition 5.1 Given η ∈ (0, 1). There exist constants

ηj ∈ [
(j − 1)η

N + 1
,
jη

N + 1
], (N = [p])

and Cj, such that
Eε(fε, ηj) ≤ Cjε

j−p (5.3)

for j = 2, ..., N , where ε ∈ (0, ε0).

Proof. For j = 2, the inequality (5.3) is just the one in Proposition 2.4.
Suppose that (5.3) holds for all j ≤ n. Then we have, in particular

Eε(fε; ηn) ≤ Cnε
n−p (5.4)

If n = N then we are done. Suppose n < N . We want to prove (5.3) for
j = n+ 1.
Obviously (5.4) implies

1
p

∫ (n+1)η
N+1
nη
N+1

[(fε)
2
r + d

2r−2f2ε ]
p/2r dr + 1

4εp

∫ (n+1)η
N+1
nη
N+1

(1− f2ε )
2r dr

≤ Cnεn−p
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from which we see by integral mean value theorem that there exists

ηn+1 ∈ [
nη

N + 1
,
(n+ 1)η

N + 1
]

such that

[(fε)
2
r + d

2r−2f2ε ]r=ηn+1 ≤ Cnε
n−p (5.5)

[
1

εp
(1 − f2ε )

2]r=ηn+1 ≤ Cnε
n−p (5.6)

Consider the functional

E(ρ, ηn+1) =
1

p

∫ 1
ηn+1

(ρ2r + 1)
p/2 dr +

1

2εp

∫ 1
ηn+1

(1 − ρ)2 dr

It is easy to prove that the minimizer ρ1 of E(ρ, ηn+1) on W
1,p
fε
((ηn+1, 1), R

+)
exists and satisfies

−εp(v(p−2)/2ρr)r = 1− ρ, in (ηn+1, 1) (5.7)

ρ|r=ηn+1 = fε, ρ|r=1 = fε(1) = 1 (5.8)

where v = ρ2r + 1.

Applying Theorem 3.5 and (5.4) we see easily that

E(ρ1; ηn+1) ≤ E(fε; ηn+1) ≤ CnEε(fε; ηn+1) ≤ Cnε
n−p (5.9)

for ε ∈ (0, ε0) with ε0 > 0 small enough.
Since fε ≤ 1, it follows from the maximum principle

ρ1 ≤ 1 (5.10)

Now choosing a smooth function ζ(r) such that ζ = 1 on (0, η), ζ = 0 near
r = 1, multiplying (5.7) by ζρr(ρ = ρ1) and integrating over (ηn+1, 1) we obtain

v(p−2)/2ρ2r |r=ηn+1 +
∫ 1
ηn+1
v(p−2)/2ρr(ζrρr + ζρrr) dr

= 1
εp

∫ 1
ηn+1
(1− ρ)ζρr dr

(5.11)

Using (5.9) we have

|
∫ 1
ηn+1
v(p−2)/2ρr(ζrρr + ζρrr) dr|

≤
∫ 1
ηn+1
v(p−2)/2|ζr|ρ2r dr +

1
p
|
∫ 1
ηn+1
(vp/2ζ)r dr −

∫ 1
ηn+1
vp/2ζr dr|

≤ C
∫ 1
ηn+1
vp/2 + 1

p
vp/2|r=ηn+1 +

C
p

∫ 1
ηn+1
vp/2

≤ C
∫ 1
ηn+1
vp/2 + 1

p
vp/2|r=ηn+1 ≤ Cnε

n−p + 1
p
vp/2|r=ηn+1

(5.12)
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and using (5.6)(5.9) we have

| 1
εp

∫ 1
ηn+1
(1− ρ)ζρr dr| =

1
2εp |
∫ 1
ηn+1
((1 − ρ)2ζ)r dr −

∫ 1
ηn+1
(1 − ρ)2ζr dr|

≤ 1
2εp (1− ρ)

2|r=ηn+1 +
C
2εp

∫ 1
ηn+1
(1 − ρ)2 dr| ≤ Cnεn−p

(5.13)
Combining (5.11) with (5.12)(5.13) yields

v(p−2)/2ρ2r|r=ηn+1 ≤ Cnε
n−p +

1

p
vp/2|r=ηn+1

Hence

vp/2|r=ηn+1 = v(p−2)/2(ρ2r + 1)|r=ηn+1 = v
(p−2)/2ρ2r|r=ηn+1 + v

(p−2)/2|r=ηn+1

≤ Cnε
n−p +

1

p
vp/2|r=ηn+1 + v

(p−2)/2|r=ηn+1

≤ Cnε
n−p +

1

p
vp/2|r=ηn+1 + δv

p/2|r=ηn+1 + C(δ)

= Cnε
n−p + (

1

p
+ δ)vp/2|r=ηn+1 + C(δ)

from which it follows by choosing δ > 0 small enough that

vp/2|r=ηn+1 ≤ Cnε
n−p (5.14)

Now we multiply both sides of (5.7) by ρ− 1 and integrate. Then

−εp
∫ 1
ηn+1

[v(p−2)/2ρr(ρ− 1)]r dr + ε
p

∫ 1
ηn+1

v(p−2)/2ρ2r dr +

∫ 1
ηn+1

(ρ− 1)2 dr = 0

¿From this, using(5.8)(5.14)(5.6) and noticing that n < p, we obtain

E(ρ1; ηn+1) ≤ |
∫ 1
ηn+1
[v(p−2)/2ρr(ρ− 1)]r dr|

= v(p−2)/2ρr|ρ− 1|r=ηn+1 ≤ v
(p−1)/2|ρ− 1|r=ηn+1

≤ (Cnεn−p)(p−1)/p(Cnεn)1/2 ≤ Cn+1εn+1−p+(n/2−n/p)

which implies

E(ρ1; ηn+1) ≤ Cn+1ε
n+1−p (5.15)

Define

wε = fε, for r ∈ (0, ηn+1); wε = ρ1, for r ∈ [ηn+1, 1]

Since fε is a minimizer of Eε(f), we have

Eε(fε) ≤ Eε(wε)
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namely

Eε(fε; ηn+1) ≤
1

p

∫ 1
ηn+1

(ρ2r + d
2r−2ρ2)p/2r dr +

1

4ep

∫ 1
ηn+1

(1− ρ2r)
2r dr

≤
C

p

∫ 1
ηn+1

(ρ2r + 1)
p/2 dr +

C

2εp

∫ 1
ηn+1

(1 − ρr)
2 dr + C

= CE(ρ1; ηn+1) + C

Thus, using (5.15) yields

Eε(fε; ηn+1) ≤ Cn+1ε
n−p+1

for ε ∈ (0, ε0). This is just (5.3) for j = n+ 1.

Proposition 5.2 Given η ∈ (0, 1). There exist constants ηN+1 ∈ [
Nη
N+1 , η] and

CN+1 such that

Eε(fε; ηN+1) ≤ CN+1ε
2(N−p+1)/p +

1

p

∫ 1
ηN+1

dp

rp−1
dr (5.16)

where N = [p].

Proof. Similar to the derivation of (5.6) we may obtain from Proposition 5.1

for j = N that there exists ηN+1 ∈ [
Nη
N+1 ,

(N+1)η
N+1 ], such that

1

εp
(1− f2ε )

2|r=ηN+1 ≤ CNε
N−p (5.17)

Also similarly, consider the functional

E(ρ, ηN+1) =
1

p

∫ 1
ηN+1

(ρ2r + 1)
p/2 dr +

1

2εp

∫ 1
ηN+1

(1− ρ)2 dr

whose minimizer ρ2 on W
1,p
fε
((ηN+1, 1), R

+) exists and satisfies

−εp(v(p−2)/2ρr)r = 1− ρ, in (ηN+1, 1) (5.18)

ρ|r=ηN+1 = fε, ρ|r=1 = fε(1) = 1

where v = ρ2r + 1. By the maximum principle we have

ρ2 ≤ 1 (5.19)

¿From (5.4) for n = N it follows immediately that

E(ρ2; ηN+1) ≤ E(fε; ηN+1) ≤ CNEε(fε; ηN+1) ≤ CNEε(fε; ηN ) ≤ CNε
N−p

(5.20)
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Similar to the proof of (5.14) and (5.15), we get from (5.17) that

vp/2|r=ηN+1 ≤ CNε
N−p

E(ρ2; ηN+1) ≤ CN+1ε
N+1−p (5.21)

Now we define

wε = fε, for r ∈ (0, ηN+1); wε = ρ2, for r ∈ [ηN+1, 1]

and then we have
Eε(fε) ≤ Eε(wε)

Notice that
∫ 1
ηN+1
(ρ2r + d

2r−2ρ2)p/2r dr −
∫ 1
ηN+1
(d2r−2)p/2 dr

= p
2

∫ 1
ηN+1

∫ 1
0
[(ρ2r + d

2r−2ρ2)s+ (d2r−2ρ2)(1− s)](p−2)/2] dsρ2rr dr

≤ C
∫ 1
ηN+1

∫ 1
0
[(ρ2r + d

2r−2ρ2)(p−2)/2s(p−2)/2

+ (d2r−2ρ2)(p−2)/2(1− s)(p−2)/2] dsρ2rr dr

= C
∫ 1
ηN+1
(ρ2r + d

2r−2ρ2)(p−2)/2ρ2rr dr
∫ 1
0 s
(p−2)/2 ds

+ C
∫ 1
ηN+1
(d2r−2ρ2)(p−2)/2ρ2rr dr

∫ 1
0
(1− s)(p−2)/2 ds

≤ C(
∫ 1
ηN+1

ρpr dr +
∫ 1
ηN+1

ρ2r dr)

Hence

Eε(fε; ηN+1)

≤
1

p

∫ 1
ηN+1

((ρ2)
2
r + d

2r−2(ρ2)
2)p/2r dr +

1

4ep

∫ 1
ηN+1

(1 − (ρ2)
2)2r dr

≤
1

p

∫ 1
ηN+1

(d2r−2)p/2 dr +
1

4εp

∫ 1
ηN+1

(1 − (ρ2)
2)2 dr

+C(

∫ 1
ηN+1

(ρ2)
p
r dr +

∫ 1
ηN+1

(ρ2)
2
r dr)

Using (5.21) we have

Eε(fε; ηN+1) ≤
1

p

∫ 1
ηN+1

(d2r−2)p/2 dr + CN+1ε
2(N−p+1)/p .

Theorem 5.3 Let uε = fε(r)e
idθ be a radial minimizer of Eε(u,B). Then

lim
ε→0
fε = 1, in W 1,p((η, 1], R) (5.22)

lim
ε→0
uε = e

idθ, in W 1,p(K,C) (5.23)

for any η ∈ (0, 1) and compact subset K ⊂ B \ {0}.
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Proof. It suffices to prove (5.23), since (5.23) implies (5.22). Without loss of
generality, we may assume K = B \ B(0, ηN+1). ¿From Proposition 5.2, We
have

Eε(uε,K) = 2πEε(fε, ηN+1) ≤ C

where C is independent of ε, namely∫
K

|∇uε|
p ≤ C (5.24)

∫
K

(1− |uε|
2)2 ≤ Cεp (5.25)

(5.24) and |uε| ≤ 1 imply the existence of a subsequence uεk of uε and a function
u∗ ∈W 1,p(K,C), such that

lim
εk→0

uεk = u∗, weakly in W
1,p(K,C) (5.26)

lim
εk→0

uεk = u∗, in C
α(K,C), α ∈ (0, 1−

2

p
) (5.27)

(5.27) implies u∗ = e
idθ. Noticing that any subsequence of uε has a convergence

subsequence and the limit is always eidθ, we can assert

lim
ε→0
uε = e

idθ, weakly in W 1,p(K,C) (5.28)

¿From this and the weakly lower semicontinuity of
∫
K
|∇u|p, using Proposi-

tion 5.2, we have∫
K

|∇eidθ|p ≤ lim inf
εk→0

∫
K

|∇uε|
p ≤ lim sup

εk→0

∫
K

|∇uε|
p

≤ C lim
ε→0
ε2(N+1−p)/p + 2π

∫ 1
ηN+1

(d2r−2)p/2r dr

and hence

lim
ε→0

∫
K

|∇uε|
p =

∫
K

|∇eidθ|p

since ∫
K

|∇eidθ|p = 2π

∫ 1
ηN+1

(d2r−2)p/2r dr

Combining this with (5.28)(5.27) completes the proof of (5.23).
For the regularizable radial minimizer ũε = f̃ε(r)e

idθ, we may prove

Eτε (f
τ
ε ; η) =

1

p

∫ 1
η

[(f τε )
2
r + d

2r−2(f τε )
2 + τ ]p/2r dr +

1

4εp

∫ 1
η

(1 − (f τε )
2)2r dr

≤ C(η),

where f τε is the regularized minimizer of Eε(f). On the basis of this fact and
the conclusion for f τε similar to Theorem 3.5, we may obtain better convergence
for the regularizable
minimizer f̃ε by means of the argument applied in [10]. Precisely we have
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Theorem 5.4 Let ũε = f̃ε(r)e
idθ be a regularizable radial minimizer of Eε(u,B).

Then for some α ∈ (0, 1)

lim
ε→0
f̃ε = 1 in C

1,α
loc ((0, 1), R), lim

ε→0
ũε = e

idθ in C1,αloc (B \ {0}, C) .

6 Generalization

Let G ⊂ Rn be a bounded and simply connected domain with smooth boundary
∂G, n > 2, g : ∂G → Sn−1 = {x ∈ Rn; |x| = 1} be a smooth map with d =
deg(g, ∂G) 6= 0. Consider the minimization of the functional

Eε(u,G) =
1

p

∫
G

|∇u|p +
1

4εp

∫
G

(1− |u|2)2

onW = {v ∈W 1,p(G,Rn); v|∂G = g}. When 1 < p < n, we haveW 1,pg (G,S
n−1) 6=

∅ and hence it is easy to prove that
∫
G
|∇u|p achieves its minimum onW 1,pg (G,S

n−1)
by a p-harmonic map with boundary value g. One can also prove that the min-
imizer uε of Eε(u,G) on W exists and for a subsequence uεk of uε there holds,

lim
εk→0

uεk = up in W 1,p(G,Rn)

where up is a p-harmonic map with boundary value g.
In case p = n, M.C.Hong studied in [6] the asymptotic behavior of the

regularizable minimizer of Eε(u,G). He proved that the minimizer u
τ
ε of

Eτε (u,G) =
1

n

∫
G

(|∇u|2 + τ)n/2 +
1

4εn

∫
G

(1 − |u|2)2

on W 1,ng (G,R
n) converges to a minimizer ũε (called regularizable minimizer) of

Eε(u,G) on W
1,p(G,Rn) as τ → 0 and that ũε contains a subsequence ũεk such

that
lim
εk→0

ũεk = un, weakly in W 1,nloc (G \ ∪
J
j=1{aj}, R

n)

where aj(j = 1, 2, ..., J) ∈ G and un is an n-harmonic map on G \ ∪Jj=1{aj}. In
case G = B = {x ∈ Rn; |x| < 1}, g = x, he proved that for a subsequence ũεk of
the regularizable radial minimizer ũε

lim
εk→0

ũεk =
x

|x|
, quad weakly in W 1,nloc (B \ {0}, R

n).

In this section we are concerned with the case p > n. Assume that G = B,
and g = x where B is the unit ball centered at the origin, and consider the
minimizers of Eε(u,B) on the class of radial functions

W = {u ∈ W 1,pg (B,R
n);u(x) = f(r)x|x|−1, f(r) ≥ 0, r = |x|}

we call them radial minimizers.
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Denote as in §1

V = {f(r) ∈ W 1,ploc (0, 1]; r
(1−p)/pf, r1/pfr ∈ L

p(0, 1), f(1) = 1, f(r) ≥ 0}

Substituting u = f(r)x|x|−1 into Eε(u,B) we obtain

Eε(u,B) = meas(S
n−1)Eε(f)

where

Eε(f) =

∫ 1
0

rn−1[
1

p
(f2r + (n− 1)r

−2f2)p/2 +
1

4εp
(1− f2)2] dr

This means that uε(x) = fε(r)x|x|−1 is the minimizer of Eε(u,B) on W if and
only if fε(r) is the minimizer of Eε(f) on V .
Parallel to the discussions in the previous sections we can obtain the corre-

sponding results. In particular, we have the results on the location of zeroes of
minimizers and on the convergence rate for minimizers. Also it can be proved
that if uε(x) = fε(r)x|x|−1 is a radial minimizer of Eε(u,B), then

lim
ε→0
fε = 1 in W

1,p((η, 1], R), lim
ε→0
uε =

x

|x|
in W 1,p(K,Rn)

for any η ∈ (0, 1) and any compact subset K ⊂ B \ {0}. If p > 2n− 2, then for
the regularizable minimizer ũε(x) = f̃ε(r)x|x|−1, we have

lim
ε→0
f̃ε = 1 in C

1,α
loc ((0, 1), R) lim

ε→0
ũε =

x

|x|
in C1,αloc (B \ {0}, R

n)

with some constant α ∈ (0, 1).
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